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Course Overview

Material that will be covered in the course:

Basic graph algorithms
Algorithm Design Techniques

Divide and Conquer
Greedy Algorithms
Dynamic Programming
Network Flows

Computational intractability
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Graphs
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Graphs
Introduction

A way to represent a set of objects with pair-wise relationships
among them.

The objects are represented as vertices and the relationships
are represented as edges.
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Graphs
Introduction

Examples
Social networks
Communication networks
Transportation networks
Dependency networks
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Graphs
Introduction

Weighted graphs: There are weights associated with each
edge quantifying the relationship. For example, delay in
communication network.
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Graphs
Introduction

Directed graphs: Asymmetric relationships between the
objects. For example, one way streets.
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Graphs
Introduction

Path: A sequence of vertices v1, v2, ..., vk such that for any
consecutive pair of vertices vi , vi+1, (vi , vi+1) is an edge in the
graph. It is called a path from v1 to vk .

Cycle: A cycle is a path where v1 = vk and v1, ..., vk−1 are
distinct vertices.
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Graphs
Introduction

Strongly connected: A graph is called strongly connected iff
for any pair of vertices u, v , there is a path from u to v and a
path from v to u.
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Graphs
Introduction

Tree: A strongly connected, undirected graph is called a tree
if it has no cycles.

How many edges does a tree have?
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Graphs
Introduction

Let P(n) be the statement

Any tree with n nodes has exactly n − 1 edges.

An inductive proof will have the following steps:

Base case: Show that P(1) is true.
Inductive step: Show that if P(1),P(2)...,P(k) are true, then so is
P(k + 1).
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Graphs
Introduction

Let P(n) be the statement

Any tree with n nodes has exactly n − 1 edges.

An inductive proof will have the following steps:

Base case: Show that P(1) is true.
Inductive step: Show that if P(1),P(2)...,P(k) are true, then so is
P(k + 1).

Proof outline

Base case: P(1) is true since any tree with 1 vertex has 0 edges.
Inductive step: Assume that P(1), ...,P(k) are true.

Now, consider any tree T with k + 1 vertices.
Claim 1: There is a vertex v in T that has exactly 1 edge.
Consider T ′ obtained by removing v and its edge from T .
Claim 2: T ′ is a tree with k vertices.
As per the induction hypothesis, T ′ has k − 1 edges. This implies
that T has k edges.
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Graphs
Introduction

Proof

Base case: P(1) is true since any tree with 1 vertex has 0 edges.
Inductive step: Assume that P(1), ...,P(k) are true.

Now, consider any tree T with k + 1 vertices.
Claim 1: There is a vertex v in T that has exactly 1 edge.

Proof: For the sake of contradiction, assume that there does not
exist such a vertex in T . Then this means that all vertices have at
least two edges incident on them. Start with an arbitrary vertex u1
in T . Starting from u1 use one of the edges incident on u1 to visit
its neighbor u2. Since u2 also has at least two incident edges, take
one of the other edges to visit its neighbor u3. On repeating this,
we will (in finite number of steps) visit a vertex that was already
visited. This implies that there is a cycle in T . This is a
contradiction.

Consider T ′ obtained by removing v and its edge from T .
Claim 2: T ′ is a tree with k vertices.

Proof: T ′ clearly has k vertices. T ′ is strongly connected since
otherwise T is not strongly connected. Also, T ′ does not have a
cycle since otherwise T has a cycle.

As per the induction hypothesis, T ′ has k − 1 edges. This implies
that T has k edges.
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Graphs
Data Structures

Adjacency matrix: Store connectivity in a matrix.

Space: O(n2)
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Graphs
Data Structures

Adjacency list: For each vertex, store its neighbors.

Space: O(n + m)
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Graph Algorithms
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Graph Algorithms
Graph exploration

Problem

Given an (undirected) graph G = (V ,E ) and two vertices s, t,
check if there is a path between s and t.
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Graph Algorithms
Graph exploration

Problem

Given an (undirected) graph G = (V ,E ) and two vertices s, t,
check if there is a path between s and t.

Alternate problem: What are the vertices that are reachable
from s. Is t among these reachable vertices?

This is also known as graph exploration. That is, explore all
vertices reachable from a starting vertex s.

Breadth First Search (BFS)
Depth First Search (DFS)
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G , s)
- Layer(0) = {s}
- i ← 1
- While(true)

- Visit all new nodes that have an edge to a vertex in Layer(i − 1)
- Put these nodes in the set Layer(i)
- If Layer(i) is empty, then end
- i ← i + 1
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Graph Algorithms
BFS

Breadth First Search (BFS)

BFS(G , s)
- Layer(0) = {s}
- i ← 1
- While(true)

- Visit all new nodes that have an edge to a vertex in Layer(i − 1)
- Put these nodes in the set Layer(i)
- If Layer(i) is empty, then end
- i ← i + 1

Theorem 1: The shortest path from s to any vertex in Layer(i) is
equal to i .
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End
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