
 

Getting Started Guide 

Rev. B, August 2004 
Document 7430-0022-05 



    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2002-2004 Crossbow Technology, Inc. All rights reserved. 
Information in this document is subject to change without notice. 
 

Crossbow and SoftSensor are registered trademarks and DMU is a trademark of Crossbow 
Technology, Inc. Other product and trade names are trademarks or registered trademarks of their 
respective holders. 

 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 1 

Table of Contents 

1 Mesh Networking Right Out-of-the-Box .......................................................................4 
1.1 Installing the Surge-View Folder onto Your PC............................................5 

1.2 Preparing the Sensor Nodes and Base Station ...............................................6 

1.3 SerialForwarder ..............................................................................................7 

1.4 Running the Surge GUI..................................................................................8 

1.5 Analyzing Network-data with Stats .............................................................10 

1.6 Reviewing Network Topology and Yield with HistoryViewer ....................11 

2 Installation of TinyOS ...................................................................................................13 
2.1 What You Need for Installation ...................................................................13 

2.2 Installing TinyOS 1.1.0, Development Tools, and TinyOS 1.1.7 Updates ..13 

2.3 TinyOS PC Tools Verification.....................................................................16 

3 Programing Environment Customization ...................................................................17 
3.1 Setting Aliases..............................................................................................17 

3.2 Compiling TinyOS Applications..................................................................17 

3.3 Programming Boards....................................................................................18 

3.4 Installing TinyOS Applications into a Mote ................................................19 

3.5 Setting the Group ID and Node Address for the Mote Network..................20 

3.6 Radio Frequencies ........................................................................................20 

3.7 The MakeXbowlocal File .............................................................................21 

4 Introduction to TinyOS and NesC ...............................................................................24 
4.1 TinyOS Programming philosophy ...............................................................24 

4.2 Concurrency Model......................................................................................25 

4.3 An Example Application: Blink...................................................................25 

4.4 Compiling the Blink Application..................................................................26 

4.5 Programming a Mote and Running Blink ....................................................26 

4.6 Generating the Component Structure Documentation .................................27 

4.7 Radio Communications ................................................................................28 

4.8 Learning More About TinyOS and nesC .....................................................29 

5 Test Applications and Drivers for Sensor and Data Acquisition Boards .................31 
5.1 Drivers ..........................................................................................................31 

5.2 Test Applications: The XSensor-series ........................................................31 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 2                                                                                                             Doc. 7430-00220-04 Rev. B 

5.3 User Interface: XListen.................................................................................33 

5.4 Example Output from XSensorMTS400 .......................................................36 

5.5 Example Output from XSensorMTS510 .......................................................37 

5.6 Example Output from XSensorMDA300 ......................................................37 

5.7 Example Output from XSensorMDA500.....................................................37 

6 Surge Multi-hop Networking Application...................................................................38 
6.1 How does Surge Multi-hop network work? .................................................38 

6.2 Programming Motes with Surge ..................................................................39 

6.3 Running Surge-View GUI............................................................................41 

7 Warranty and Support Information ............................................................................42 
7.1 Customer Service .........................................................................................42 

7.2 Contact Directory .........................................................................................42 

7.3 Return Procedure..........................................................................................42 

7.4 Warranty.......................................................................................................43 

 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 3 

About This Document 

The following annotations have been used to provide additional information. 

 NOTE 
Note provides additional information about the topic. 

 EXAMPLE 
Examples are given throughout the manual to help the reader understand the terminology. 

 IMPORTANT 
This symbol defines items that have significant meaning to the user 

 WARNING 
The user should pay particular attention to this symbol. It means there is a chance that physical 
harm could happen to either the person or the equipment. 

 

The following paragraph heading formatting is used in this manual: 

1 Heading 1 

1.1 Heading 2 

1.1.1 Heading 3 

 

This document also uses different body text fonts (listed in Table 1-1) to help you distinguish 
between names of files, commands to be typed, and output coming from the computer. 

Table 1-1. Font types used in this document. 

Font Type Usage 
Courier New Normal Sample code and screen output 
Courier New Bold Commands to be typed by the user 

Times New Roman Italic TinyOS files names, directory names 

Arial Text labels in GUIs 

 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 4                                                                                                             Doc. 7430-00220-04 Rev. B 

1 Mesh Networking Right Out-of-the-Box 

Wireless sensor networks have attracted a wide interest from academia and industry alike due to 
their diversity of applications. Sensor networks are pervasive by nature; the number of nodes in a 
network is nearly boundless. Therefore, a key to realizing this potential is multi-hop mesh 
networking, which enables scalability and reliability. A mesh network is really a generic name 
for a class of networked embedded systems that share several characteristics including, 

 Multi-Hop―the capability of sending messages peer-to-peer to a base station, thereby 
enabling scalable range extension; 

 Self-Configuring―capable of network formation without human intervention; 

 Self-Healing―capable of adding and removing network nodes automatically without having 
to reset the network; and 

 Dynamic Routing―capable of adaptively determining the route based on dynamic network 
conditions (e.g., link quality, hop-count, gradient, or other metric). 

When combined with battery power management, these characteristics allow sensor networks to 
be long-lived, easily deployed, and resilient to the unpredictable wireless channel. With mesh 
networking, the vision of pervasive and fine-grained sensing becomes reality. 

Crossbow has developed multi-hop, mesh networking firmware that implements the above 
characteristics. To help customers try mesh networking, the MICAz, MICA2 and MICA2DOT 
Motes that come in Crossbow’s Basic and Professional MOTE-KITs come preinstalled with a 
mesh networking application called Surge_Reliable. The mesh networking algorithm is based on 
work by Alec Woo and others at the University of California at Berkeley. The algorithms were 
extended and improved via a commercial software development and testing process. 

We also have a set of PC software tools called Surge-View. Included is an enhanced Surge 
graphical user-interface to view the Motes’ connectivity, routing statistics, and sensor board data. 
Furthermore, users can store network performance data into their PCs for post-processing. A 
second program called Stats gives an overall summary of the network health. Another program 
called HistoryViewer allows for manual playback of the network’s topology and statistics.  

   

 IMPORTANT 
This Chapter is geared for the MOTE-KIT Users only. Crossbow’s Basic and Professional 
MOTE-KITs come pre-installed with a mesh networking application called Surge_Reliable. If 
you did not purchase a complete Kit, instead purchased individual boards, please proceed to 
Chapter 2. The Mote firwmare and PC software are on the TinyOS Support Tools CDROM that 
comes with wireless the products.  



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 5 

1: Copying Surge-View to a PC 

 

 Insert CDROM into your PC’s CDROM drive. 
 Copy the folder Surge-View and paste into your 

C:\Program Files directory. 
 

4: Starting the SerialForwarder GUI 

 Using Windows Explorer, navigate to the Surge-
View folder under Program Files. 

 Double-click on Serialforwarder.exe  
 When the SerialForwarder window appears, click 

on “Stop Server.” 
 Set the COM port number and serial port speed to 

57600 in the box under “Mote Communications.” 
An example line is serial@COM1:57600 

 Click on “Start Server.” 
2: Getting the Motes Ready 

 

 Install batteries into your Motes, except for the one 
labeled with “Base” and/or “0”. 

 Turn on the MICA2 or MICAz Motes using the switch 
that’s on the Mote’s PCB. (The MICA2DOTs 
automatically turn on when the battery is attached.)  

 Verify antennas are attached to MICA2 motes. 
 

5: Starting the Surge GUI 

 

 Open a Command Prompt window. 
 Change the directory to Program Files\Surge-View 

with cd ..\..\Program Files\Surge-
View 

 Type in Surge 125. (The “125” is the default 
group ID.) 

 This should invoke the Surge-View GUI. 

3: Connecting the MIB510 to a PC 

 

 Connect MIB510 to the serial port of your PC with 
an RS-232 straight-through serial cable.  

 Attach the MICA2 or MICAz mote labeled as 
“Base_###_0 to the MIB510.  

6: Viewing the Results 

 

 The Network Topology and Statistics windows 
should appear. 

 Wait one to two minutes for the remote nodes to 
appear. 

 

Figure 1-1. Flow chart on how to get the Surge-View mesh networking demo running. The “###” in 
“Base_###_0” will either be 315, 433, 900 or 2400. The “COM#” is the serial port number to which the 

MIB510 is connected. (Using MIB510 Serial interface board, Serial Cable and PC ) 

1.1 Installing the Surge-View Folder onto Your PC 
 Insert the TinyOS Support Tools CDROM into your PC. 

 Using Windows Explorer, open the Crossbow Software folder. 

 Copy the Surge-View folder into your C:\Program Files\ directory. 

Some of the commands in the Surge-View folder are run by typing in a Command Prompt 
window. You may want to put a shortcut to it (left click on Start>Programs>Accessories, then 
right click on Command Prompt, choose “Create Shortcut”) in a convenient location like the 
desktop or in the Windows® Start Menu. 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 6                                                                                                             Doc. 7430-00220-04 Rev. B 

1.2 Preparing the Sensor Nodes and Base Station 
The Motes in your basic or professional MOTE-KIT come pre-programmed with the mesh 
networking firmware: Surge_Reliable and Surge_Reliable_Dot for the MICAz, MICA2 and 
MICA2DOT, respectively. The set of hardware that is used for this application is shown in Figure 
1-2 below. 

(A) 

 

 
B) MTS310 and MTS300

 

 

 

 
C) MTS510 

 

Figure 1-2. Pictures of the basic hardware used in the mesh networking application. A) In front: MIB510 
topside. In back:  a MICA2/MICAz and a MICA2DOT both without antennas. Antennas must be attached 
to have good radio transmission and reception. B and C) Sensor boards for the MICA2 and MICA2DOT, 
respectively. The term “sensor node” will be used in this document to mean a MICA2|DOT Mote + sensor 

board. 

 Install AA batteries and a 3V coin cell in the MICAz/MICA2 and MICA2DOT Motes, 
respectively. Attach the antennas to the MICAz/MICA2 Motes. Switch the MICAz/MICA2 
battery switch to the “ON” position. The MICA2DOTs don’t have an “ON/OFF” switch and 
are automatically powered when the battery is installed. 

 Setting up the base station: Attach the MICAz/MICA2 Mote labeled “Base_###_0” to the 
MIB510, where ### refers to the frequency band of your Mote (i.e., 315, 433, 900 or 2400). 
Supply power to the MIB510 with the AC wall power adaptor. Connect the MIB to your 
PC’s serial port (or USB to serial adaptor) with a straight-through RS-232 cable. 

 NOTE: The Professional MOTE-KITs come with two MDA500 data acquisition boards. These are 
circular PCBs populated only with 19 pins. These can be used to make it easier to attach a MICA2DOT to 
the MIB510. This is done by connecting the 19 female-side of the MDA500 to the 19 male pins on the 
MIB510. The flexibility of the board and pins of the MDA500 helps to make up for small misalignments 
between the boards and avoids bending of pins on MIB510. 

 Setting up the sensor nodes: Attach the MTS300 (found in the Basic kit) or MTS310 (found 
in the Professional kit) to your MICAz/MICA2 Motes. (Professional kit only: If necessary, 
attach the MTS510 sensor board to each MICA2DOT.) While the Motes for this demo are 
pre-labeled with numbers, it does not matter which sensor boards you attach to the Mote as 
long as its of a compatible kind, e.g., MTS310/MDA300 to MICAz; MTS300/310 to 
MICA2; MTS510 to a MICA2DOT. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 7 

1.3 SerialForwarder 
The SerialForwarder is a program written in Java, and it is used to read packet data from a 
computer’s serial port and forward it over a server port connection, so that other programs can 
communicate with the sensor network via a sensor network gateway. SerialForwarder does not 
display the packet data itself, but rather updates the packet counters in the lower-right hand 
corner of the window. Once running, the serial forwarder listens for network client connections 
on a given TCP port (9001 is the default for MIB510 and 10002 for MIB600), and simply 
forwards TinyOS messages from the serial port to the network client connection, and vice versa. 
Note that multiple applications can connect to the serial forwarder at once, and all of them will 
receive a copy of the messages from the sensor network. 

You can startup the SerialForwarder in one of two ways: 

1. Double-clicking on the file SerialForwarder.exe using Windows Explorer (right click on 
“start” on the task bar and navigate to C:\Program Files\Surge-View). See Section 1.3.1 for 
details. OR…  

2. Typing in a command line in a Command Prompt window (found in 
start>Programs>Accessories). See Section 1.3.2 for details. 

1.3.1 Double-clicking on the file SerialForwarder.exe in the Surge-View folder 
If you used Windows® Explorer and double-clicked on SerialForwarder.exe, then a 
window with the label SerialForwarder screen should appear. 

 Check that the Server Port is set to 9001. 

 Click on Stop Server (which then becomes Start Server). Edit the text box under Mote 
Communications to 

serial@COM<#>:mica2  

where <#> = 1, 2, 3, etc., for serial port COM1, COM2, COM3, etc. 

 Click on Start Server (which then becomes Stop Server). 

  

Figure 1-3. Left) The Java application SerialForwarder when it first appears. Right) When you click on 
“Start Server,” it prints what serial port, speed, and port. A third line should include the word 

“resynchronizing.” 

You should see the Pckts Read number increase if your MIB510 has an attached MICAz/MICA2 
Mote labeled with “Base_###_0” and is plugged into your PC and that you have the remaining 
Motes installed with batteries and antennas as needed. (The “###” will either be 315, 433, 900 or 
2400) 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 8                                                                                                             Doc. 7430-00220-04 Rev. B 

1.3.2 Command Prompt directions 
 Start the Command Prompt program by going to the Windows® Taskbar and clicking 

on Start>Programs>Accessories>Command Prompt. 

 Change the directory to C:\Program Files\Surge-View. If the default directory is 
C:\Documents and Settings\[Your User Name]>, use the following command line. 

cd ..\..\Program Files\Surge-View 

 Start SerialForwarder along with the -comm port information 
SerialForwarder -comm serial@COM<#>:57600 

where <#> = 1, 2, 3, etc. for serial port COM1, COM2, COM3, etc. 

The -comm argument tells SerialForwarder to communicate over a specific serial port 
(COM1 in the example above). 

1.4 Running the Surge GUI 
To run the Surge graphical user-interface: 

 Start the program Command Prompt (if not running) by going to the Windows® Taskbar and 
clicking on Start>Programs>Accessories>Command Prompt. 

 Change directory to the Surge-View folder under C:\Program Files\. 
cd ..\..\Program Files\Surge-View 

 Type in the command line below:  
Surge 125 > log_filename 

The “125” is the default group ID for your network. Surge will output on the Command 
Prompt window the raw network data. You can write that output to a file. To do this include 
the “> log_filename” text as shown above, where log_filename is a user defined file 
name for the output. 

When the application starts, you should immediately see the base node reporting sensor values. 
Typically after one to two minutes (but could be longer depending on how many nodes you have 
in the network), the remote nodes should appear as the network topology builds. A solid green 
line indicates an active data transmission link. A blue line represents a partially active 
communication link. A red line indicates that the link is no longer active and will soon disappear 
from the topology view until the link is re-established. 

 NOTE: The location of the node IDs on the screen does not represent the physical location of the 
nodes in the neighborhood of the PC. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 9 

 

 

Figure 1-4. Network topology and Statistics windows. Initially only the base station 
Mote as node 0 and host PC as node 126 appear on the Topology window. 

 

 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 10                                                                                                             Doc. 7430-00220-04 Rev. B 

 

Figure 1-5. After a minute, the other Motes will begin to appear. Depending on the number 
of Motes, the entire network may take several minutes to come on line.  

 NOTE:  For Professional MOTE-KIT users. The MICA2DOTs have a default transmit rate of once 
every two seconds. The MICA2s have a transmit rate of once per eight seconds. Therefore, in the 
“Statistics” window, the “sent” counter for the MICA2DOTs to be about four times the amount as the 
MICA2s. This will allow you to test how transmission rates affect quality and yield. You can change either 
the MICA2s or MICA2DOT’s transmit rate. 

1.4.1 Changing the background to the Surge UI 
The background image displayed in the Sensor Network Topology window can be changed to 
any jpeg image file. The file called Surge_background.jpg is in the Surge-View\images\ folder. 
Rename the existing file and then save your own jpeg image file as Surge_background.jpg. 

1.5 Analyzing Network-data with Stats 
If you entered in a log_filename when starting Surge GUI, a colon delimited .txt file is stored 
onto your disk. This file can be read by a text editor, word processor, or spreadsheet program. 

To run the Surge-View interface Stats.exe: 

 If not active, open a Command Prompt window by clicking on 
Start>Programs>Accessories>Command Prompt  

 Change directory to the Surge-View folder under C:\Program Files\ 
cd ..\..\Program Files\Surge-View 

 Run the Stats program by piping in (“<”) the name you used for log_filename. Optionally 
you can also write the Stats output to file (using “>”) and assigning a filename. 
Stats < log_filename > stats_filename 

The above command line reads in the file with the network data log and then writes a colon 
delimited .txt file which can be read by a text editor, word processor, or spreadsheet program.  



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 11 

 EXAMPLE—Imported Stats Output Turned Into an Excel® File 
Node 

Number 
 Packets 
Received Packets Sent Success 

Rate 
 Parent 

Changes
 Level 

Changes
Average 

Level 
 Duty 
Cycle 

Battery 
Voltage 

1 1211 1270 0.95 140 79 2.26 1.04 3.16 
2 1272 1273 1.00 15 8 1.87 1.14 3.12 
3 1266 1276 0.99 2 1 2.00 1.31 3.11 
4 1275 1277 1.00 8 5 1.86 1.07 2.99 
5 1267 1276 0.99 11 3 1.99 1.19 3.19 
7 1267 1276 0.99 2 1 2.00 3.10 3.11 
8 1255 1276 0.98 5 7 2.89 1.99 3.08 
9 1278 1278 1.00 0 1 1.00 1.49 3.19 

1.6 Reviewing Network Topology and Yield with HistoryViewer 
Another way to look at the performance of your wireless network is with the program called 
HistoryViewer. Your data should be a file or subdirectory in the Surge-View folder.  

To run the Surge-View interface HistoryViewer.exe: 

 If not active, open a Command Prompt window by clicking on 
Start>Programs>Accessories>Command Prompt  

 Change directory to the Surge-View folder under C:\Program Files\. 
cd ..\..\Program Files\Surge-View 

 Type in the following command line. (The “<” symbol pipes in the data from the data file 
log_filename.) 
HistoryViewer < log_filename 

Three windows should appear: a “Sensor Network Topology,” a “Sensor Network Data,” and a 
“Statistics” window. In the Sensor Network Data window, use your mouse to move the vertical, 
red line to examine the statistics and network topology at that date/time. 

 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 12                                                                                                             Doc. 7430-00220-04 Rev. B 

 

Figure 1-6. Sensor Network Data and Statistics and Topology (not shown) appear when 
HistoryViewer.exe is started. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 13 

2 Installation of TinyOS 

This Chapter takes you through the installation of TinyOS 1.1.0, then update to version 1.1.7, 
and copying of the Crossbow directory, contrib/xbow/, on a Windows®-based PC. Installation is 
required if you want to install firmware on your Motes and/or do firmware development. 
Following the installation, read Chapter 3 which covers many important programming topics, 
instructions for compiling and downloading the application firmware into your Motes, and useful 
programming environment customizations. 

2.1 What You Need for Installation 
 Crossbow’s TinyOS Support Tools CD-ROM 

 A Windows®-based PC 
» Operating System: Microsoft Windows® (XP, 2k, NT) 
» 1 GB or more of free space in destination drive 
» 550 MB or more of space in C drive, regardless of destination drive or set the TEMP 

directory to your destination drive 
 Third-party Software 

» WinZip® 
» Adobe Acrobat® PDF Reader 
» Programmers Notepad (available for free at http://www.pnotepad.org/) 

2.2 Installing TinyOS 1.1.0, Development Tools, and TinyOS 1.1.7 Updates 

 NOTE: The installation instructions for TinyOS 1.1.0 are found in TinyOS Quick Install.htm found 
on the CDROM. If you have a previous version of TinyOS or an unsuccessfully installation on your 
system, you must uninstall it. Instructions for this are found in the Uninstalling TinyOS.htm on the CD.  

Also you must install with Administrator privileges. If you don’t, the setup will eventually abort but it could 
leave unwanted files and program registries behind. If you are using Windows NT, you must log on as the 
“administrator” and not as one who has administrator privileges. 

The TinyOS 1.1.0 InstallShield Wizard setup offers the following software packages:  

 TinyOS 
 TinyOS Tools 
 nesC 
 Cygwin (An icon for Cygwin will appear on your Desktop when TinyOS 1.1.0 is installed.) 
 Support Tools 
 Java 1.4 JDK & Java COMM 2.0 
 Graphviz 
 AVR Tools 

» avr-binutils 
» avr-libc 
» avr-gcc 
» avarice 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 14                                                                                                             Doc. 7430-00220-04 Rev. B 

» avr-insight 

2.2.1 Installing TinyOS 1.1.0 
Insert the Crossbow TinyOS Support Tools CD-ROM into the CD drive of your PC. Open up a window to 
display the contents of the CD-ROM. Then click on the folder TinyOS Install/ and then double click on 
tinyos-1.1.0is.exe. After you run on the tinyos-1.1.0-1is.exe, the InstallShield Wizard appears and will 
guide you through the install process. This step may take several minutes (up to an hour).  

2.2.2 Updating to TinyOS 1.1.7 
Many of the Crossbow applications in the contrib/xbow/ (See Section 2.2.3 below) 
directory need to have the updates to TinyOS that have come with the v 1.1.7. As a 
convenience the TinyOS 1.1.5 RPM is included in the TinyOS Support Tools CDROM. 
The RPM file name is “tinyos-1.1.7July2004cvs-1.cygwin.noarch.rpm” found under 
TinyOS Updates folder. 

The instructions are as follows: 

 Save your previous work. We recommend making a tarball or copy of your entire 
TinyOS-1.x directory and saving it someplace.  

 Copy to a C:\ drive directory of your choice the file tinyos-1.1.7July2004cvs-
1.cygwin.noarch.rpm which is in the TinyOS Support Tools CDROM under TinyOS 
Updates folder. 

 Install: Open Cygwin by double-clicking on the Cygwin icon on your desktop. Be sure 
that you have administrator privileges. Then type  
rpm --force --ignoreos -Uvh tinyos-1.1.7July2004cvs-
1.cygwin.noarch.rpm 

in the directory where you saved the rpm. This will take a while (the tinyos package 
installation includes compiling the java code). TinyOS is installed in /opt/tinyos-1.x.  

 You’re done! Check the documentation in opt/tinyos-1.x/doc/index.html for more 
information. See “Installing and Updating Packages” if you want to install any optional 
packages. 

2.2.3 Copy the Crossbow TinyOS Directory (xbow/) into the contrib/ Directory. 
Crossbow has developed a number of firmware applications that are not in the main tinyos-
1.x/apps/ directory. They are on the TinyOS Support Tools CDROM as a zip file 
(xbow.tgz) and need to be copied into the tinyos-1.x/contrib/ directory.  

 Verify that a directory called contrib exists under the tinyos-1.x directory. That is it is 
at the same level as the apps/ directory. If it does not exist, use your Windows® 
Explorer to create a New Folder and rename it as contrib. 

 Copy the xbow.tgz file in the CDROM under TinyOS Updates folder into the 
opt/tinyos-1.x/contrib/ directory. Unzip the file there. When complete, you should see a 
folder (directory) called xbow directly under the contrib directory. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 15 

2.2.4 TinyOS Installation Structure 
All the TinyOS apps/, contrib/, doc/, tools/, and tos/ directories are located under <install 
dir>/cygwin/opt/tinyos-1.x/. In addition the Makefile is in this folder. The environment variables 
for TOSROOT is set to <install dir>/tinyos-1.x/. The TinyOS Tutorial is located under <install 
dir>/cygwin/opt/tinyos-1.x/doc/tutorial. 
 

 
(a) TinyOS top level structure to tinyos-1.x/ 

 
(b) tinyos-1.x/ and subdirectories 

 
(c) tos/ and subdirectories 

Figure 2-1. TinyOS and Subdirectory Map 

 IMPORTANT 

All the example applications explained in the subsequent chapters are from tinyos-
1.x/contrib/xbow/apps directory. These are applications developed and thoroughly tested by 
Crossbow. Crossbow will not support you for the other applications that are found under main 
apps tree (tinyos-1.x/apps) 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 16                                                                                                             Doc. 7430-00220-04 Rev. B 

TinyOS online Resources / Major and MinorReleases 
The website for TinyOS is at www.tinyos.net. There you will find the latest news, downloads, 
and links to the TinyOS user’s community, and many other resources. Furthermore, the latest 
source code can always be downloaded from the TinyOS project page via CVS at SourceForge 
(http://sourceforge.net/projects/tinyos/). Occasionally TinyOS developers release a convenient-
to-install CVS snapshot in the form of an RPM. These are minor releases of TinyOS and are 
posted at www.tinyos.net/download.html. 

IMPORTANT:  
There are differences between major and minor releases of TinyOS. The major releases are 
strenuously and systematically tested by the TinyOS development team and by Crossbow. We 
test all applications in the release, run through the applications in the on-line tutorial and Getting 
Started Guide multiple times, and check that the documentation is up-to-date. We also post a list 
of known issues and problems for TinyOS 1.1.0 at http://www.xbow.com/Support/known-bugs-
1_1_0.htm. If your project requires stability, we recommend that you stay with the fully-tested 
releases.  

A minor release or CVS snapshot release is very nearly that: a snapshot of the CVS tree in a 
convenient-to-install package. The intention behind the snapshots is to get the latest code out to 
developers without requiring developers to maintain a CVS tree. The code in the snapshot 
releases has generally been in the tree for approximately one month, but that doesn’t guarantee 
that anyone other than the developer tested it. The resulting RPM goes through the TinyOS 
regression test suite (see regression/). If you’d like the bleeding edge code and don’t mind the 
inherent risks, upgrade to the minor releases as they become available. 

We have included the TinyOS 1.1.7 RPM update as described in Section 2.2.2, but please 
remember that it has not been as thoroughly tested as TinyOS 1.1.0. 

2.3 TinyOS PC Tools Verification 
A TinyOS development environment requires the use of the avr gcc compiler, perl, flex, Cygwin 
(if you use windows operating system), and the JDK 1.4.x or above. First, we will check that the 
tools have been installed correctly and that the environment variables are set. The toscheck is a 
script that will perform these functions. 

 Open a Cygwin window by double-clicking on the icon that should be on your desktop. 

 Change into the opt/tinyos-1.x/tools/scripts/ directory and run toscheck.   
         cd c:/<install dir>/tinyos/cygwin/opt/tinyos-1.x/tools/scripts 

         toscheck  

The last line of the output should be: 
toscheck completed without error 

 If any errors are reported, make sure to fix the problem. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 17 

 

3 Programing Environment Customization 

3.1 Setting Aliases 
Once you have successfully installed TinyOS, it is recommended that you setup aliases to 
commonly used commands and accessed directories. Aliases are to be edited at the bottom of the 
filed called profile which is located in <install dir>/tinyos/cygwin/etc/.   

 These aliases are useful for quickly changing to commonly used directories while in the 
Cygwin shell. 
alias cdtinyos=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-1.x” 

alias cdjava=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-1.x/tools/java” 

alias cdxbow=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-
1.x/contrib/xbow” 

 NOTE: If the <install dir>/ is the folder Program Files, then you must enter in the text Program\ 
Files to correctly handle the space between the two words when changing directories in Cygwin. 

These and other alias can be setup to make changing directories and other commands easier. To 
make your own aliases, use the format as shown in the examples above. 

 IMPORTANT 
All the example applications explained in the subsequent chapters are from tinyos-
1.x/contrib/xbow/apps directory. These are applications developed and thoroughly tested by 
Crossbow. Crossbow will not support you for the other applications that are found under main 
apps tree (tinyos-1.x/apps) 

3.2 Compiling TinyOS Applications 
The new release of TinyOS supports the MICAz, MICA2 and MICA2DOT Mote processor-radio 
(MPR) hardware platforms. The syntax to type in a Cygwin window for compiling (building) 
application code is of the form: 

make <platform> 

The name to be used for <platform> can be found in Table 3-1. 

Table 3-1. Listing of Hardware Platforms (<platform>) 

Processor/Radio Platform For <platform> use
MICAz (MPR2400 series) micaz 

MICA (MPR3x0 series) mica 

MICA2 (MPR4x0 series) mica2 

MICA2DOT (MPR5x0 series) mica2dot 



Getting Started Guide
   

Wireless Sensor Networks   
 

Pa

3.3 Programming Boards 
The TinyOS development environment supports a variety of programming tools. The supported 
programmers include: 

 The MIB500CA parallel port programming board with serial output.  
 The MIB510CA serial port programming board.  
 The MIB600CA Ethernet port programming board. 
 The Atmel AVRISP. 

The standard programming software used in TinyOS is the µ In-System Programmer or UISP.  
This program, which comes as a part of the TinyOS release, takes various arguments according 
to the programmer hardware and the particular programming action desired (erase, verify, 
program, etc.). To simplify using this tool, the TinyOS environment invokes the UISP for you 
with the correct arguments whenever you issue an install or reinstall command. You also 
need specify the type of device you are using and how to communicate with it. This is done 
using environment variables. 

 IMPORTANT 
All the apps under contrib/xbow use the TinyOS’s new make syntax. A detailed explanation of 
this syntax is provided in Readme file found under tinyos-1.x/tools/make. The syntax of typical 
Make file for these look like below.  

 EXAMPLE—The  Makefile for contrib/xbow apps 
 
 
 
 
 
 
 
 
 
 
 
 

3.3

3.3

ntax in Makefile
# $Id: Makefile,v 1.6 2004/08/06 09:30:24 husq Exp $ 
XBOWROOT=%T/../contrib/xbow/tos 
 
COMPONENT=TestSensor 
SENSORBOARD=mts310 
 
PFLAGS= -I$(XBOWROOT)/interfaces  -I$(XBOWROOT)/system  -
I$(XBOWROOT)/platform/$(PLATFORM) -I$(XBOWROOT)/lib -
I$(XBOWROOT)/sensorboards/$(SENSORBOARD) 
include ../MakeXbowlocal 
include ${TOSROOT}/tools/make/Makerules 

New sy
ge 18                                                                                                             Doc. 7430-00220-04 Rev. B 

.1 MIB500/Parallel Port Programmers 
This is the default programmer device.  No additional command line parameters need to be 
specified when using this programmer.  

The default command line entry is make mica2 install 

.2 MIB510/Serial Port Programmers 
Append the default command line with mib510,com<x> where x is the serial port 
where the device is attached. Before running this command check you own system to see 
what ports are available. 

 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 19 

 EXAMPLE—Command Line Entry for MIB510 

The command line entry make mica2 install mib510,com1 assumes that the MIB510 is 
connected to COM1.  

 NOTE:  If your computer does not have a DB9 serial port and are using a USB to DB9 serial port 
converter, you must know what port (COM) number your computer has assigned to the USB port. Use 
that COM port number when doing the above command. However, there are cases where your computer 
will issue a COM port number but is not what Cygwin will communicate through. That is, by trial and error 
you will have to try different numbers for the COM port. 

3.3.3 MIB600 Ethernet Programmers 
In order to use MIB600 Ethernet programming board, you need to assign an IP address to the 
device. Every device connected to an IP network must have a unique IP address. This address is used 
to reference the specific unit. Every TCP connection and every UDP datagram is defined by a destination 
IP address and a port number 
 Install Lantronix device installer (DeviceInstaller36.zip) from the CD ROM under 

Miscellaneous folder. This can also be downloaded from http://www.lantronix.com/ 
 Connect the MIB600 to the network using RJ-45 Ethernet cable and supply power using the 

power supply that was included in the packaging. Make sure the Power Switch SW2 is in 
“5V” position. 

 Click the Start button on the Task Bar and select Start>Programs>Lantronix>Device 
Installer>Device Installer. The Device Installer window displays.  

 Click on “Search” button and you will see a list of devices that were found with the IP 
address and corresponding Hardware address. 

 Look and match the hardware address of your MIB600 board (eg: 00-20-4A-63-47-31) and 
select it. Click on “Assign IP” and follow the instructions. Note down the IP address that you 
assigned. 

 Once you have assigned the IP address in order to program a mote use  
 make <platform> install eprb,<IP Address> 

 EXAMPLE—Command Line Entry for MIB600 

The command line entry make mica2 install eprb,192.168.100.123 assumes that the 
MIB600 is assigned with IP address 192.168.100.123. 

 NOTE: The programming instructions in this guide assume you are using an MIB510 connected to 
serial port COM1 using MICA2 platform. If you are using a different COM port number, then simply use 
that number in the command line. If you are using a different programming board or a different platform, 
use the appropriate command line explained above. 

3.4 Installing TinyOS Applications into a Mote 
The programming tools also include a method of programming unique node addresses without 
having to edit the TinyOS source code directly.  To set the node address/ID during program load, 
the general syntax for installing is: 

http://www.lantronix.com/


Getting Started Guide
   

Wireless Sensor Networks   
 

Page 20                                                                                                             Doc. 7430-00220-04 Rev. B 

make <platform>  re|install,<n> <programmer>,com<#>  

where <programmer> the name of the programmer (e.g., for the MIB510CA it would be 
mib510,com<#> is the port ID of the host PC to which the programmer is attached,.<n> is an 
optional number (in decimal) to set the node ID or address, and <platform> is the type of Mote 
processor/radio hardware platform.  

The difference between install and reinstall is explained below. 

install.<n>—compiles the application for the target platform, sets the node ID/address 
and programs the device (Mote). 

reinstall.<n>—sets the node ID/address and downloads the pre-compiled program (into 
the Mote) only and does not recompile. This option is significantly faster. 

Assigning a node ID by using “,<n>” is optional and is discussed further in the next subsection. 

3.5 Setting the Group ID and Node Address for the Mote Network 
TinyOS messages contain a group ID in the header, which allows multiple distinct groups of 
Motes to share the same radio channel. If you want to separate multiple groups of Motes that are 
one the same radio channel, you need to set the group ID to a unique 8-bit value to allow TinyOS 
to filter out those messages. The default group ID is 0x7d. You can set the group ID by defining 
the preprocessor symbol DEFAULT_LOCAL_GROUP in a MakeXbowlocal file which is located in 
tinyos-1.x/contrib./xbow/apps/ directory. Section 3.7 has information about how to edit a 
MakeXbowlocal file. In addition, the message header carries the destination node number, which 
is a 16-bit value.  

IMPORTANT:  
Except for decimal numbers 126 (the TOS_UART_ADDR 0x007E) and 255 (the 
TOS_BCAST_ADDR 0xFFFF), all other values between 0 and 254 are permissible. The number 0 
is typically reserved for the base station Mote. 

Setting the node address is important when programming Motes for a sensor network (as in 
Section 6). The node address/ID of your Mote is set when you download the application into the 
Mote. The command line entry is 

make <platform>  re|install,<n> <programmer>,COM<#> 

 EXAMPLE—Assigning a node address/ID to a MICA2 

make mica2 install,38 mib510,com1 

The above command line builds an application and downloads to a Mote the firmware and 
assigns a node ID of 38 via an MIB510 attached to serial port COM1. 

3.6 Radio Frequencies 
The radio transceivers on the MICA2 and MICA2DOT support multiple frequencies. Units are 
delivered at a pre-defined base frequencies centered on 315 MHz, 433 MHz, or 916 MHz. The 
specific values are listed in the Table 3-2 although multiple channels can be programmed within a 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 21 

frequency band. All of the coefficients for radio tuning are contained in the TinyOS file 
CC1000Const.h located in tos/platform/mica2/. 
Users must compile in the correct base radio frequency otherwise radio communication will fail. 
The best and safest way to make sure you’re compiling for the correct frequency is to edit the 
MakelXbowocal file (described in Section 3.7 below). 
MICAz currently uses IEEE 802.15.4 channel#0 (2.405GHz) and ignores DCC1K_DEF_FREQ. 

3.7 The MakeXbowlocal File 
The MakeXbowlocal file was developed by Crossbow to be used with applications within the 
contrib/xbow/apps/ directory. It is provided to make it easier for users to change the local group 
ID, channel (RX/TX frequency) and RF transmission power. It must be used with the 
CC1000Const.h file found in opt/tinyos-1.x/contrib/xbow/tos/platforms/mica2/. If you added the 
xbow directory after going through Chapter 2, those files are now available. 

To use it, double-check that the Makefile in your application directory has the following line: 
include ../MakeXbowlocal 

By adding this line in your applications Makefile will cause the compiler to include the 
MakeXbowlocal file. Below the actual contents of MakeXbowlocal and where to make the 
changes needed to change the local group, channel, RF transmission power, and 
programmer/COM port number. 

 EXAMPLE—The  MakeXbowlocal File 
########################################################################## 
# 
# MakeXbowlocal - Local Defines related to apps in contrib/xbow directory 
# 
########################################################################## 
 
 
########################################################################## 
# set Mote group id 
# - default mote group  (in makerules) is 0x7D 
########################################################################## 
DEFAULT_LOCAL_GROUP=0x81 
 
########################################################################## 
# set radio channel (freq) 
#   -Uncomment ONLY one line to choose the desired radio operating freq. 
#   -Select band based on freq label tag on mote (916, 433, or 315) 
#    (i.e. 433Mhz channel will not work for mote configured for 916Mhz) 
########################################################################## 
# 
# 916 MHz Band 
# 
# CHANNEL_00 - 903 MHz     CHANNEL_02 - 904 MHz     CHANNEL_04 - 905 MHz 
# CHANNEL_06 - 906 MHz     CHANNEL_08 - 907 MHz     CHANNEL_10 - 908 MHz 
# CHANNEL_12 - 909 MHz     CHANNEL_14 - 910 MHz     CHANNEL_16 - 911 MHz 
# CHANNEL_18 - 912 MHz     CHANNEL_20 - 913 MHz     CHANNEL_22 - 914 MHz 
# CHANNEL_24 - 915 MHz     CHANNEL_26 - 916 MHz     CHANNEL_28 - 917 MHz 
# CHANNEL_30 - 918 MHz     CHANNEL_32 - 919 MHz     CHANNEL_34 - 920 MHz 
# CHANNEL_36 - 921 MHz     CHANNEL_38 - 922 MHz     CHANNEL_40 - 923 MHz 
# CHANNEL_42 - 924 MHz     CHANNEL_44 - 925 MHz     CHANNEL_46 - 926 MHz 
# CHANNEL_48 - 927 MHz 
# 

Change this to modify 
your local group ID. 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 22                                                                                                     

#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_00 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_02 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_04 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_06 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_08 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_10 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_12 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_14 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_16 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_18 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_20 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_22 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_24 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_26 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_28 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_30 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_32 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_34 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_36 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_38 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_40 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_42 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_44 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_46 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_48 
#-------------------------------------------------------------------------- 
# 433 MHz Band 
# 
# CHANNEL_00 - 433.113 MHz     CHANNEL_02 - 433.616 MHz 
# CHANNEL_04 - 434.108 MHz     CHANNEL_06 - 434.618 MHz 
# 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_00 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_02 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_04 
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_06 
##-------------------------------------------------------
# 315 MHz Band 
# 
# CHANNEL_00 - 315 MHz 
# 
##-------------------------------------------------------
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_315BAND_CHANNEL_00 
#########################################################
 
#########################################################
# Set Radio Power  
#  - Radio transmit power is by a value (RTP) between 0x0
#  - RTP = 0 for least power; =0xFF for max transmit powe
#--------------------------------------------------------
#  For Mica2 and Mica2Dot 
#  Freq Band:  Output Power(dBm) RTP 
#  916 Mhz     -20               0x02 
#              -10               0x09 
#               0 (1mw)          0x80 
#               5                0xFF 
#  433 Mhz     -20               0x01 
#              -10               0x05 
#               0 (1mw)          0x0F 
#               10               0xFF 
#########################################################
CFLAGS += -DRADIO_XMIT_POWER=0xFF 
 
#########################################################

 

For MPR410/510 
Motes: uncomment 
one of these 4 lines.
------------------- 

 

################# 

0 and 0xFF 
r 
----------------- 
Change the hexadecimal 
value after the “=” to 
change RF TX power 
For MPR400/500 Motes: 
uncomment one of the 
next 24 lines. 
-------------------

################# 

For MPR420/520 
Motes: uncomment 
this line. 
        Doc. 7430-00220-04 Rev. B 

################# 

################# 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 23 

 IMPORTANT: Don’t use Microsoft® Word to edit the file. A recommended text 
editor is Programmers Notepad which is includes in the CDROM under Miscellaneous 
folder. This is also available for free at http://www.pnotepad.org/. 
 

 NOTE: In order to comply with "Biyjacku" (Japanese standard), the Radio Transmit power for 
the MICA2 must have a PA_POW set to 0x01 in MakeXbowLocal file shown above. 

 

http://www.pnotepad.org/


Getting Started Guide
   

Wireless Sensor Networks   
 

Page 24                                                                                                             Doc. 7430-00220-04 Rev. B 

4 Introduction to TinyOS and NesC 

TinyOS is an open-source operating system designed for wireless embedded sensor networks. It 
features a component-based architecture which enables rapid innovation and implementation 
while minimizing code size as required by the severe memory constraints inherent in sensor 
networks. TinyOS’s component library includes network protocols, distributed services, sensor 
drivers, and data acquisition tools—all of which can be used as-is or be further refined for a 
custom application. TinyOS’s event-driven execution model enables fine-grained power 
management yet allows the scheduling flexibility made necessary by the unpredictable nature of 
wireless communication and physical world interfaces. 

4.1 TinyOS Programming philosophy 
The TinyOS operating system, libraries, and applications are all written in nesC, a new 
structured component-based language. The nesC language is primarily intended for embedded 
systems such as sensor networks. NesC has a C-like syntax, but supports the TinyOS 
concurrency model, as well as mechanisms for structuring, naming, and linking together 
software components into robust network embedded systems. The principal goal is to allow 
application designers to build components that can be easily composed into complete, concurrent 
systems, and yet perform extensive checking at compile time.  

TinyOS also defines a number of important concepts that are expressed in nesC. A brief 
summary is provided here. 

Table 4-1. Description of the Main TinyOS/nesC Concepts 

TinyOS/nesC Concept Description 

Application A TinyOS/nesC application consists of one or more components, linked 
(“wired”) together to form a run-time executable 

Component
Components are the basic building blocks for nesC applications. There are 
two types of components: modules and configurations. A TinyOS component 
can provide and use interfaces.  

Module A component that implements one or more interfaces. 

Configuration

A component that wires other components together, connecting interfaces 
used by components to interfaces provided by others. (This is called wiring.) 
The idea is that a developer can build an application as a set of modules, 
wiring together those modules by providing a configuration. Furthermore, 
every nesC application is described by a top-level configuration that specifies 
the components in the application and how they invoke one another.  

Interface

An interface is used to provide an abstract definition of the interaction of two 
components. This concept is similar to Java in that an interface should not 
contain code or wiring. It simply declares a set of functions that the interface’s 
provider must implement—commands—and another set of functions the 
interfaces’ requirer must implement—events. In this way it is different than 
Java interfaces which specify one direction of call. NesC interfaces are bi-
directional. For a component to call the commands in an interface it must 
implement the events of that interface. A single component may require or 
provide multiple interfaces and multiple instances of the same interface. 
These interfaces are the only point of access to the component. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 25 

NesC also defines a concurrency model, based on tasks and hardware event handlers, and 
detects data races at compile time. When looking at the files in an application directory, you can 
identify the nesC files because it uses the extension “.nc” for all source files—interfaces, 
modules, and configurations.  

4.2 Concurrency Model  
TinyOS executes only one program consisting of selected system components and custom 
components needed for a single application. There are two threads of execution: tasks and 
hardware event handlers. Tasks are functions whose execution is deferred. Once scheduled, 
they run to completion and do not preempt one another. Hardware event handlers are executed in 
response to a hardware interrupt and also run to completion. Unlike a task, it may preempt the 
execution of a task or other hardware event handler. Commands and events that are executed as 
part of a hardware event handler must be declared with the async keyword.  

Because tasks and hardware event handlers may be preempted by other asynchronous code, nesC 
programs are susceptible to certain race conditions. Races are avoided either by accessing shared 
data exclusively within tasks, or by having all accesses within atomic statements. The nesC 
compiler reports potential data races to the programmer at compile-time. It is possible the 
compiler may report a false positive. In this case a variable can be declared with the norace 
keyword. The norace keyword should be used with extreme caution. 

4.3 An Example Application: Blink 
So far this is all fairly abstract—let’s look at a concrete example: the simple test program Blink 
found in /tinyos-1.x/contrib/xbow/apps/Blink/. This application simply causes the red LED on the 
Mote to turn on and off at 1 Hz.  

Blink consists of two components: a module, BlinkM.nc and a configuration, Blink.nc. 
Remember that all applications require a single top-level configuration, which is typically named 
after the application itself. In this case Blink.nc is the configuration for the Blink application 
and the source file that the NesC compiler uses to generate the executable for the Mote. 
BlinkM.nc, on the other hand, actually provides the implementation of the Blink application. As 
you might guess, Blink.nc is used to wire the BlinkM.nc module to other components that 
the Blink application requires.  

The reason for the distinction between modules and configurations is to allow a system designer 
to quickly “snap together” applications. For example, a designer could provide a configuration 
that simply wires together one or more modules, none of which she actually designed. Likewise, 
another developer can provide a new set of “library” modules that can be used in a range of 
applications.  

Sometimes (as is the case with Blink and BlinkM) you will have a configuration and a module 
that go together. When this is the case, the convention used in the TinyOS tree is that Foo.nc 
represents a configuration and FooM.nc represents the corresponding module. While you could 
name an application’s implementation module and associated top-level configuration anything 
(ncc uses the ‘COMPONENT’ definition in the application’s Makefile to find the top-level 
configuration), to keep things simple we suggest that you adopt this convention in your own 
code. There are several other naming conventions used in TinyOS code. 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 26                                                                                                             Doc. 7430-00220-04 Rev. B 

4.4 Compiling the Blink Application 
TinyOS supports multiple platforms. Each platform has its own directory in the tos/platform/ 
directory. In this section, we will use the MICA2 platform as an example.  

Open a Cygwin window by double-clicking the icon that can be found on your desktop. 

 Enter the tinyos-1.x/contrib/xbow/apps/Blink/ directory using your shell. Compiling and 
installing Blink is a good exercise to make sure that the most basic hardware is working.  

 Type make mica2 in a Cygwin window. This should complete successfully and create a 
binary (.srec) image of your program for the Motes.  

 All objects, generated includes, and executables are placed in the bin directory for the 
specific platform, e.g., /tinyos-1.x/contrib/xbow/apps/Blink/build/mica2/. 

You should, of course, observe errors and warnings that arise in building your application. This 
example should not have any. At the very end, the make command shows you a piece of the load 
map that tells you whether your application fits. 

4.5 Programming a Mote and Running Blink  
To download an application into the MICAz/MICA2 Mote, connect the 51-pin male connector of 
the MICA2 to the 51-pin female connector on the MIB programming board (see Figure 4-1). To 
download into a MICA2DOT, connect the female connectors of the MICA2DOT to the male 
connectors of the MIB’s MICA2DOT programming bay located on the “underside” of the MIB 
programming board (see Figure 4-2). 

 NOTE: The Professional MOTE-KITs come with two MDA500 data acquisition boards. These are 
circular PCBs populated only with 19 pins. These can be used to make it easier to attach a MICA2DOT to 
the MIB510. This is done by connecting the 19 female-side of the MDA500 to the 19 male pins on the 
MIB510. The flexibility of the board and pins of the MDA500 helps to make up for small misalignments 
between the boards and avoids bending of pins on MIB510. 

 WARNING: When programming a MICAz/MICA2 with the MIB510, turn OFF the 
battery switch. For a MICA2DOT, remove the battery before inserting into the MIB510. The 
MICAz/MICA2s and MICA2DOTs do not have switching diodes to switch between external 
and battery power. 

  

Figure 4-1. MICAz/MICA2 plugged into top-
side of an MIB510. 

Figure 4-2. MICA2DOT plugged into bottom-
side of an MIB510. 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 27 

 

 Connect your MIB510 Mote programming interface board to the PC using a DB-9 serial 
straight-through cable to connect the MIB to a serial port on the PC. 

 Power the MIB510 by connecting the output plug of the AC wall power adaptor (5 VDC 
output) to the connector (labeled as J7) on the MIB510. The green LED at location D3 and 
labeled as “SP PWR” should be on. 

 Attach your MICAz/MICA2 Mote to the MIB510 via the 51-pin connector. 

Build and install the application firmware:  

Type make mica2 install mib510,com1.  

If you are using Windows and the install doesn’t work, you make need to check the port 
specified to the UISP.  

You should see the upload take place (this may take several seconds) and the red LED should 
light up every second. 

 WARNING: Users are strongly advised to use a Crossbow MIB500/510 interface board 
with an external wall mounted power supply (5 to 7 VDC).  If using batteries, check the 
battery voltage. If the battery voltage is less than 3.0 V the flash memory may not 
reprogrammed correctly. This can also cause the ATMega128L fuses to be set incorrectly 
which will defeat any further reprogramming. There have been numerous reported 
difficulties with programming Motes. These include program failure, flash verification 
errors, and dead Motes.  

 For MIB500 Users: If you still get flash verification errors, please refer to the suggestions 
provided in the application note: 
http://www.xbow.com/Support/Support_pdf_files/UISPHELP.pdf. Also rebooting your PC 
you may need to power cycle the MIB500 and hit the reset switch labeled as RSTN at 
location SW1. 

4.6 Generating the Component Structure Documentation 
You can view a graphical representation of the component relationships within an application. 
TinyOS source files include metadata within comment blocks that ncc, the nesC compiler, uses 
to automatically generate html-formatted documentation.  

To generate the documentation, go to the tinyos-1.x/contrib./xbow/apps/Blink/ directory use the 
following command: 

make <platform> docs 

The resulting documentation will have the filename be generated in the file 
docs/nesdoc/<platform>.docs/nesdoc/<platform>/index.html. This is the main index to all 
documented applications. 

 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 28                                                                                                             Doc. 7430-00220-04 Rev. B 

The directory index takes you to an html file that looks like the figure below. 

Apps     Components     Interfaces     All Files     Source Tree 
 

App: Blink 
Component Graph   (text version,   help)  

 
 

 

Browsing through the graphical representation of the component wiring using your mouse is 
really helpful to understand the overall structure of TinyOS. 

4.7 Radio Communications 
This Section introduces radio communication. The applications that we will consider are 
CntToLedsAndRfm and RfmToLeds. CntToLedsAndRfm is a variant of Blink. It outputs the 
current counter value to two output interfaces: the LEDs and the radio communication stack. 
RfmToLeds receives data from the radio and displays it on the LEDs. Programming one Mote 
with CntToLedsAndRfm will cause it to transmit its counter value over the radio; programming 
another with RfmToLeds causes it to display the received counter on its LEDs. (For more details 
on different component modules, look at Lesson 4 of the TinyOS Tutorial.) 

IMPORTANT: If you’re using MICA2 or MICA2DOT Motes, you will need to ensure 
that you’ve selected a radio frequency compatible with your Motes. If your Motes do not 
communicate in this Section, the likely reason is that you don’t have your frequency set 
correctly. Refer back to Section 3.6 on how to set the radio frequency. 

MICAz currently uses IEEE 802.15.4 channel#0 (2.405GHz) and ignores DCC1K_DEF_FREQ. 

4.7.1 Sending Messages with CntToLedsAndRfm 
 Change your directory to the CntToLedsAndRfm directory (using a Cygwin window). 

 cd /opt/tinyos-1.x/contrib/xbow/apps/CntToLedsAndRfm 

 Attach a MICA2 Mote to your MIB510. Build and install the application. 
 make mica2 install mib510,com1 

 Remove the MICA2 Mote from the MIB and turn on. Assuming you have batteries in 
your Mote, you should see a 3-bit binary counter on the Mote’s LEDs. And while it is 
not apparent, it is, of course, transmitting the value over the radio.  

Main

BlinkM
LedsC

SingleTimer

StdControl

StdControl

Leds

Timer



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 29 

4.7.2 Receiving Messages with RfmToLeds  
 Attach a second MICA2 Mote. 

 Change directory to RfmToLeds. Build and install the application. 
cd ../RfmToLeds 

make mica2 install mib510,com1 

 Remove the MICA2 Mote from the MIB and turn on. If you turn the Mote with 
CntToLedsAndRfm, you will see that the LED counting stops on both Motes. 

4.7.3 Radio Transmit/Receive FAQ 
There many several reason why you might not be able to communicate. Here are some 
things to check if you can’t get your Motes to communicate with these two applications. 

 Correct radio frequency? Be sure that you have set the radio frequency (channel) 
correctly in your MakeXbowlocal file. 

 Correct group ID? Motes on the same channel but different group IDs will not be able 
to communicate with each other. 

 Base station switch set to transmit only? If the switch labeled “SW2” is in the “ON” 
position, the MIB will only transmit but not receive. 

 RF null location? Move your Mote to a slightly different location or about ± 1m. 

 RF overload? You may have too many Motes close to each other. Or you may be near 
a strong RF source such as a major airport or radio transmitters. 

 Antennas installed and correctly oriented? Motes without antennas will not have 
much success in transmitting or receiving signals beyond a few cm. Typically you 
should have your antennas mounted vertically with respect to the ground. In rare cases, 
the antennas itself may be faulty; try other antennas to see if performance improves. 

 Motes’ radio TX/RX range exceeded? If none of the above apply, you may have to 
place your Motes closer together. In fact one of the practical uses of these two 
applications is to do a crude TX/RX site survey. This is done by placing the Mote with 
CntToLedsAndRfm in one location. Move the Mote with RfmToLeds until you stop 
seeing the 3-bit binary count. This would be an approximate distance to for one hop 
between two Motes.  

 NOTE: You may have to place the Mote with RfmToLeds on a surface and step away since your 
body is a source of radio interference.  

4.8 Learning More About TinyOS and nesC 
This section was only a brief introduction to some of the concepts in TinyOS and nesC. An 
online version of the tutorial for a more complete introduction to TinyOS is at  

http://www.tinyos.net/tinyos-1.x/doc/tutorial/ 

 

http://www.tinyos.net/tinyos-1.x/doc/tutorial/


Getting Started Guide
   

Wireless Sensor Networks   
 

Page 30                                                                                                             Doc. 7430-00220-04 Rev. B 

 IMPORTANT: 

Please note that the tutorial references the applications reference to tinyos-1.x/apps found under 
the main tree. These are public domain applications and Crossbow assumes no responsibility for 
the support. Hence the support needs to be obtained from TinyOS help group. For more details 
go to, http://www.tinyos.net/ or e-mail tinyos-help@Millennium.Berkeley.EDU 

 

http://www.tinyos.net/
mailto:tinyos-help@Millennium.Berkeley.EDU


  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 31 

5 Test Applications and Drivers for Sensor and Data 
Acquisition Boards 

 WARNING: To use these test applications and drivers, you must update to TinyOS 1.1.7 
as described in Section 2.2.2. 

 

This Chapter will help you test your sensor and data acquisition boards. A set of test applications 
and a corresponding UI called XListen are provided to enable user’s to do basic testing and 
verification of their sensor and data acquisition (DAQ) boards. The XListen program displays a 
sensor’s or DAQ’s output in a Cygwin window. Listed in the Table 5-1 are TinyOS test 
application and drivers to evaluate your the sensor and/or DAQ board. 

Table 5-1. Test and/or Demo Applications and Drivers for Crossbow’s Sensor and Data 
Acquisition Boards. 

Sensor or DAQ Board Test/Demo Application Driver Name 
XSensorMTS510 

MTS510 
Surge_Reliable_Dot 

mts510 

XSensorMDA500 
MDA500 

Surge_Reliable_Dot 
basicsb1 

MTS300/310 Surge_Reliable mts310 
MTS400/420 XSensorMTS400 mts400 

MDA300 XSensorMDA300 mda300 
1basicsb drivers are located in the opt/tinyos-1.x/tos/sensoboards/  
directory, whereas the other drivers are in the tinyos-.x/contrib/xbow/ 
tos/sensorboards/ directory. 

5.1 Drivers 
A driver is a set of software code modules written in nesC which supports the lower level 
functionality of the sensor board. This is needed by all TinyOS applications. Driver code is 
typically developed during the sensor board design stage. These drivers should be in the 
opt/tinyos-1.x/contrib/xbow/tos/sensorboards/ directory. 

IMPORTANT: Follow the instructions per Section 2.2.3 if you have not installed 
Crossbow’s TinyOS subdirectories. 

5.2 Test Applications: The XSensor-series 
The XSensor-series of test applications was developed to quickly and easily test Crossbow 
sensor and/or data acquisition boards. Furthermore, these applications are a set of well 
documented code modules which users can modify for their own TinyOS applications. 

To install a test application, navigate to opt/tinyos-1.x/contrib/xbow/apps and change to the 
directory that corresponds to the sensor board you want to test. The Mote hardware functionality 
can be tested in two different ways: 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 32                                                                                                             Doc. 7430-00220-04 Rev. B 

 Over the UART (Universal Asynchronous Receive Transmit): See Section 5.2.1. 

 Over an RF (Radio Frequency) link: See Section 5.2.2.  

5.2.1 Testing a Sensor Board over the UART 
Testing your sensor board over the UART bypasses the need for an RF link. This test is 
useful if you want to test the sensor board without having to deal with possible radio 
problems. It also requires only one Mote, and you only have to program the Mote with an 
appropriate XSensor application. 

 EXAMPLE—Installing XSensorMDA500 Test Application for the MICA2DOT 

 Change your directory to the test application. 
cd tinyos-1.x/contrib/xbow/apps/XSensorMDA500 

 Attach a MICA2DOT to the bottom side pins on the MIB. Build and install the 
application to the Mote (with unique node ID other than 0). 
make mica2dot install,1 mib510,com1 

  where 1 is the node ID  

 Read Section 5.3 to run the text user-interface program XListen. Make sure that the 
switch labeled “SW2” on the MIB510 is on the “OFF” position. 

5.2.2 Testing a Sensor Board by Wireless (RF) Link 
Testing your sensor board over the RF link requires two Motes. The Mote with the 
sensor/data acquisition board attached to it will have the test firmware installed. The other 
Mote will be programmed with an application called TOSBase (in /opt/tinyos-
1.x/contrib./xbow/apps/). Assuming you have successfully completed the exercises in 
Chapter 4, you should be confident about having the frequencies set correctly.  

 If you have a sensor node (Mote + sensor board) on the MIB, remove it. Install 
batteries in it if needed. Make sure the battery switch is in the “ON” position for the 
MICA2.  

 Attach a either a MICA2 or MICA2DOT to the appropriate connector on the MIB. 

 NOTE: Unlike most other TinyOS applications, the MICA2DOT can be used as a base station Mote. 
This applies only for the XSensor-series test applications. It is important to use the proper baud rate 
which is discussed in Section 5.3.2 below. 

 Change your directory to the TOSBase directory which is in /opt/tinyos-
1.x/contrib./xbow/apps/. 
cdapps 

cd TOSBase 

 Build and install the TOSBase to the Mote (with node ID 0). 
make mica2dot install,0 mib510,com1 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 33 

 Read Section 5.3 to run the text user-interface program XListen. Make sure that the 
switch labeled “SW2” on the MIB510 is on the “OFF” position. 

5.3 User Interface: XListen 
The user interface is a PC-based tool used to view sensor data. XListen is a Cygwin C console 
program written in C that receives RS232/radio packets from the Mote and converts to 
engineering units. XListen is used only to verify that the sensor board is working properly. It is 
not a sensor network program. This program is located in /opt/tinyos-
1.x/contrib/xbow/tools/src/xlisten. By default, you must be that src/ directory to run Xlisten. To 
run XListen from anywhere in the Cygwin shell, do the following in a Cygwin shell: 
 cd /usr/local/bin  

 ln -s /opt/tinyos-1.x/contrib/xbow/tools/src/xlisten/xlisten.exe xlisten 

The source code for Xlisten is in the /xbow/tools/src/xlisten/ directory for user modification 
and editing. 

5.3.1 Help List for XListen 
XListen has many modes of operation that can be controlled by passing command line 
parameters. Help on finding the commands for XListen can be found by typing in xlisten -? 
in a Cygwin window (see the text output below).  
 
$ xlisten -? 
xlisten Ver:$Id: xlisten.c,v 1.12 2004/08/05 01:35:35 mturon Exp $ 
Using params: [help] 
 
Usage: xlisten <-?|r|p|x|c|d|q> <-b=baud> <-s=device> 
   -? = display help [help] 
   -r = raw display of tos packets [raw] 
   -p = parse packet into raw sensor readings [parsed] 
   -x = export readings in csv spreadsheet format [export] 
   -c = convert data to engineering units [cooked] 
   -l = log data to a database or file [logged] 
   -d = debug serial port by dumping bytes [debug] 
   -b = set the baudrate [baud=#|mica2|mica2dot] 
   -s = set serial port device [device=com1] 
   -h = specify header size [header=offset] 
   -q = quiet mode (suppress headers) 
   -v = show versions of all modules 

5.3.2 Baud rate: -b=[baudrate] 
This flag allows the user to set the baud rate of the serial line connection. The default baud 
rate is 57 600 bits per second (bps) which is compatible with the MICAz/MICA2. The 
desired baud rate must be passed as a number directly after the equals sign with no spaces 
in between, i.e., –b=19200. 

Optionally, a product name can be passed in lieu of an actual number and the proper baud will be 
set, i.e., –b=mica2dot.  Valid variable are in  



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 34                                                                                                             Doc. 7430-00220-04 Rev. B 

Table 5-2. Valid variables and baud rates for the –b option 

Mote Baud Rate Variable 
MICAz/MICA2 57600 mica2 

MICA2DOT 19200 mica2dot

5.3.3 Serial port: –s=port [serial] 
This flag gives the user the ability to specify which COM port or device XListen should 
use.  The default port is /dev/ttyS0 or the UNIX equivalent to COM1. The given port must 
be passed directly after the equals sign with no spaces, e.g., –s=com3.  

5.3.4 Raw data values: –r 
Raw mode displays the actual TOS packets as a sequence of bytes as seen coming over the 
serial line.  

 EXAMPLE—Raw text output with xlisten -r 
$ xlisten -r 
xlisten Ver:$Id: xlisten.c,v 1.7 2004/03/23 00:52:28 crossbow Exp $ 
Using params: [raw] 
/dev/ttyS0 input stream opened 
7e7e000033000000c8035f61d383036100000000e4510d610000000080070000d4b5f577 
7e00007d1d8101060029091e09ef082209e7080b09b40800000000000000000000000100 
7e00007d1d81020600f007de07da07d507c3064706540500000000000000000000000100 

 

Examining the second line from the output example above, the values are interpreted as: 

Packet Byte 
Name Example Notes 

TOS Header = 7e00007d1d 

UART Addess 7e00  
Type 00  

Group ID 7d Default 

Data Payload = 8101060029091e09ef082209e7080b09b408000000000000000000  

sensorboard_id 81 MDA300 
packet_id 01  

node_id 06  
reserved 00  

Data 
29091e09ef082209e7080
b09b40800000000000000
0000 

Depends on sensorboard_id and 
packet_id. In this case it is the raw 
ADC values for an MDA500. 

 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 35 

Table 5-3. The TinyOS files that define this data packet. 

TinyOS file Information 
tos/types/AM TOS_msg header 

contrib/xbow/tools/src/xlisten/xsensor.h Xbow sensor packet 
contrib/xbow/tools/src/xlisten/boards Sensor/DAQ board specific data payloads 

5.3.5 Cooked data values: –c 
Cooked mode converts the raw sensor readings within a given packet into engineering 
units.  

 EXAMPLE—Raw text output with xlisten –c –b=mica2dot on a MICA2DOT 
programmed with XSensorMDA500. 
$ xlisten -c -b=mica2dot 
xlisten Ver:$Id: xlisten.c,v 1.7 2004/03/23 00:52:28 crossbow Exp $ 
Using params: [baud=0x000e] [cooked] 
/dev/ttyS0 input stream opened 
MDA500 [sensor data converted to engineering units]: 
   health:     node id=6 
   battery:    volts=3163 mv 
   thermistor: resistance=10177 ohms, tempurature=24.61 C 
   adc chan 2: voltage=1258 mv 
   adc chan 3: voltage=1001 mv 
   adc chan 4: voltage=893 mv 
   adc chan 5: voltage=939 mv 
   adc chan 6: voltage=875 mv 
   adc chan 7: voltage=850 mv 

5.3.6 Quiet Mode: –q 
This flag suppresses the standard XListen header which displays the version string and 
parameter selections.  

5.3.7 Exporting Data Readings: –x 
Export mode displays raw analog to digital converter (ADC) values as comma delimited 
text for use in spreadsheet and data manipulation programs. The user can redirect the 
screen output of XListen by using a “> log_filename” to write file. Later that 
log_filename can be read by Microsoft® Excel to build charts of the information. 

 EXAMPLE—Printing to screen (standard output) with xlisten –x on a 
MICA2DOT 
$ xlisten -b=mica2dot -q –x 
51200,24323,54113,899,97,0,58368,3409 
6,193,518,409,328,283,296,298 
6,194,517,410,330,292,310,300 
6,194,518,409,329,286,309,288 
6,194,517,411,331,287,297,300 
6,194,516,413,335,288,301,287 
 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 36                                                                                                             Doc. 7430-00220-04 Rev. B 

5.3.8 Debugging: –d 
This flag puts XListen in a mode so that it behaves exactly like the TinyOS raw listen tool 
(opt/tinyos-1.x/contrib/xbow/tools/src/raw_listen.c). All other command line options 
except –b (baud rate) and –s (UART serial port) will be ignored. This mode is mainly 
used for compatibility and debugging serial port issues. Individual bytes will be displayed 
as soon as they are read from the serial port with no post-processing.  In most cases -r 
(raw ADC readings) is equivalent and preferred to using debug mode. 

5.3.9  Display Options 
The -r, -p, and -c flags are considered display options. These can be passed in various 
combinations to display multiple views of the same packet at once. The default display 
mode when XListen is invoked with no arguments is -r. 

 EXAMPLE—Output with xlisten –r –p -c 
$ xlisten -b=mica2dot -r -p -c 
xlisten Ver:$Id: xlisten.c,v 1.7 2004/03/23 00:52:28 crossbow Exp $ 
Using params: [baud=0x000e] [raw] [parsed] [cooked] 
/dev/ttyS0 input stream opened 
7e7e000033000000c8035f61d383036100000000e4510d610000000080070000d4b5f577 
7e00007d1d01010600c200050293014401210135012f0122010000000000000000000100 
mda500 id=06 bat=00c2 thrm=0205 a2=0193 a3=0144 a4=0121 a5=0135 a6=012f a7=0122 
MDA500 [sensor data converted to engineering units]: 
   health:     node id=6 
   battery:    volts=3163 mv 
   thermistor: resistance=10217 ohms, tempurature=24.53 C 
   adc chan 2: voltage=1246 mv 
   adc chan 3: voltage=1001 mv 
   adc chan 4: voltage=893 mv 
   adc chan 5: voltage=955 mv 
   adc chan 6: voltage=936 mv 
   adc chan 7: voltage=896 mv 

5.4 Example Output from XSensorMTS400 
 
$ xlisten -r -p -c -b=mica2 -s=com1 
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $ 
Using params: [baud=0x1001] [raw] [parsed] [cooked] 
com1 input stream opened 
 
7e0000201d860101007d019803bf1aaccc1eabe3aacad090686545a30000000002e50100 
mts420 id=01 battery=017d humidity=0398 temp=1abf 
intersema calibration words(1..4) = ccac,ab1e,aae3,d0ca 
intersematemp=6890 intersemapressure=4565 
taosch0=00a3 taosch1=0000 accel_x=0200 accel_y=01e5 
MTS420 [sensor data converted to engineering units]: 
   health:       node id = 1 
   battery:              = 3287 mv 
   humidity:             = 31 % 
   Temperature:          = 28 degC 
   IntersemaTemperature: = 28 degC 
   IntersemaPressure:    = 1007 mbar 
   Light:                = 28.059999 lux 
   X-axis Accel:         = 583.333313 mg 
   Y-axis Accel:         = 81.218269 mg 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 37 

 NOTE: When connected to the computer via serial COM to UART, GPS data was not available, so 
non-GPS sensor data readings are shown above. In order to receive/display the GPS data you must 
uncomment #define MTS420 line in sensorboardApp.h file found under tinyos-
1.x/contrib./xbow/apps/XSensorMTS400 

5.5 Example Output from XSensorMTS510 
 
Crossbow@wireless_dev /opt/cvs-src_tinyos-1.x/contrib/xbow 
$ xlisten -r -p -c -b=mica2dot -s=com1 
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $ 
Using params: [baud=0x000e] [raw] [parsed] [cooked] 
com1 input stream opened 
7e0000201d020105008303f4010302550154015401540155010000000000000000000100 
mts510 id=05 light=0383 acc_x=01f4 acc_y=0203 
       sound[0]=155 sound[1]=154 sound[2]=154 sound[3]=154 sound[4]=155 
MTS510 [sensor data converted to engineering units]: 
   health:     node id=5 
   light:        =899 ADC counts 
   X-axis Accel: =-0.016129 g 
   Y-axis Accel: =0.114754 g 

5.6 Example Output from XSensorMDA300 
$ xlisten -r -p -c -b=mica2dot -s=com1 
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $ 
Using params: [baud=0x000e] [raw] [parsed] [cooked] 
com1 input stream opened 
7e0000811d01010400c100e1014001fa00d500fa00ee00b8000000000000000000000100 
Mda300 id=04 bat=00c1 thrm=01e1 a2=0140 a3=00fa a4=00d5 a5=00fa a6=00ee a7=00b8 
MDA300 [sensor data converted to engineering units]: 
   health:     node id=4 
   battery:    volts=3183 mv 
   thermistor: resistance=8874 ohms, tempurature=27.53 C 
   adc chan 2: voltage=995 mv 
   adc chan 3: voltage=777 mv 
   adc chan 4: voltage=662 mv 
   adc chan 5: voltage=777 mv 
   adc chan 6: voltage=740 mv 
   adc chan 7: voltage=572 mv 

5.7 Example Output from XSensorMDA500 
$ xlisten -r -p -c -b=mica2dot -s=com1 
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $ 
Using params: [baud=0x000e] [raw] [parsed] [cooked] 
com1 input stream opened 
7e0000811d01010400c100e1014001fa00d500fa00ee00b8000000000000000000000100 
mda500 id=04 bat=00c1 thrm=01e1 a2=0140 a3=00fa a4=00d5 a5=00fa a6=00ee a7=00b8 
MDA500 [sensor data converted to engineering units]: 
   health:     node id=4 
   battery:    volts=3183 mv 
   thermistor: resistance=8874 ohms, tempurature=27.53 C 
   adc chan 2: voltage=995 mv 
   adc chan 3: voltage=777 mv 
   adc chan 4: voltage=662 mv 
   adc chan 5: voltage=777 mv 
   adc chan 6: voltage=740 mv 
   adc chan 7: voltage=572 mv 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 38                                                                                                             Doc. 7430-00220-04 Rev. B 

6 Surge Multi-hop Networking Application 

The TinyOS-1.1.0 release and later include library components that provide ad-hoc multi-hop 
routing for sensor network applications.  The implementation uses a shortest-path-first algorithm 
with a single destination node (the root) and active two-way link estimation. The data movement 
and route decision engines are split into separate components with a single interface between 
them to permit other route-decision schemes to be easily integrated in the future. Use of the 
multi-hop router is essentially transparent to applications (provided they correctly use the 
interface). 

6.1 How does Surge Multi-hop network work? 
Crossbow’s mesh networking resides as a software component in TinyOS. Typical applications 
that run on the Motes use several different software components―e.g., sensor components, data 
logging, and more. If the application is going to use mesh networking, it will link in the 
MultiHopRouter software component. The implementation of the MultiHopRouter component 
found in Crossbow’s TinyOS contribution directory includes some significant performance 
upgrades, and it is a state-of-the-art mesh networking algorithm. 

Figure 6-1. A Graphviz representation of the TinyOS application Surge_Reliable and 
Surge_Reliable_Dot. 

 

The MultiHop router component automatically transmits link quality estimates, publishes 
distance estimates, performs optimal route selection and forwards multi-hop data traffic.  
Pictured in Figure 6-1, the routing component is divided into two major pieces: the 
MultiHopEngineM and the MultiHopLEPSM component. Additionally, it uses the QueueSend 
component, the TimerC component and the GenericCommPromiscuous component to properly 
perform its duties. The MultiHopEngineM component implements the core forwarding and 
sending function of multi-hop routing. Once a parent has been determined, the 
MultiHopEngineM properly receives updates and transmits the data packet on towards its final 
destination. Upon receipt of a Multi-hop packet, the MultiHopEngineM forwards the packet if 
and only if it was directly addressed to the node via the packet addressing mechanism. If so, the 
engine uses the MultiHopLEPSM to select the next hop destination and updates the packet by 
using the RouteSelect interface.  Once the MultiHopLEPSM has updated the fields of the multi-
hop packet, the packet is handed to the QueueSend for transmission as soon as possible.  The 



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B 

QueueSend is a simple component that will accept multiple transmission requests and perform 
the actual transmissions as the channel allows. 

The data movement and route decision engines are split into separate components with a single 
interface between them to permit other route-decision schemes to be easily integrated in the 
future. Use the MultiHopRouter is essentially transparent to applications (provided they correctly 
use the interface). 

Use of the multi-hop library component is mostly transparent to the application. Any application 
that uses the Send interface can be connected to this component to achieve multi-hop 
functionality. One limitation of multi-hop, however, is the aggregate data rate. Applications 
should maintain average message frequency at or slower than one message every two seconds. 
Higher rates can lead to congestion and/or overflow of the communication queue. 

6.2 Programming Motes with Surge 
To program additional MICAz (Section 6.2.2) or MICA2 (Section 6.2.23) Mote with 
Surge_Reliable and additional MICA2DOTs (Section 6.2.4) with Surge_Reliable_Dot you’ll 
need to install TinyOS 1.1.0 and then the TinyOS 1.1.7 RPM update onto your PC. 

 NOTE: The programming instructions below assume you are using an MIB510 connected to serial 
port COM1. If you are using a different COM port number, then simply use that number in the command 
line. Remember, the Mote chosen as the sensor network base station must be installed with a <nodeid> 
of 0 (zero). 

6.2.1 Copying the xbow directories from the CDROM 
Follow the instructions per Section 2.2.3 if you have not installed Crossbow’s TinyOS 
subdirectories. 

6.2.2 Installing Surge_Reliable on MICAz Mote 
 The key to building Surge_Reliable in TinyOS 1.1.7 for the MICAz is to make certain the 
Makefile in that application’s directly uses the new Makerules.  

 Edit Makefile to uncomment the corresponding line for MICA2 as shown below. 

 

 

 

 

 

 

 

 

 

 

COMPONENT=Surge 
SENSORBOARD=micasb 
#TINYSEC=true 
 
# For MICA2 and MICA2DOT 
# PFLAGS+= -I../../tos/platform/mica2 -I../../tos/CC1
I../../tos/lib/ReliableRoute -I%T/lib/Queue -I%T/lib/
I%T/lib/Attributes 
 
# For MICAZ 
# PFLAGS+= -I../../beta/tos/lib/CC2420RadioAck -
I../../beta/tos/platform/micazack -I../../tos/lib/Rel
I%T/lib/Queue -I%T/lib/Broadcast -I%T/lib/Attributes 
 
include ../MakeXbowlocal 
include ${TOSROOT}/tools/make/Makerules 

 

For MICA2 Motes: 
uncomment this line
000RadioAck -
Broadcast -

 

For MICAz Motes: 
uncomment this line
TINYSEC for Network 
security 
Page 39 

iableRoute -



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 40                                                                                                             Doc. 7430-00220-04 Rev. B 

 

 Open a Cygwin window. 

 Change directory to the tinyos-1.x/contrib/xbow/apps/Surge_Reliable. 
cd /opt/tinyos-1.x/contrib/xbow/apps/Surge_Reliable 

 Build the application. 
make micaz 

 Download (flash) the MICAz with the application. Be sure to attach the MICAz Mote 
on the MIB510 before typing in this command. 

make micaz reinstall,<nodeid> mib510,COM<#> 

where <nodeid> is the node address you want that Mote to be and <#> is the serial 
port number to which the MIB510 is connected. Repeat this step for as many Motes 
you need to have programmed. 

 NOTE: The TINYSEC variable in the above Makefile sets the network security for MICA2 motes. 
The MICA2DOTs currently do not support this feature. Hence it is important that you comment out this 
line when using MICA2DOTs in the MICA2 network. Otherwise, MICA2DOTs won’t be able to join the 
network! 

6.2.3 Installaing Surge_Reliable on MICA2 Motes 
 Edit Makefile to uncomment the corresponding line for MICAz as shown above. 

 Open a Cygwin window. Change directory to the tinyos-
1.x/contrib/xbow/apps/Surge_Reliable. 

cd /opt/tinyos-1.x/contrib/xbow/apps/Surge_Reliable 

 Build the application. 
make mica2 

 Download (flash) the application into a MICA2: attach a MICA2 Mote into the 51-pin 
connector on the MIB510.  

make mica2 reinstall,<nodeid> mib510,COM1 

 Repeat until you have installed all the MICA2 Motes. 

6.2.4 Installing Surge_Reliable_Dot on MICA2DOT Motes 
 Open a Cygwin window. Change directory to tinyos-

1.x/contrib/xbow/apps/Surge_Reliable. 
cd /opt/tinyos-1.x/contrib/xbow/apps/Surge_Reliable_Dot 

 Build the application. 
make mica2dot  

 Install the application into a MICA2DOT: attach a MICA2DOT Mote into the 19 pin 
connector on the MIB510.  



  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 41 

make mica2dot reinstall,<nodeid> mib510,COM1 

The <nodeid> should be never be 0 for a MICA2DOT and needs to be different than the 
numbers you gave for the MICA2s. 

6.2.5 Changing the Transmit Rate in Surge_Reliable or Surge_Reliable_Dot 
You can change the tranmsit rate of the Motes running Surge_Reliable or 
Surge_Reliable_Dot Below is the portion of Surge.h located in both the Surge_Reliable 
and the Surge_Reliable_Dot directories. Specifically, change line 33 which has the 
variable “INITIAL_TIMER_RATE.” The number represents time in milliseconds. In that 
line, the transmit rate is determined by multiplying 1024 by some integeter value greater 
than or equal to two. 

 

 EXAMPLE—Part of the Surge.h file in Surge_Reliable_Dot/ 

 * This file is distributed under the terms in the attached INTEL-LICENSE      
 * file. If you do not find these files, copies can be found by writing to 
 * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,  
 * 94704.  Attention:  Intel License Inquiry. 
 */ 
 

 
enum{ 
    INITIAL_TIMER_RATE = 1024 * 2,  
    FOCUS_TIMER_RATE = 1000, 
    FOCUS_NOTME_TIMER_RATE = 1000 
}; 

6.3 Running Surge-View GUI 
Follow the instructions provided in Chapter 1 of the guide to run the GUI to visualize the 
network topology. 

 

 

 

Change the “2” in 
line 33 to another 
number. (Try “8”.) 



Getting Started Guide
   

Wireless Sensor Networks   
 

Page 42                                                                                                             Doc. 7430-00220-04 Rev. B 

7  Warranty and Support Information 

7.1 Customer Service 
As a Crossbow Technology customer you have access to product support services, which 
include: 

• Single-point return service 

• Web-based support service 

• Same day troubleshooting assistance 

• Worldwide Crossbow representation 

• Onsite and factory training available 

• Preventative maintenance and repair programs 

• Installation assistance available 

7.2 Contact Directory 
United States: Phone: 1-408-965-3300 (8 AM to 5 PM PST) 

   Fax: 1-408-324-4840 (24 hours) 

   Email: techsupport@xbow.com 

Non-U.S.: refer to website www.xbow.com 

7.3 Return Procedure 

7.3.1 Authorization 
Before returning any equipment, please contact Crossbow to obtain a Returned Material 
Authorization number (RMA). Ask for technical support and be ready to provide the following 
information when requesting a RMA: 

 Your name, company/institution name 
 Sales or invoice number 
 Address 
 Telephone, fax, email 
 Part number (usually an 8 to 10 digit number) 
 Serial number 
 Installation or receipt date 
 Failure date 
 Fault description 

http://www.xbow.com/


  Wireless Sensor Networks  Getting Started Guide
 

Doc. 7430-0022-04 Rev. B Page 43 

 

7.3.2 Identification and Protection 
If the equipment is to be shipped to Crossbow for service or repair, please attach a tag TO THE 
EQUIPMENT, as well as the shipping container(s), identifying the owner.  Also indicate the 
service or repair required, the problems encountered, and other information considered valuable 
to the service facility such as the list of information provided to request the RMA number. 

Place the equipment in the original shipping container(s), making sure there is adequate packing 
around all sides of the equipment.  If the original shipping containers were discarded, use heavy 
boxes with adequate padding and protection. 

7.3.3 Sealing the Container 
Seal the shipping container(s) with heavy tape or metal bands strong enough to handle the weight 
of the equipment and the container. 

7.3.4 Marking 
Please write the words, “FRAGILE, DELICATE INSTRUMENT” in several places on the 
outside of the shipping container(s).  In all correspondence, please refer to the equipment by the 
model number, the serial number, and the RMA number. 

7.3.5 Return Shipping Address 
Use the following address for all returned products: 

   Crossbow Technology, Inc. 
41 Daggett Drive 
San Jose, CA 95134 
Attn: RMA Number (XXXXXX) 

7.4 Warranty 
The Crossbow product warranty is one year from date of shipment. 





   

   

 

 



    

 

 

 

 

 

 

 
Crossbow Technology, Inc.
41 Daggett Drive 
San Jose, CA 95134 
Phone: 408.965.3300 
Fax: 408.324.4840 
Email: info@xbow.com 
Website: www.xbow.com 
  


	Mesh Networking Right Out-of-the-Box
	Installing the Surge-View Folder onto Your PC
	Preparing the Sensor Nodes and Base Station
	SerialForwarder
	Double-clicking on the file SerialForwarder.exe in the Surge
	Command Prompt directions

	Running the Surge GUI
	Changing the background to the Surge UI

	Analyzing Network-data with Stats
	Reviewing Network Topology and Yield with HistoryViewer

	Installation of TinyOS
	What You Need for Installation
	Installing TinyOS 1.1.0, Development Tools, and TinyOS 1.1.7
	Installing TinyOS 1.1.0
	Updating to TinyOS 1.1.7
	Copy the Crossbow TinyOS Directory (xbow/) into the contrib/
	TinyOS Installation Structure

	TinyOS PC Tools Verification

	Programing Environment Customization
	Setting Aliases
	Compiling TinyOS Applications
	Programming Boards
	MIB500/Parallel Port Programmers
	MIB510/Serial Port Programmers
	MIB600 Ethernet Programmers

	Installing TinyOS Applications into a Mote
	Setting the Group ID and Node Address for the Mote Network
	Radio Frequencies
	The MakeXbowlocal File

	Introduction to TinyOS and NesC
	TinyOS Programming philosophy
	Concurrency Model
	An Example Application: Blink
	Compiling the Blink Application
	Programming a Mote and Running Blink
	Generating the Component Structure Documentation
	Radio Communications
	Sending Messages with CntToLedsAndRfm
	Receiving Messages with RfmToLeds
	Radio Transmit/Receive FAQ

	Learning More About TinyOS and nesC

	Test Applications and Drivers for Sensor and Data Acquisitio
	Drivers
	Test Applications: The XSensor-series
	Testing a Sensor Board over the UART
	Testing a Sensor Board by Wireless (RF) Link

	User Interface: XListen
	Help List for XListen
	Baud rate: -b=[baudrate]
	Serial port: –s=port [serial]
	Raw data values: –r
	Cooked data values: –c
	Quiet Mode: –q
	Exporting Data Readings: –x
	Debugging: –d
	Display Options

	Example Output from XSensorMTS400
	Example Output from XSensorMTS510
	Example Output from XSensorMDA300
	Example Output from XSensorMDA500

	Surge Multi-hop Networking Application
	How does Surge Multi-hop network work?
	Programming Motes with Surge
	Copying the xbow directories from the CDROM
	Installing Surge_Reliable on MICAz Mote
	Installaing Surge_Reliable on MICA2 Motes
	Installing Surge_Reliable_Dot on MICA2DOT Motes
	Changing the Transmit Rate in Surge_Reliable or Surge_Reliab

	Running Surge-View GUI

	Warranty and Support Information
	Customer Service
	Contact Directory
	Return Procedure
	Authorization
	Identification and Protection
	Sealing the Container
	Marking
	Return Shipping Address

	Warranty


