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Course Overview

@ Material that will be covered in the course:
e Basic graph algorithms
o Algorithm Design Techniques

o Divide and Conquer

o Greedy Algorithms

@ Dynamic Programming
o Network Flows

o Computational intractability
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Graphs
Introduction

@ A way to represent a set of objects with pair-wise relationships
among them.

@ The objects are represented as vertices and the relationships
are represented as edges.

¢ = (V,E)
V = {v,..,vg}
E = {(vyvg), ..}

vertices
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Graphs

Introduction

o Examples

Social networks
Communication networks
Transportation networks
Dependency networks

®© 6 o

Vg and v, are friends

vy

Uy

Vs
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Graphs
Introduction

o Weighted graphs: There are weights associated with each
edge quantifying the relationship. For example, delay in
communication network.
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Graphs
Introduction

@ Directed graphs: Asymmetric relationships between the
objects. For example, one way streets.
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Graphs
Introduction

@ Path: A sequence of vertices vi, va, ..., vk such that for any
consecutive pair of vertices v;, viy1, (vj, vi+1) is an edge in the
graph. It is called a path from v; to vg.

o Cycle: A cycle is a path where v; = v and vy, ..., vx_1 are
distinct vertices.
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Graphs
Introduction

@ Strongly connected: A graph is called strongly connected iff

for any pair of vertices u, v, there is a path from u to v and a
path from v to w.
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Graphs

Introduction

@ Tree: A strongly connected, undirected graph is called a tree
if it has no cycles.

@ How many edges does a tree have?
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Graphs
Introduction

o Let P(n) be the statement
Any tree with n nodes has exactly n — 1 edges.

@ An inductive proof will have the following steps:

o Base case: Show that P(1) is true.
o Inductive step: Show that if P(1), P(2)..., P(k) are true, then so is
P(k+1).
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Graphs

Introduction

o Let P(n) be the statement
Any tree with n nodes has exactly n — 1 edges.

@ An inductive proof will have the following steps:
o Base case: Show that P(1) is true.
o Inductive step: Show that if P(1), P(2)..., P(k) are true, then so is
P(k +1).

Proof outline

o Base case: P(1) is true since any tree with 1 vertex has 0 edges.
o Inductive step: Assume that P(1),..., P(k) are true.

o Now, consider any tree T with k + 1 vertices.

o Claim 1: There is a vertex v in T that has exactly 1 edge.

o Consider T’ obtained by removing v and its edge from T.

o Claim 2: T’ is a tree with k vertices.

o As per the induction hypothesis, T’ has k — 1 edges. This implies

that T has k edges.
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Graphs

Introduction

o Base case: P(1) is true since any tree with 1 vertex has 0 edges.
o Inductive step: Assume that P(1),..., P(k) are true.

o Now, consider any tree T with k + 1 vertices.
o Claim 1: There is a vertex v in T that has exactly 1 edge.
@ Proof: For the sake of contradiction, assume that there does not

exist such a vertex in T. Then this means that all vertices have at
least two edges incident on them. Start with an arbitrary vertex u;
in T. Starting from u; use one of the edges incident on u; to visit
its neighbor w>. Since u also has at least two incident edges, take
one of the other edges to visit its neighbor uz. On repeating this,
we will (in finite number of steps) visit a vertex that was already
visited. This implies that there is a cycle in T. This is a
contradiction. O

o Consider T’ obtained by removing v and its edge from T.
o Claim 2: T’ is a tree with k vertices.
o Proof: T’ clearly has k vertices. T is strongly connected since
otherwise T is not strongly connected. Also, T’ does not have a
cycle since otherwise T has a cycle. O
o As per the induction hypothesis, T’ has k — 1 edges. This implies
that T has k edges. O
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Graphs

Data Structures

@ Adjacency matrix: Store connectivity in a matrix.
o Space: O(n?)

U1 V2
Vg VY, V3 Vs Vg
w0 |t |t |1 |o
vt [0 |1 [o o
vt |t |o |1 |o
vl |0 [t o o
Vy V3 v|0 [0 [0 [o o
Vs
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Graphs

Data Structures

@ Adjacency list: For each vertex, store its neighbors.
e Space: O(n+ m)

U1 V2
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Graph Algorithms
Graph exploration

Problem

Given an (undirected) graph G = (V, E) and two vertices s, t,
check if there is a path between s and t.
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Graph Algorithms
Graph exploration

Given an (undirected) graph G = (V, E) and two vertices s, t,
check if there is a path between s and t.

@ Alternate problem: What are the vertices that are reachable
from s. Is t among these reachable vertices?

o This is also known as graph exploration. That is, explore all
vertices reachable from a starting vertex s.

o Breadth First Search (BFS)
o Depth First Search (DFS)
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

i1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer()
- If Layer(i) is empty, then end
i i+1
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

-1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer(/)
- If Layer(i) is empty, then end
i i+1
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

-1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer(/)
- If Layer(i) is empty, then end
i i+1

V3
Ve

Va
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

=f«=1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer()
- If Layer(i) is empty, then end
i i+1
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

-i+1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer(/)
- If Layer(i) is empty, then end
-i—i+1
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

-1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer(/)
- If Layer(i) is empty, then end
-i—i+1
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = {s}

i1

- While(true)
- Visit all new nodes that have an edge to a vertex in Layer(i — 1)
- Put these nodes in the set Layer(i)
- If Layer(i) is empty, then end
i i+1

o Theorem 1: The shortest path from s to any vertex in Layer(i) is
equal to /.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End
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