COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

• Material that will be covered in the course:

- Basic graph algorithms
- Algorithm Design Techniques
 - Divide and Conquer
 - Greedy Algorithms
 - Dynamic Programming
 - Network Flows
- Computational intractability

Graphs

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

- 4 回 > - 4 回 > - 4 回 >

æ

590

- A way to represent a set of objects with pair-wise relationships among them.
- The objects are represented as vertices and the relationships are represented as edges.

Graphs Introduction

• Examples

- Social networks
- Communication networks
- Transportation networks
- Dependency networks

• Weighted graphs: There are weights associated with each edge quantifying the relationship. For example, delay in communication network.

• Directed graphs: Asymmetric relationships between the objects. For example, one way streets.

Graphs Introduction

- <u>Path</u>: A sequence of vertices v₁, v₂, ..., v_k such that for any consecutive pair of vertices v_i, v_{i+1}, (v_i, v_{i+1}) is an edge in the graph. It is called a path from v₁ to v_k.
- Cycle: A cycle is a path where $v_1 = v_k$ and $v_1, ..., v_{k-1}$ are distinct vertices.

• <u>Strongly connected</u>: A graph is called strongly connected iff for any pair of vertices *u*, *v*, there is a path from *u* to *v* and a path from *v* to *u*.

- <u>Tree</u>: A strongly connected, undirected graph is called a tree if it has no cycles.
- How many edges does a tree have?

• Let P(n) be the statement

Any tree with n nodes has exactly n - 1 edges.

- An inductive proof will have the following steps:
 - <u>Base case</u>: Show that P(1) is true.
 - Inductive step: Show that if P(1), P(2)..., P(k) are true, then so is $\overline{P(k+1)}$.

A 3 b

• Let P(n) be the statement

Any tree with n nodes has exactly n - 1 edges.

- An inductive proof will have the following steps:
 - <u>Base case</u>: Show that P(1) is true.
 - Inductive step: Show that if P(1), P(2)..., P(k) are true, then so is $\overline{P(k+1)}$.

Proof outline

- <u>Base case</u>: P(1) is true since any tree with 1 vertex has 0 edges.
- Inductive step: Assume that P(1), ..., P(k) are true.
 - Now, consider any tree T with k + 1 vertices.
 - Claim 1: There is a vertex v in T that has exactly 1 edge.
 - Consider T' obtained by removing v and its edge from T.
 - Claim 2: T' is a tree with k vertices.
 - As per the induction hypothesis, T' has k 1 edges. This implies that T has k edges.

< ロ > < 同 > < 回 > < 回 >

Graphs Introduction

Proof

- <u>Base case</u>: P(1) is true since any tree with 1 vertex has 0 edges.
- Inductive step: Assume that P(1), ..., P(k) are true.
 - Now, consider any tree T with k + 1 vertices.
 - <u>Claim 1</u>: There is a vertex v in T that has exactly 1 edge.
 - Proof: For the sake of contradiction, assume that there does not exist such a vertex in *T*. Then this means that all vertices have at least two edges incident on them. Start with an arbitrary vertex u₁ in *T*. Starting from u₁ use one of the edges incident on u₁ to visit its neighbor u₂. Since u₂ also has at least two incident edges, take one of the other edges to visit its neighbor u₃. On repeating this, we will (in finite number of steps) visit a vertex that was already visited. This implies that there is a cycle in *T*. This is a contradiction.
 - Consider T' obtained by removing v and its edge from T.
 - <u>Claim 2</u>: T' is a tree with k vertices.
 - <u>Proof</u>: *T'* clearly has *k* vertices. *T'* is strongly connected since otherwise *T* is not strongly connected. Also, *T'* does not have a cycle since otherwise *T* has a cycle.
 - As per the induction hypothesis, T' has k − 1 edges. This implies that T has k edges.

- Adjacency matrix: Store connectivity in a matrix.
- Space: $O(n^2)$

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	1	1	0
v_2	1	0	1	0	0
v_3	1	1	0	1	0
v_4	1	0	1	0	0
v_5	0	0	0	0	0

- Adjacency list: For each vertex, store its neighbors.
- Space: O(n+m)

< ∃ >

Graph Algorithms

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

э

э.

э

Problem

Given an (undirected) graph G = (V, E) and two vertices s, t, check if there is a path between s and t.

• • = • • = =

Problem

Given an (undirected) graph G = (V, E) and two vertices s, t, check if there is a path between s and t.

- Alternate problem: What are the vertices that are reachable from *s*. Is *t* among these reachable vertices?
- This is also known as *graph exploration*. That is, explore all vertices reachable from a starting vertex *s*.
 - Breadth First Search (BFS)
 - Depth First Search (DFS)

Breadth First Search (BFS)

BFS(G, s)

- Layer(0) = $\{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

- A 3 N

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

• • = • • = •

э

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

A B > A B >

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

A B > A B >

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

A B + A B +

э

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

A B + A B +

э

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

• <u>Theorem 1</u>: The shortest path from *s* to any vertex in *Layer(i)* is equal to *i*.

3

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590