COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Course Overview

- Material that will be covered in the course:
- Basic graph algorithms
- Algorithm Design Techniques
- Divide and Conquer
- Greedy Algorithms
- Dynamic Programming
- Network Flows
- Computational intractability

Graphs

Graphs
 \section*{Introduction}

- A way to represent a set of objects with pair-wise relationships among them.
- The objects are represented as vertices and the relationships are represented as edges.

$$
\begin{gathered}
G=(V, E) \\
V=\left\{v_{1}, \ldots, v_{8}\right\} \\
E=\left\{\left(v_{1}, v_{8}\right), \ldots\right\}
\end{gathered}
$$

Graphs

Introduction

- Examples
- Social networks
- Communication networks
- Transportation networks
- Dependency networks

Graphs

- Weighted graphs: There are weights associated with each edge quantifying the relationship. For example, delay in communication network.

Graphs

- Directed graphs: Asymmetric relationships between the objects. For example, one way streets.

Graphs

- Path: A sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that for any consecutive pair of vertices $v_{i}, v_{i+1},\left(v_{i}, v_{i+1}\right)$ is an edge in the graph. It is called a path from v_{1} to v_{k}.
- Cycle: A cycle is a path where $v_{1}=v_{k}$ and v_{1}, \ldots, v_{k-1} are distinct vertices.

Graphs
 Introduction

- Strongly connected: A graph is called strongly connected iff for any pair of vertices u, v, there is a path from u to v and a path from v to u.

- Tree: A strongly connected, undirected graph is called a tree if it has no cycles.
- How many edges does a tree have?

Graphs

- Let $P(n)$ be the statement

Any tree with n nodes has exactly $n-1$ edges.

- An inductive proof will have the following steps:
- Base case: Show that $P(1)$ is true.
- Inductive step: Show that if $P(1), P(2) \ldots, P(k)$ are true, then so is $\overline{P(k+1)}$.

Graphs

Introduction

- Let $P(n)$ be the statement

Any tree with n nodes has exactly $n-1$ edges.

- An inductive proof will have the following steps:
- Base case: Show that $P(1)$ is true.
- Inductive step: Show that if $P(1), P(2) \ldots, P(k)$ are true, then so is $P(k+1)$.

Proof outline

- Base case: $P(1)$ is true since any tree with 1 vertex has 0 edges.
- Inductive step: Assume that $P(1), \ldots, P(k)$ are true.
- Now, consider any tree T with $k+1$ vertices.
- Claim 1: There is a vertex v in T that has exactly 1 edge.
- Consider T^{\prime} obtained by removing v and its edge from T.
- Claim 2: T^{\prime} is a tree with k vertices.
- As per the induction hypothesis, T^{\prime} has $k-1$ edges. This implies that T has k edges.

Graphs

Introduction

Proof

- Base case: $P(1)$ is true since any tree with 1 vertex has 0 edges.
- Inductive step: Assume that $P(1), \ldots, P(k)$ are true.
- Now, consider any tree T with $k+1$ vertices.
- Claim 1: There is a vertex v in T that has exactly 1 edge.
- Proof: For the sake of contradiction, assume that there does not exist such a vertex in T. Then this means that all vertices have at least two edges incident on them. Start with an arbitrary vertex u_{1} in T. Starting from u_{1} use one of the edges incident on u_{1} to visit its neighbor u_{2}. Since u_{2} also has at least two incident edges, take one of the other edges to visit its neighbor u_{3}. On repeating this, we will (in finite number of steps) visit a vertex that was already visited. This implies that there is a cycle in T. This is a contradiction.
- Consider T^{\prime} obtained by removing v and its edge from T.
- Claim 2: T^{\prime} is a tree with k vertices.
- Proof: T^{\prime} clearly has k vertices. T^{\prime} is strongly connected since otherwise T is not strongly connected. Also, T^{\prime} does not have a cycle since otherwise T has a cycle.
- As per the induction hypothesis, T^{\prime} has $k-1$ edges. This implies that T has k edges.

Graphs

- Adjacency matrix: Store connectivity in a matrix.
- Space: $O\left(n^{2}\right)$

	v_{1}	v_{2}		v_{3}	v_{4}		
v_{1}	0	1	1	1	1	0	
v_{2}	1	0	1	0	0	0	
v_{3}	1	1	0	1		0	
v_{4}	1	0	1	0	0	0	
v_{5}	0	0	0	0		0	

Graphs

- Adjacency list: For each vertex, store its neighbors.
- Space: $O(n+m)$

Graph Algorithms

Graph Algorithms
 Graph exploration

Problem

Given an (undirected) graph $G=(V, E)$ and two vertices s, t, check if there is a path between s and t.

Graph Algorithms
 Graph exploration

Problem

Given an (undirected) graph $G=(V, E)$ and two vertices s, t, check if there is a path between s and t.

- Alternate problem: What are the vertices that are reachable from s. Is t among these reachable vertices?
- This is also known as graph exploration. That is, explore all vertices reachable from a starting vertex s.
- Breadth First Search (BFS)
- Depth First Search (DFS)

Graph Algorithms BFS

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$
$-\operatorname{Layer}(0)=\{s\}$
$-i \leftarrow 1$

- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If $\operatorname{Layer}(i)$ is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$

- Layer $(0)=\{s\}$
$-i \leftarrow 1$
- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If $\operatorname{Layer}(i)$ is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$

- Layer(0) $=\{s\}$
$-i \leftarrow 1$
- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If $\operatorname{Layer}(i)$ is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$

- Layer $(0)=\{s\}$
$-i \leftarrow 1$
- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$

- Layer $(0)=\{s\}$
$-i \leftarrow 1$
- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$

- Layer $(0)=\{s\}$
$-i \leftarrow 1$
- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS

```
Breadth First Search (BFS)
\(\operatorname{BFS}(G, s)\)
    \(-\operatorname{Layer}(0)=\{s\}\)
    \(-i \leftarrow 1\)
    - While(true)
    - Visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
    - Put these nodes in the set Layer(i)
    - If Layer \((i)\) is empty, then end
    \(-i \leftarrow i+1\)
```


- Theorem 1: The shortest path from s to any vertex in $\operatorname{Layer}(i)$ is equal to i.

End

