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Abstract

Recent years have witnessed an exponential increase in the availability of technical ma-

terial on the web, possibly due to the efforts to digitize education and open access to

scientific publications. Anybody with an internet connection can pull up relevant tech-

nical material to study or research. However, it is not necessary that all of this readily

available material is comprehensible to most users. A user who is interested to work on a

research problem or a student willing to take up a new course may come across multiple

topics about which she has little/no idea. She may find a number of learning materials

on that topic on the web, however, due to the lack of prerequisite knowledge, she will

have to perform multiple searches before obtaining a basic understanding of that topic.

To keep up with the latest research, she has to identify and understand different aspects

of the topic to conduct a survey. This can be overwhelming for her due to a large amount

of technical material available on the web. It would be helpful if there was a system to

recommend to her prerequisite concepts for basic understanding and research papers for

advanced understanding of the topic.

To build such a system, we first have to store the knowledge from the technical do-
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main in the form of entities and relations as a knowledge graph. This will help design

applications to consume this information in a systematic way. Knowledge graphs have

been crucial for a number of semantic-aware applications. A number of such knowledge

graphs, such as Yago, DBPedia, NELL, Wikidata, or Freebase have been constructed in

the open domain and have supported tasks such as entity retrieval, question answering,

or automatic organization of topics. Although there are multiple open-domain knowledge

graphs, there are no known large-scale technical knowledge graphs, and especially in the

domain of Computer Science. So, the first contribution of this thesis is TeKnowbase,

which is a knowledge base in the domain of Computer Science. We use a combination of

information extraction techniques to extract entities and relations from both structured

and unstructured sources. TeKnowbase has been evaluated for its quality and is freely

available.

The second contribution of this thesis is PreFace, which assists a beginner in the study of

a topic in Computer Science by identifying its prerequisites using TeKnowbase. PreFace

takes a topic in Computer Science as the query and returns a prerequisite graph, where

the nodes represent the prerequisite concepts for the topic and the edges represent the

prerequisite relationship. Additionally, it also identifies interesting aspects for the query

and returns prerequisites grouped together as facets for each aspect. It achieves this

by estimating a language model for the facet as well as the query using TeKnowbase.

The facets are then ranked based on their relevance to the query and their coverage.

The prerequisite graph, as well as the facets generated by PreFace, have been evaluated

to be better than those generated using state-of-the-art prerequisite and facet retrieval
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techniques.

Our final contribution is ASK (Aspect-based academic Search using domain-specific KBs),

which recommends research papers for the different aspects identified by PreFace for ad-

vanced understanding of the queried topic. ASK first assists the user by providing relevant

query suggestions for query and the aspect and then returns a ranked list of relevant re-

search papers. The ranking of query suggestions, as well as research papers, is achieved

using language models estimated for the query and aspect using TeKnowbase. The eval-

uation of papers as well as suggestions retrieved by ASK showed that they were superior

to those returned by various state-of-the-art pseudo-relevant feedback or diversification

techniques.

Overall, this thesis proposes techniques to make technical information more comprehen-

sible for a user.
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सारांश

हाल के वष� म� वेब पर तकनीक� जानकार� क� उपल�धता म� घातीय व�ृ�ध देखी गई है, सभंवतः �श�ा को

�डिजटाइज़ करने और व�ैा�नक �काशन� क� खलु� पहंुच के �यास� के कारण। इंटरनेट कने�शन वाला कोई भी

�यि�त अ�ययन या शोध के �लए �ास�ंगक तकनीक� साम�ी �ा�त कर सकता है। हालां�क, यह आव�यक नह�ं

है �क यह सभी आसानी से उपल�ध साम�ी अ�धकांश उपयोगकता�ओं के �लए समझ म� आ जाए। एक

उपयोगकता� जो एक शोध सम�या पर काम करने के �लए इ�छुक है या एक नया पा�य�म लेने के इ�छुक छा�

को ऐसे कई �वषय� का सामना करना पड़ सकता है िजनके बारे म� उसे बहुत कम/कोई जानकार� नह�ं है। उसे वेब

पर उस �वषय पर कई �श�ण साम�ी �मल सकती है, हालां�क, पवूा�पे��त �ान क� कमी के कारण, उस �वषय

क� ब�ुनयाद� समझ �ा�त करने से पहले उसे कई खोज करनी होगी। नवीनतम शोध के साथ बने रहने के �लए,

उसे सव��ण करने के �लए �वषय के �व�भ�न पहलओु ंको पहचानना और समझना होगा। वेब पर बड़ी मा�ा म�

तकनीक� साम�ी उपल�ध होने के कारण यह उसके �लए भार� पड़ सकता है। यह सहायक होगा य�द �वषय क�

ब�ुनयाद� समझ के �लए पवूा�पे�ा अवधारणाओ ंऔर उ�नत समझ के �लए शोध प�� क� �सफा�रश करने के

�लए एक �णाल� है।

ऐसी �णाल� बनाने के �लए, हम� पहले तकनीक� डोमेन से �ान को ए�ट�ट�एस  और �रलेश�स के �प म� �ान

�ाफ के �प म� स�ंह�त करना होगा। यह इस जानकार� को �यवि�थत तर�के से उपभोग करने के �लए

अन�ुयोग� को �डजाइन करने म� मदद करेगा। कई अथ�-जाग�क अन�ुयोग� के �लए �ान �ाफ मह�वपणू� रहे

ह�। ऐसे कई नॉलेज �ाफ , जसेै यागो, डीबीपी�डया, एनईएल, �वक�डाटा, या ��बेस का �नमा�ण खलेु डोमेन म�

�कया गया है और इसम� एं�टट� �र��वल, ��न उ�र, या �वषय� के �वचा�लत सगंठन जसेै काय� का समथ�न

�कया गया है। हालां�क कई खलेु डोमेन नॉलेज �ाफ ह�, ले�कन बड़ ेपमैाने पर कोई टेि�नकल नॉलेज �ाफ नह�ं
ix



ए�ट�ट�एस और �रलेश�स को �नकालने के �लए सचूना �न�कष�ण तकनीक� के संयोजन का उपयोग करत ेह�।

टे�नोबसै का म�ूयांकन इसक� गणुव�ा के �लए �कया गया है और यह म�ुत म� उपल�ध है।

इस थी�सस का दसूरा योगदान �ीफेस है, जो कं�यटूर �व�ान म� �कसी �वषय के अ�ययन म� श�ुआती को

टे�नोबसै का उपयोग करके इसक� पवूा�पे�ाओ ंक� पहचान करने म� सहायता करता है। �ीफेस कं�यटूर साइंस म�

एक �वषय को �वेर� के �प म� लेता है और एक पवूा�पे�ा �ाफ देता है, जहां नो�स �वषय के �लए पवूा�पे�ा

अवधारणाओ ंका ��त�न�ध�व करत ेह� और �कनारे पवूा�पे�ा सबंधं का ��त�न�ध�व करत ेह�। इसके अ�त�र�त,

यह �वेर� के �लए �दलच�प पहलओु ंक� भी पहचान करता है और ��येक पहल ूके �लए पहलओु ंके �प म�

समहू�कृत पवूा�पे�ाएँ लौटाता है। यह पहल ूके �लए ल��वेज मॉडल के साथ-साथ टे�नोबसै का उपयोग करके

�वेर� का अनमुान लगाकर इसे �ा�त करता है। �फर पहलओुं को उनक� �ासं�गकता और उनके कवरेज के

आधार पर र�क �कया जाता है। पवूा�पे�ा �ाफ, साथ ह� �ीफेस �वारा उ�प�न पहलओु ंका म�ूयांकन

अ�याध�ुनक पवूा�पे�ा और पहल ूपनु�ा�ि�त तकनीक� का उपयोग करके उ�प�न लोग� क� तलुना म� बेहतर होने

के �लए �कया गया है।

हमारा अ�ंतम योगदान आ�क (डोमेन-�व�श�ट केबी का उपयोग कर पहल-ूआधा�रत अकाद�मक खोज) है, जो

पछेू गए �वषय क� उ�नत समझ के �लए �ीफेस �वारा पहचाने गए �व�भ�न पहलओु ंके �लए शोध प�� क�

�सफा�रश करता है। आ�क पहले �वेर� और पहल ूके �लए �ास�ंगक �वेर� सझुाव �दान करके उपयोगकता� क�

सहायता करता है और �फर �ास�ंगक शोध प�� क� एक र�क क� गई सचूी देता है। �वेर� सझुाव� के साथ-साथ

शोध प�� क� र��कंग, टे�नोबसै का उपयोग करके �वेर� और पहल ूके �लए अनमुा�नत ल��वेज  मॉडल का

उपयोग करके हा�सल क� जाती है। शोध प�� के म�ूयांकन के साथ-साथ आ�क �वारा �ा�त सझुाव� से पता

चला �क वे �व�भ�न अ�याध�ुनक सडूो �रलेव�ट फ�डबकै या �व�वधीकरण तकनीक� �वारा लौटाए गए सझुाव� से

बेहतर थे।
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Chapter 1

Introduction

With the growth of Massive Open Online Courses (MOOCS) 1 and efforts towards digiti-
zation of educational content [6], there has been an exponential increase in the availability
of study material to anybody with access to the internet. MOOCs are platforms for pro-
viding online courses which can be taken by anybody, free of cost. Not only online courses,
but a number of technical reading material curated by experts or collaboratively main-
tained is also available on the web [57, 196]. The availability of free reading material
has changed the way education is perceived. It is not necessary for the student to be
physically present in the same room as that of the teacher in order to learn a course,
and instead, is mostly self-driven [5]. Apart from online courses, the number of research
papers in digital form has also exponentially increased over the last decade due to the
open access movement [152, 7]. Open access research papers can be publicly accessed
without the need for expensive subscription or copyright restrictions which has led to an
increase in the popularity of journals that provide open access. Anybody who wishes to
study or research on a particular topic can access the required materials from the internet
with ease.

However, it is not necessary that all of this readily available material is comprehensible

1https://www.mooc.org/

1

https://www.mooc.org/
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to most users. Given the choice of studying any topic from the web, a student may take
up a course about which she has little or no idea. She may struggle to understand the
key concepts because she has limited prerequisite knowledge about those topics [150].
For instance, to understand artificial_neural_networks, she has to have prerequisite
knowledge of machine_learning and neuron. The prerequisites of a topic are provided by
a teacher in a one-to-one interaction in a classroom but are generally absent from the
reading material found on the internet. Even in the case of online courses, it is infeasible
for the instructors to provide a tailor-made list of prerequisites of concepts for each stu-
dent because of varying backgrounds and a large number of the students who take up such
courses [149]. So, she has to identify the prerequisites on her own, which is challenging
because retrieval systems only return relevant documents that may or may not contain
prerequisites in them. Even if they do, she may need to further refer to the prerequi-
site’s prerequisite. This results in more queries, and essentially “knocking around” [189]
trying to find appropriate reading material to understand the new concept. Apart from
prerequisites, the user may still need to refer to other concepts that help her with an over-
all understanding of the topic. To understand artificial_neural_network, knowledge of
python or matlab is recommended to help the user implement artificial_neural_network.
A suggestion such as phoneme_classification would also help the user understand ap-
plications of artificial_neural_network, since phoneme_classification is an application
of artificial_neural_network. So, there exist different aspects of understanding a topic
which have to be considered to provide an overall understanding.

Apart from students, researchers or academicians also need to have an overall understand-
ing of new topics to stay on top of the developments in their field. A student/researcher
who has acquired some basic understanding of a topic would be interested in exploring
the latest research in that field. However, the increasing number of technical publications
[152] has led to scientific information overload, where researchers find it difficult to keep
up with the latest inventions in the field [110]. The number of published journal articles
is increasing at the rate of 8–9% over the past few decades, with the period from 2010–
2012 alone reporting an increase of over 25% in the number of open access journals in
the field of medicine and biology [152]. More than 1 million research articles are pub-
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lished each year in the PubMed database in the field of biomedical, which amounts to
around 2 papers per minute [110]. In an attempt to systematically consume this flood
of information, researchers often spend around 6–8 hours per week on activities such as
group discussions or networking. Some researchers use their own curation systems where
they manually organize the latest research suggested by Google Scholar or PubMed [110].
With the increase in the number of publications, curation demands more time and effort.

It would be useful if there was a system that would take a topic as input and automati-
cally recommend prerequisites for basic understanding and research papers for advanced
understanding of the topic. Given a topic artificial_neural_network, the system would
first recommend prerequisites such as machine_learning or neuron in the form of a pre-
requisite graph. The system would also identify key aspects related to the topic and
recommend prerequisites for them. One of the aspects for artificial_neural_network is
software, and concepts such as matlab or python can be recommended as prerequisites.
Similarly, concept such as phoneme_classification can be recommended as a prerequisite
for application aspect for artificial_neural_network. After the user has acquired some
basic understanding, the system would also recommend research papers relevant to differ-
ent aspects of the queried topic. To illustrate, a paper titled “An Artificial Neural Network
for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification.” can be
recommended as being relevant for application aspect of artificial_neural_network be-
cause it describes an application of artificial_neural_network, while another paper titled
“Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neu-
ral Networks” can be recommended for algorithm aspect of artificial_neural_network,
since it proposes a new algorithm for training artificial neural networks. Designing such a
system requires a systematic organization of the entities and relationships in that domain
and storing the information in a structured form. This can be achieved using knowledge
graphs [88].

Knowledge Graphs. Knowledge graphs [88] represent real-world information in a struc-
tured form. They are usually stored as Resource Description Framework [1] (RDF) triples
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represented by 〈s, p, o〉, where s stands for a subject entity, o stands for an object entity,
and p stands for the predicate or the relationship describing between the two. Given the
fact that “Albert Einstein was born in Ulm”, it can be stored as a triple 〈albert_einstein,
birthPlace, ulm〉, where albert_einstein and Ulm are the entities, and birthPlace de-
scribes the relationship between the two. Knowledge graphs can capture the semantics of
the domain using entities and relationships due to which they have been used to design
semantic-aware systems such as question answering [127, 9, 85], word-sense disambigua-
tion [30], entity summarization [81, 39, 186] or entity retrieval [154, 143, 146, 225]. Over
the years, a number of knowledge bases such as Yago [179], DBPedia [114], NELL [32],
OpenIE [58], Wikidata [57, 196] and Freebase2 have been created. They are also crucial
for the functioning of many commercial search engines like Google’s Knowledge Vault
[54], Bing’s Satori 3, Facebook4 and Linkedin5.

There have been attempts at building knowledge bases in the technical domains, such as
biomedical, using manual [16, 26] or automatic [43] techniques. However, in the domain
of Computer Science, there is a lack of large-scale knowledge graphs. A knowledge base
in the domain of Computer Science can help organize the entities and relationships and
support applications for basic and advanced understanding of a topic. It can be used to
recommend topics to study and scholarly documents in the relevant area for research.

Recommendation of Topics for Basic and Advanced Understanding. In this
thesis, we are primarily concerned with developing a system to assist a user with both basic
and advanced understanding of a topic. The basic understanding of a topic is provided
by recommending its prerequisites and identifying different aspects of the queried topic.
The advanced understanding is provided by recommending research papers for different
aspects of the queried topic. We now define these terminologies as follows.

2Now known as the Google Knowledge Graph
3https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
4https://www.adweek.com/digital/facebook-builds-knowledge-graph-with-info-modules-on-

community-pages/
5https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
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Definition 1. Prerequisite. A prerequisite of a concept q is another concept p that can
be recommended to be studied before q. In other words, having a knowledge of p improves
the understanding of q. This is denoted by q→p. A concept q cannot be a prerequisite
of itself, so q 6→q. Given the concept artificial_neural_network, some prerequisites that
can be suggested are machine_learning, neuron or matlab.

Definition 2. Necessary Prerequisites. A necessary prerequisite of a concept q is a
prerequisite b which has to be studied before q. This is denoted by q=⇒b. An absence of
such a relationship is denoted by q 6=⇒b. For instance, machine_learning or neuron are
necessary prerequisites for artificial_neural_network.

Some properties of a necessary prerequisite are:

1. Irreflexive: A concept q cannot be a necessary prerequisite of itself, i.e. q 6=⇒q.

2. Asymmetric: If q=⇒b, then b 6=⇒q.

3. ∀ b s.t. q=⇒b, q→b holds.

To acquire an overall understanding, one has to understand different aspects of the queried
topic. For instance, a knowledge of a software such as matlab can help the user imple-
ment artificial_neural_network. So, matlab can be suggested as a prerequisite for the
software aspect of artificial_neural_network. If the aspect is application, then a con-
cept such as phoneme_classification can be recommended since it is known to be an
application of artificial_neural_network. A research paper titled “An Artificial Neural
Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification.”
is relevant for the application aspect of artificial_neural_network, since the paper
describes an application of artificial_neural_network. If the aspect is algorithm, then
prerequisites such as optimization or gradient_descent can be recommended and a paper
titled “Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward
Neural Networks” can be recommended for further understanding. So, we formally de-
scribe an aspect as follows:
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Definition 3. Aspect. An aspect is a keyword that describes some subtopic of q. q→(p,a)
denotes that the prerequisite p of q can be recommended to understand aspect a of query
q.

Aspects can be used to define query facets. According to [56], “a query facet is a set of
items which describe and summarize one important aspect of a query. Here a facet item
is typically a word or a phrase. A query may have multiple facets that summarize the
information about the query from different perspectives.”. We extend this idea of query
facets to prerequisites of a query and define a facet as follows.

Definition 4. Facet. A facet refers to a set F of prerequisites of q that can be recom-
mended for an aspect a of a query. This means forall p ∈ F , q→(p,a). For example, the
set of concepts {matlab, python} is a facet which can be suggested for software aspect of
artificial_neural_network. The set of concepts {gradient_descent, optimization} can
be suggested for algorithm aspect of artificial_neural_network.

A knowledge base that stores triples of the form 〈artificial_neural_network, subtopic,

machine_learning〉 can be used to recommend machine_learning as a prerequisite for
artificial_neural_network, since it is a subtopic of machine learning. A triple 〈phoneme-
_classification, application, artificial_neural_network〉 can help us recommend ph-

oneme_classification as a prerequisite for application aspect of artificial_neural_net-
work. We can also use the knowledge base to improve the recall of the retrieved prereq-
uisites by identifying similar concepts for a given topic of interest since similar con-
cepts have similar prerequisites, as illustrated by the facet that the prerequisites for
artificial_neural_network and convolutional_neural_network overlap to some extent
because both of them are neural networks. A research paper that consists of phoneme_clas-
sification can be considered highly relevant and recommended for the application as-
pect.

Problems Addressed in this Thesis. In order to make the growing amount of technical
content on the web more comprehensible to a user, it is important that we develop a
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system that assists users in systematically understanding that content. The first step
involves organizing this information from the domain of Computer Science in the form
of entities and relationships present in a knowledge graph. While there exist knowledge
bases in the other technical domains of biology and medical science, there is a lack of
known knowledge bases in the domain of Computer Science. Due to the unavailability of
knowledge graphs in the domain of Computer Science, our first problem deals with the
construction of a knowledge base in this domain. Since manual curation of a knowledge
base requires a great deal of effort, we resort to the automatic construction of knowledge
graphs. Moreover, the availability of a large amount of technical information on the web
in the form of semi-structured and structured resources allows us to explore different
information extraction [166] techniques to extract structured information. It consists
of two sub-problems—i) extracting named entities from the domain [109, 226], and ii)
extracting relationships between these entities [61, 80, 32].

Once we have constructed a knowledge base in Computer Science, our next problem is
to build a system to assist users to achieve a basic understanding of topics using the
knowledge base. Such a system will help the user consume the overwhelming amount
of technical information in an organized fashion. It should be able to automatically
recommend prerequisites for a topic the user is interested in. While there exist techniques
that automatically identify prerequisites [119, 184, 120] for a query, they do not consider
the different aspects of interest while studying a new topic. So, there is a need to develop
a new technique that can automatically determine prerequisites for different aspects of
interest of a query.

After the user has gained some basic idea about the topic, she will be interested to explore
the latest research in that area. Given the different aspects already identified for the query
while determining prerequisites, it would be beneficial if research papers relevant for the
query and these aspects are also retrieved for the user. So, our third problem deals
with aspect-based academic retrieval of research papers for the query. This problem is
different from the problem of generating aspects [94, 56] for a query where the aim is to
automatically generate these aspects, which can be provided as suggestions. Our problem,



8 Introduction

on the other hand, is to improve the quality of research papers retrieved for a given query
and an aspect.

We address these three problems in this thesis by designing a system to recommend top-
ics to study for basic understanding of a queried topic, and then recommending research
papers for advanced understanding. The backbone of this system is a technical knowledge
base in Computer Science, which organizes the domain knowledge in the form of entities
and relations.

Organization. The rest of this chapter is organized as follows. Section 1.1 introduces
knowledge graph and the RDF model that is used to store knowledge graphs. In Section
1.2 we describe the key challenges in designing such a system and provide an overview of
the techniques to tackle them. We summarize the contributions of this thesis in Section
1.3 and end this chapter describing the organization of the remainder of the thesis.

1.1 Knowledge Graphs

Knowledge graphs are used to store real-world information in a semantic-rich and orga-
nized fashion. The information is stored in the form of facts, which are represented as
triples, such as 〈albert_einstein, bornin, ulm〉. It states the fact that Albert Einstein
was born in Ulm. A popular way of storing such information is in the form of graphs,
where the nodes represent the entities, and the edges represent the relation between the
two entities. For the same example, albert_einstein and Ulm are the entities and bornin

is the relationship between them. A graph of entities and relations that is used to store
a set of facts is called a Knowledge Graph. Figure 1.1 shows a set of triples related to
albert_einstein present in the YAGO [179] knowledge graph.

A popular format for the storage of knowledge graphs is the RDF format (Resource
Description Framework) [1]. The Resource Description Framework is a framework for
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Figure 1.1: Examples of some triples in YAGO that albert_einstein participates in. The
source of the figure can be found at [209]

representing information on the web recommended by the World Wide Web consortium.
It provides a syntax for a graph-based model. RDF is meant to store triple as a graph,
where the nodes in the graph represent the subject and the object and the edges repre-
sent the predicate or the relationship between the two. The components of the RDF data
model are described in the following paragraphs.

Nodes. The nodes in RDF based graph model refer to one of the following:
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1. Entities: These represent real-world or abstract entities, such as the scientist “Al-
bert Einstein” will appear as albert_einstein in the nodes. In the domain of
Computer Science, the entity artificial_neural_network represents the concept
“Artificial neural network”. The set of entities is given by E.

2. Literals: Literals are constants that represent values such as numbers, descriptions,
or dates. They can be used to store facts such as Albert Einstein was born in 1879.
The birth year “1879” can be stored as a literal. A literal can be the object of an
RDF statement, but it cannot be the subject or the predicate. The set of literals is
represented by L.

Edges. The edges connecting the nodes in a knowledge graph are used to describe the
relationship between the subject and the object. These edges are directed. They are
called predicates or properties in the RDF model. For instance, bornIn is the predicate
that connects the subject node albert_einstein and the object node ulm. The set P is
used to denote the set of predicates.

Universal Resource Identifier. The entities and relationships of a knowledge graph
constitute the resources in an RDF model. RDF uses dedicated web pages to describe
these resources. These web pages are represented by a unique identifier, called the Uni-
versal Resource Identifier (URI). Each node in an RDF model can point to a URI or
a literal. When a node does not consist of either of these, it is called a blank node.
Each edge in an RDF model also points to a URI that describes the predicate that
the edge represents. The popular knowledge graph YAGO [179] uses the URI https:

//yago-knowledge.org/resource/Albert_Einstein to describe the entity “Albert Ein-
stein” and the URI https://yago-knowledge.org/resource/Ulm to describe the loca-
tion “Ulm”. The URI https://yago-knowledge.org/resource/schema:birthPlace is
used to describe the relationship “birthPlace” which connects two entities.

Triples and Knowledge Graphs. A triple refers to a tuple 〈s p o〉 consisting of the

https://yago-knowledge.org/resource/Albert_Einstein
https://yago-knowledge.org/resource/Albert_Einstein
https://yago-knowledge.org/resource/Ulm
https://yago-knowledge.org/resource/schema:birthPlace
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subject s, object o and the predicate p. Each triple makes a statement about the subject
and the object. The subject can be entities and the objects can be an entity, literal or a
blank node. It is formally described as follows:

Definition 5. Triple. Given a set of entities E, set of literals L and a set of predicates
P, a triple t is denoted by a tuple 〈s p o〉, such that t ∈ E× P× {E ∪ L}.

A knowledge graph KG is formally described as follows:

Definition 6. Knowledge Graph. A knowledge graph KG is a set of triples that can
be represented as a graph. KG ⊆ E×P× {E ∪ L}

1.2 Challenges

It is crucial that we develop a system to assist computer science enthusiasts in learning
as well as researching a topic. However, doing so comes with its own set of challenges.
The first challenge that we need to tackle is the—automatic construction of a technical
knowledge base to organize the space of entities and relationships in the technical domain.
The next challenge deals with automatically generating prerequisites for a topic of interest
to provide a basic understanding of the topic. The final challenge is the aspect-based
retrieval of research papers to recommend research papers relevant for the query and an
aspect and to provide an advanced understanding of the topic.

1.2.1 Construction of a Technical Knowledge Base

The first problem that we address is the construction of a knowledge base in the domain
of Computer Science. This can be done manually [115, 136, 26] or using collaborative
efforts [57, 196, 16]. However, manual creation of knowledge bases is expensive and
slow, and collaborative techniques are not always reliable [41]. Moreover, domains such
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as Computer Science will need annotations more frequently since the field is rapidly
growing, which will make the process expensive. A number of techniques to automatically
construct knowledge bases from both structured [179, 114] and unstructured sources [32]
have been proposed. However, using techniques proposed in [179, 114] does not lead
to fine-grained extraction of relationships in the domain of Computer Science, because
most of these techniques are designed for the open domain. Learning extractors for
different relationships [32] needs a large amount of training data, which is hard to curate.
Open Information extraction [58] techniques can be used to extract large number of
triples without any supervision, however, when it comes to long and complicated sentence
structures which are common in technical documents, these techniques fail [197]. Systems
such as DeepDive [204], which claim to automatically construct a knowledge base from
structured and unstructured sources, fail to serve our purpose because it needs a curated
set of triples as input so that more triples can be inferred. This makes the task of
extracting a set of high quality triples in Computer Science challenging. In a nutshell,
constructing a knowledge base in the domain of Computer Science involves identifying
the right set of resources and then formulating simple, unsupervised techniques to extract
the triples.

We use simple techniques to construct a technical knowledge base, called TeKnowbase,
from various Computer Science specific structured and unstructured sources. The con-
struction of TeKnowbase and its evaluation is described in Chapter 2.

1.2.2 Recommendation of Prerequisites

As already discussed, a computer science enthusiast who wishes to study a new topic will
face difficulty understanding it if she does not have the required prerequisite knowledge
[150]. In a traditional setting, such prerequisites are usually recommended by the teacher.
However, in online learning, she has to figure out the prerequisites herself [149]. She can
try querying for the topic on the web, but there is no guarantee that the documents re-
turned will contain its prerequisites. Even if it does, she might not be aware of them and
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hence, would need to recursively query for those concepts again [189]. To address these
issues, there exist techniques that automatically determine prerequisites for a query [119,
184]. However, these techniques do not consider different aspects of interest towards un-
derstanding a topic. As a result, prerequisites for different aspects are returned together.
Concepts such as python, C, machine_learning and phoneme_classification are returned
together as prerequisites of artificial_neural_network. Out of these, machine_learning
is a necessary prerequisite, while concepts such as python and C should be recommended in
groups called facets relevant for the software aspect of artificial_neural_network. So,
the first challenge is to identify necessary prerequisites for the query. The next challenge
is to group all the prerequisites into multiple facets. We can use existing query-based
facet extraction techniques [56, 94] to extract facets from our technical knowledge base.
These techniques group concepts reachable via the same sequence of nodes and edges in a
knowledge base into the same facet. This may not always lead to good quality facets since
concepts reachable via the same sequence of nodes and edges may not be relevant for the
same aspect of the query. We discuss these challenges in detail and propose PreFace to
address them in Chapter 4.

1.2.3 Aspect-based Academic Search

A user who has acquired some basic understanding of a topic would be interested to
explore the latest research in that area, covering different aspects of the queried topic.
She might be interested in papers describing applications of computer_vision or algorithms
of computer_vision. In the former case, the query is computer_vision and the aspect is
application and a paper titled Role of Computer Vision in Automatic Inspection System
should be relevant because this paper describes an application of computer_vision. For
the latter, Job-shop scheduling applied to computer vision would be more relevant because
it describes algorithms to perform job scheduling in computer vision. A user interested to
retrieve such results will enter the query computer vision application on an academic
search engine, such as Google Scholar. A document titled OpenCV Computer Vision
Application Programming Cookbook is retrieved at the top position (shown in Figure 1.2).
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Figure 1.2: Top-2 results retrieved for the query computer vision application by google
scholar search engine as of 20 July 2020

This document describes OpenCV, which is a library to implement computer vision ap-
plications and is less relevant than another paper titled Role of Computer Vision in
Automatic Inspection System, which describes an application of computer vision. It
was retrieved at the top position because of the presence of terms application and
computer_vision in the title, without considering the domain-specific relationship be-
tween the two. This means that just the presence of the query and the aspect term in
the document does not make it the best candidate to be suggested for the query and the
aspect.

Consider the document Role of Computer Vision in Automatic Inspection System, which
is a relevant document, which does not mention the term application anywhere in the
title. The reason for the relevance of this document is because it mentions the term
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automatic_inspection_system in the title, which is known to be an application of com-
puter vision. Techniques such as pseudo relevance feedback [112] can be used to identify
terms apart from the query and the aspect terms to return relevant documents. However,
these terms are not generated by considering the relationship between the query and the
aspect, and may not always lead to the best results.

Apart from documents, related suggestions are also of interest to the user. Existing
academic search engines, like Google Scholar, provide related suggestions after the query
has fetched results so that the user can continue to explore the results to fetch more
results. The top-2 suggestions provided by Google Scholar for the query computer vision

application are computer vision application opencv and computer vision application

programming cookbook, shown in Figure 1.3.

Figure 1.3: Suggestion provided by google scholar for the query computer vision
application as on 20 July 2020
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Both these suggestions retrieve the document OpenCV Computer Vision Application
Programming Cookbook, which is not the best document to recommend for the applica-
tion aspect. So, recommending computer vision application opencv or computer vision

application programming cookbook at the top-2 position is not the best idea. Instead,
recommending computer vision application automatic inspection system would help
us retrieve a more relevant document. The procedure for generating suggestions for a
query involves looking for the most similar and frequent suggestion in the list of can-
didate suggestions (generated from query logs or the set of relevant documents for the
query) [25, 53]. In our case we have both the query and the aspect as the input, so,
existing techniques will look for the query and the aspect terms in the set of candidate
suggestions. As a result, these techniques will retrieve suggestions that contain the as-
pect term, which may not be the best suggestion, such as, computer vision application

programming cookbook. Moreover, a suggestion not containing the aspect term can be
relevant, such as computer vision automatic inspection system. So, retrieving the best
suggestion for a query and an aspect is challenging, and requires knowledge of the domain.

We address both of these challenges by using language models. The key idea is to estimate
a language model for the query and the aspect using TeKnowbase and use it to retrieve
documents as well as suggestions, described in detail in Chapter 3.

1.3 Contributions

In this thesis, we have proposed a holistic system that can assist a computer science
enthusiast in learning a new topic, as well as performing a literature review on that topic.
The system takes a query and returns a reading order of concepts that have to be studied
to understand the queried topic. Apart from that, it identifies key aspects towards an
understanding of the queried topic and returns prerequisites, as well as research papers
relevant for them. Figure 1.4 shows the major components of this system, which are the
contributions of this thesis. These are described below:
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Figure 1.4: Architecture of the system that was built as a part of this thesis. The
three main components of the systems are—1) TeKnowbase, which is a domain-specific
knowledge base in Computer Science, 2) ASK, that returns relevant documents as well
as query suggestions for a given query and an aspect, 3) PreFace, a retrieval system that
returns interesting facets as well as prerequisites for a query.

1.3.1 TeKnowbase: A Knowledge Base of Computer Science Con-

cepts

The backbone of our system is TeKnowbase6, a knowledge base in the domain of Com-
puter Science. The entities in TeKnowbase are concepts in Computer Science, like
genetic_algorithm or clustering and the relationships are both domain-independent
relationships, like typeof or synonym and domain-specific, like application or algorithm.
TeKnowbase stores facts about entities in Computer Science as triples. Some example

6Dataset available from https://github.com/prajnaupadhyay/TeKnowbase

https://github.com/prajnaupadhyay/TeKnowbase
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triples are 〈clustering, application, memetic_algorithm〉, 〈memetic_algorithm, type,

evolutionary_algorithm〉, 〈genetic_algorithm, type, evolutionary_algorithm〉, shown
in Figure 1.4. These triples were extracted from both structured and unstructured sources,
described in Chapter 2. There are two retrieval components that use TeKnowbase. The
first component assists an academic search user to retrieve documents relevant to a query
and an aspect of the query. The second component takes a query and returns faceted
prerequisites for a topic of interest, about which the user has little or no idea. It makes
use of the second component to do so. These components are further described in the
next subsections.

1.3.2 PreFace: Faceted Retrieval of Prerequisites

We propose PreFace, which is a retrieval system to extract prerequisites for queries.
PreFace recommends a prerequisite graph of necessary prerequisites, which have to be
studied by the user, and along with them recommends facets of prerequisites, which are
relevant for different aspects of the query. It assists the user in achieving an overall
understanding of the queried topic. This is described in Chapter 4. The implementation
of a prototype of this system is described in Chapter 5.

1.3.3 ASK: Aspect based Academic Search using Domain-Specific

KBs

The second component of our system, ASK, takes a query and an aspect as input and
returns a ranked list of documents as well as query suggestions that are relevant to both
the query and the aspect. It makes use of TeKnowbase to formulate a new retrieval model
to address the issues of using existing models for aspect-based retrieval of research pa-
pers. We compare ASK with various state-of-the-art techniques, such as pseudo-relevance
feedback, diversification, and neural models and show that we outperform them by a sub-
stantial margin. This is described in Chapter 3.
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1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 describes the construction and
evaluation of TeKnowbase. Chapter 3 describes ASK, the system that takes a query and
an aspect as input and returns a ranked list of documents as well as query suggestions
using TeKnowbase. Chapter 4 describes PreFace, a system to extract faceted prerequisites
for a query using TeKnowbase. Chapter 5 describes the implementation of its prototype
and extension, PreFace++. Finally, Chapter 6 concludes the thesis with future work
directions.
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Chapter 2

Construction of TeKnowbase

With the exponential growth of structured and unstructured data on the web over the
last few decades, techniques to effectively store this data have also gained popularity.
Knowledge graphs [88] are means to store such data in a crisp and organized fashion. They
can model the semantics of real-world data by storing it as triples in RDF [1] format.
As a result, they form the backbone of a number of semantic-aware applications such
as question answering[127, 9, 85], entity summarization [81, 39, 186], or entity retrieval
[154, 143, 146, 225]. They can also improve ad-hoc document retrieval tasks by providing
well-known query expansion and smoothing techniques [19, 20, 24, 206, 104], or using KG
relationships to semantically interpret the query and improving results [46, 124, 205, 158].
The success of using entities and relationships from a knowledge graph in supporting
various applications has led to the construction of various knowledge graphs in a specific
or open domains. There are already many such general-purpose knowledge-bases such as
Yago [179], DBPedia [114], NELL [32], OpenIE [58], and Wikidata [57, 196] developed for
research purposes. They are also crucial for the functioning of many commercial search

21
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engines like Google’s Knowledge Vault [54], Bing’s Satori 1, Facebook2, and Linkedin3.

2.1 Motivation and Problem

Although there exist a number of knowledge bases in the open domain, there is a lack of
large-scale technical knowledge bases. There are, however, comprehensive and updated
taxonomies in various technical domains. Taxonomies are used to define a hierarchy of
concepts in a given field. Some examples are MeSH (Medical Subject Headings) [2] in the
area of biology and PhySH (Physics Subject Headings) [3] in the area of Physics. Both
these taxonomies define fine-grained concepts in their respective fields. However, exist-
ing computer science taxonomies such as ACM Computing Classification [4] are coarse-
grained, defines only around 2000 concepts, and are manually created and maintained.
Because of the expensive manual effort involved, the last two consecutive updates of the
ACM Computing Classification System were in 2012 and 1998. Such a slow evolution
makes it outdated, so, would be of limited value for a rapidly growing field such as Com-
puter Science. This can be replaced by collaborative efforts, however, it comes with its
own set of problems such as trust and reliability [41]. Since these are taxonomies, they
are limited to defining hierarchies. It would be more useful to define more fine-grained
relationships between the concepts apart from the hierarchical relationships.

In the field of bioinformatics, projects such as GeneOntology [16] have focused on ex-
tracting more fine-grained relationships between the concepts to populate the knowledge
base. It primarily focuses on the nomenclature of gene and gene products and defining
their functions. Another project in the same field is the UMLS (The Unified Medical
Language System) [26] which attempts to integrate various terminologies across different
biomedical databases. It defines two major types of relationships—i) hierarchical, such

1https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
2https://www.adweek.com/digital/facebook-builds-knowledge-graph-with-info-modules-on-

community-pages/
3https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph



Construction of TeKnowbase 23

as ‘is a kind of’ or ‘isa’, ‘part of’, and ii) associative, such as ‘location of’ and ‘caused
by’. Both of these projects have relied on collaborative efforts for the population of the
knowledge base. Efforts to automate extractions of 6 domain-specific relationships from
the unstructured text have been made in [43].

Efforts have also been made to create academic graphs [223, 174, 185, 51] consisting of
paper, author, and venue information. These graphs are primarily used for the purpose of
building academic dialog and recommendation. Although these graphs also store technical
information, they are fundamentally different from the type of graph we want to build.
We are interested in building a domain-specific knowledge base where the relationships
between the various concepts in Computer Science are defined so that it can help us
in recommending topics to study for basic and advanced understanding of a concept.
However, there have not been any known efforts in the domain of Computer Science to
build such a knowledge graph.

In the open domain, a number of techniques to automatically construct knowledge bases
from both structured [179, 114] and unstructured sources [32] have been proposed. How-
ever, using the techniques proposed in [179, 114] does not lead to fine-grained extraction
of relationships in the domain of Computer Science, because most of these techniques are
designed for the open domain. Learning extractors for different relationships [32] needs
a large amount of training data, which is hard to curate. Open Information extraction
[58] techniques can be used to extract a large number of triples without any supervision,
however, when it comes to long and complicated sentence structures which are common in
technical documents, these techniques fail [197]. Systems such as DeepDive [204], which
claim to automatically construct a knowledge base from structured and unstructured
sources, fail to serve our purpose because it needs a curated set of triples as input so
that more triples can be inferred. This makes the task of extracting a set of high-quality
triples in Computer Science challenging. In a nutshell, constructing a knowledge base in
the domain of Computer Science involves identifying the right set of resources and then
formulating simple techniques to extract the triples.
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2.2 Approach and Contributions

We address this gap by constructing TeKnowbase, which is a knowledge base in the
domain of Computer Science. TeKnowbase is constructed by applying a combination
of information extraction [166] techniques from semi-structured as well as unstructured
sources to increase the coverage of extractions. Our contributions are as follows.

1. We describe the construction of TeKnowbase in Sections 2.4. We demonstrate that
by the use of simple techniques, we were able to return high-quality extractions.
We made use of a wide variety of IE techniques to improve the recall of extractions.

2. We conduct a thorough evaluation of the quality of TeKnowbase and we report our
results in Section 2.5. TeKnowbase is a freely available online resource.

This chapter is organized as follows. Section 2.4 describes the construction of TeKnowbase
where the input and output of the extraction process are described in Section 2.4.1 and
Section 2.4.2 describes the pipeline, techniques used, and statistics of the constructed
knowledge base. Section 2.5 describes experiments to evaluate the quality.

2.3 Related Work

Knowledge bases can be constructed manually, by seeking experts’ help to populate the
graph, or automatically/semi-automatically using statistical or learning techniques.

2.3.1 Manual Creation of Knowledge Graphs

Manual construction of knowledge graphs relies on the knowledge of experts or crowd.
These techniques fall into two major categories: 61
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• Manual curation by experts: A set of experts in the given domain are asked to
identify triples to be populated. Some of the earliest work on knowledge graph
construction relied on experts’ knowledge to manually populate the knowledge graph
[115]. This makes it a slow and expensive procedure.

• Manual curation by a set of people: Curation of triples is a collaborative process,
usually done by a group of people. Although it made it faster, it comes with its
own set of issues such as trust or reliability [41].

2.3.1.1 Manual Curation of Knowledge Graphs by Experts

Among the manually created knowledge bases by experts, CYC [115] is a universal schema
consisting of around 100000 concepts from human reality. For instance, it stores common
sense knowledge such as “You have to be awake to eat” and “You can often see people’s
noses, eyes or ears but not their hearts”. The goal of creating such a knowledge graph
was to provide a standard ontology for the world wide web or electronic commerce. [136]
proposed WordNet, which provides a vocabulary of words in the English language, along
with their meanings (called sense), and accompanied by synonyms, antonyms, hyponyms,
and meronyms. Projects such as UMLS (Unified Medical Language System) [26] aim to
define the biomedical vocabulary developed by the US National Library of Medicine. It
focuses on around 60 families of biomedical vocabularies, identifying more than 900000
concepts. These concepts are described by almost 2 million names as well as 12 million
relations among these concepts.

2.3.1.2 Manual Curation of Knowledge Graph by Collaborative Efforts

These techniques use a network of people to populate triples in a knowledge base. Ex-
amples are the projects such as Wikidata [57, 196], Freebase [72] and GeneOntology [16].
Wikidata aims to collect structured information from people all over the world to support
Wikipedia. Freebase was a knowledge base in the open domain, that was also collabora-
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tively created and maintained. It has been acquired by Google and is now known as the
Google Knowledge Graph. The GeneOntology project [16] is an effort to create a knowl-
edge base in the biomedical domain. It was developed by the Gene Ontology Consortium
and aims to annotate gene functions in genome databases.

Manual construction of knowledge bases requires a great deal of effort, so a number of
techniques have been proposed that aim to construct knowledge bases automatically. An
overview of these techniques is provided in Section 2.3.2.

2.3.2 Automatic Creation of Knowledge Graphs

The automatic construction of knowledge bases is done from two types of sources—
structured/semi-structured and unstructured. Structured sources make use of various
structured components of online resources, such as ordered lists, sections, etc. Unstruc-
tured sources include sentences used to describe any article. Recently, systems that
facilitate knowledge-base construction from heterogeneous sources have been proposed.
To illustrate, DeepDive [218, 204, 147] consumes a large number of heterogeneous data
sources for extraction and combines evidence from different sources to output a proba-
bilistic KB. Similarly, Google’s Knowledge Vault [54] also aims to fuse data from multiple
resources on the Web to construct a KB. Our effort is similar in that we make use of
heterogeneous data sources and customize our extractions.

2.3.2.1 KG Creation from Semi-Structured Sources

The techniques to extract triples from structured sources involve formulating rules/pat-
terns or learning that utilize the structure of lists, category hierarchy, or info boxes in
the Wikipedia web pages. Knowledge bases such as YAGO and its successors [179, 86]
as well as DBPedia [114] have been built using the structure of various web components
of Wikipedia, such as category hierarchy or infoboxes. YAGO additionally connects
Wikipedia pages to concepts from Wordnet. The authors propose CERES [125], which is
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a technique to automatically extract triples from semi-structured sources using distance
supervision. It uses a seed knowledge base having a bare-minimum ontology, using which
it extracts facts from web pages.

2.3.2.2 KG Creation from Unstructured Sources

The techniques that construct knowledge bases from unstructured sources consist of two
main components:

• Entity Extraction: This problem deals with identifying named entities from the
domain of interest. A number of techniques have been proposed to solve this prob-
lem which has been summarized in Section 2.3.2.2.

• Relation Extraction: This area of research attempts to identify the relationship
existing between the entities that have been identified from the previous steps. A
review of these techniques is presented in Section 2.3.2.2.

In most cases, these two problems are solved independently of each other. However, tech-
niques have been proposed to jointly extract entities and relationships together, such as
[117], [139], [138], [224], which reduces the amount of error introduced due to using the
two techniques one after the other.

Entity Extraction. One of the important aspects of building domain-specific knowledge
bases is that a dictionary of terms that are relevant to the domain should be acquired.
It is possible that such dictionaries are already available (such as lists of people), but for
others, we need techniques to build this dictionary. This task can be divided into two
separate problems—i) detection of named entities, similar to segmentation of chunking
[106], and ii) classification of named entities into a given set of ontological types, such as
{person, location}, etc.
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The most popular techniques for named entity recognition are supervised, which include
Hidden Markov Models, Conditional Random Fields, and Support Vector Machines [90,
226, 109]. These techniques learn the disambiguation rules based on features extracted
from a large annotated corpus.

Among the semi-supervised approaches [157, 140], bootstrapping is the most popular
technique. It reduces the human involvement by a large margin, and has recently been
applied to detect named entities in Twitter with minimal supervision [161, 123]. Another
technique, called multi-level bootstrapping [160], starts by tagging handful of named
entities in a large corpus, acquires its context and grows the set as well as the context by
accumulating patterns around the named entities. [33] proposed techniques to generate
named entities of the same type by generalizing patterns occurring around the entities
using distributional similarity.

Among the unsupervised techniques, [14] assigns a topic signature to each Wordnet synset
by looking for co-occurring words. Then, it classifies a word given as input into the most
similar synset. [83] originally described a method to identify hypernym/hyponyms. This
was later used to identify hypernyms/hyponyms of sequences of capitalized words appear-
ing in a document. [60] proposed a PMI-IR technique to classify a named entity into a
given type.

Relation Extraction. The problem of relation extraction is not new, and it has been
studied for over two decades. These techniques range from domain-specific extraction
of relationships to extracting triples not dependent on any ontology. Another dimension
that can be used to classify these techniques is based on whether they use hand-coded
rules to extract the triples or use sophisticated learning techniques to predict the presence
of the relationship. Table 2.1 summarises these techniques based on these dimensions.

1. Domain Specific Relation Extraction: The user needs to provide the names of
the relationships or the schema of the knowledge base for which the triples have to
be extracted. These can be further classified into rule-based/statistical techniques
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Techniques Rule
based/Stat-
istical

Unsupervised Supervised Semi-supervised

Relations
are speci-
fied

Hearst Pat-
terns [83],
Prospera
[141]

URES [164] feature extraction
from sequences/-
parse trees [98],
kernel based clas-
sifiers [29, 181],
NELL [32], Neural
[216, 176, 145, 138,
221, 222, 122, 71]

relation extrac-
tion for biological
knowledge base
creation [43],
bootstrapping
[28, 11, 214, 59],
distant su-
pervision
[137, 159, 87, 183,
162, 78, 54, 220]

Relations
are not
specified

REVERB
[61],
KRAKEN
[13], EX-
EMPLAR
[133],
PROPS
[62], Pred-
Patt [200]

[80], [36],
[188], [49],
[210], [213],
[130] , [173]

[58], [203], [168]

Table 2.1: Survey of relation extraction techniques
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or learning-based techniques such as unsupervised, supervised, or semi-supervised.
One of the seminal works that use rules or patterns to extract triples participating
in a given relation is by Marti Hearst [83]. She proposed techniques to identify
patterns for a relationship expressed by a pair of entities. In [142], the authors
developed a scalable system called PROSPERA that extracts n-gram patterns for a
given relationship type and uses MaxSat-based constraint reasoning to refine them.
This technique forms a part of a scalable architecture implemented using the Map-
reduce framework.

In addition to statistical techniques, various learning-based relation extraction sys-
tems have been built. The supervised techniques take a set of positive and negative
examples for a relationship type and learn classifiers to predict that relationship
type. These are the most common and yield high performance. These techniques
either extract features from sequences and parse trees and then learn a classifier,
such as [98], or use kernel-based classifiers, such as [29, 181]. These techniques rely
on expert’s intuition for their design. So, neural network classifiers have been pro-
posed which automatically extract features [216, 176, 145, 138, 221, 222, 122, 71].
Although more sophisticated neural networks lead to improvement in the accuracy,
it comes at its own cost of annotations and expensive training process.

The aim of unsupervised techniques is to avoid the time and effort spent in anno-
tating the entities with relations. [164] proposed URES, a completely unsupervised
technique to extract instances of given relation as input. URES takes the description
of the given relation as input and a few seed examples taken from another system
called KnowitAll [59] and learns patterns for positive and negative seed instances.

A mix of two techniques (supervised and unsupervised) is employed by semi-supervised
techniques. The key idea used by such systems is bootstrapping, where a small num-
ber of high-quality training instances are used to create a larger set of training data
iteratively [8]. Popular systems are DIPRE [28], SnowBall [11], TextRunner [214] or
KnowitAll [59]. Another popular approach, called distant supervision, starts with
a few training examples and generates more data and features by applying various
types of heuristics [137, 159, 87, 183, 162, 78, 220, 54].
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2. Domain-Independent Relation Extraction: In such techniques, one does not
need to provide names of the relationship or the type of entities that are likely to
participate in that relation. Instead, these relations are identified automatically.
These techniques fall under the broad category of open information extraction.
These can be divided into rule-based, unsupervised, and supervised techniques.

Among the rule-based techniques, REVERB [61] is a shallow extraction system that
improves the quality of extractions of previous OpenIE systems by introducing a
POS-based syntactic constraint. Another system that uses handwritten rules to
extract n-ary relations is KRAKEN [13]. [133] proposed a system called EXEM-
PLAR, which identifies the connection between the argument and the predicate
words in a relationship using the dependency paths between them. PrePatt [200]
and PROPS [62] use simple rules to convert the syntactic dependency tree of the
predicate in a sentence to a graph-based semantic representation. Both argue that
the graph-based representation was able to improve the quality of extractions.

Among the unsupervised techniques, [80] uses hierarchical clustering to group to-
gether pairs of named entities likely to participate in the same relation. The simi-
larity between the pairs of entities is measured by taking the context i.e. the terms
occurring around the mentions of these entities in the text. The most frequent
words in each cluster are then used to select a representative name for the relation
expressed by that cluster. However, because it is difficult to determine the similarity
threshold and frequency-based naming of the relation is not always accurate, [36]
proposed a discriminative category matching (DCM) technique to find discrimina-
tive words to describe the clusters. In [188], authors address the inverse relation
extraction problem where phrases most likely to express a relation between a pair of
entities provided as input are returned in decreasing order of likelihood. A slightly
different problem is addressed by [49], where the goal is to automatically extract
relationships likely to participate with the input concept of a particular class pro-
vided as input. In [213], authors propose generative models to automatically predict
pairs of entities participating in different relations. They do so by clustering the
dependency paths existing between the entities in the sentences.
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2.4 Construction of TeKnowbase

In order to construct TeKnowbase, we first acquired a dictionary of concepts and entities
relevant to computer science. Using this dictionary, we extracted relationships among
them using a combination of IE techniques [166].

2.4.1 Input and Output of Extraction Process

An information extraction task takes different types of sources as input and returns
structured information [166]. So, it is important that we first decide upon the input
(sources used for extraction) and output (structures extracted).

2.4.1.1 Output

This chapter focuses on extracting two types of structured data—named entities and re-
lations.

Named Entities. The concepts in the domain of Computer Science make up the named
entities to be populated in the knowledge base. For instance, artificial_neural_network,
phoneme_classification and machine_learning are entities. These can be useful in anno-
tating computer science text.

Relationships. They describe the relationships that can exist between the identified
entities. This task involves identifying pairs of entities (already extracted) participat-
ing in a given relation. This returns a triple of the form 〈subject〉〈predicate〉〈object〉,
where the 〈subject〉 and the 〈object〉 are entities and the 〈predicate〉 represents the rela-
tion. The 〈subject〉 is the head entity and 〈object〉 is the tail entity of the triple. To il-
lustrate, the triple 〈artificial_neural_network, subtopic, machine_learning〉 describes
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the subtopic relationship between artificial_neural_network and machine_learning.
〈phoneme_classification, application, artificial_neural_network〉 describes the app-
lication relationship between phoneme_classification and artificial_neural_network.
The extracted triples are stored in RDF format.

2.4.1.2 Input

We focus on two types of sources—structured/semi-structured and unstructured sources
in the domain of Computer Science for our extractions.

Structured/Semi-Structured Sources. We consulted various web resources to ex-
tract entities and relationships to be populated in TeKnowbase. These are described as
follows:

1. Wikipedia. Wikipedia is a free online encyclopedia that is collaboratively main-
tained. It consists of dedicated articles on various topics. These articles are or-
ganized into various categories and sub-categories. The articles from Computer
Science can be found in the “Computing” category. So, we make use of the articles
in this category to build our dictionary of entities (more details in Section 2.4.2.1.
The information in Wikipedia articles is further organized into more granular struc-
tures such as table of contents, lists, sections, or templates, which provide some idea
about the relationship between topics (described in detail in Section 2.4.2.2)

2. Domain-Specific Websites. Our second set of resources were two websites, We-
bopedia4 and TechTarget5. Each website consists of a number of technical terms
and their definitions in a specific format, which can be extracted by writing crawlers
for those websites (described in detail in Section 2.4.2.1).

4http://www.webopedia.com
5http://www.techtarget.com/

http://www.webopedia.com
http://www.techtarget.com/
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Unstructured Sources. Our unstructured sources comprised of the following:

1. Description of Wikipedia and Computer Science Articles. This consists of
raw sentences/descriptions of topics found in Wikipedia, Webopedia, and TechTar-
get websites.

2. Online Textbooks. Apart from these web pages, a number of online textbooks
are available for free on the web. The last few pages of such textbooks can be used
to refer to some key terms used throughout the textbooks. Such terms can be used
as named entities in Computer Science. More details about the extraction process is
described in Section 2.4.2.1. These indexes also consisted of (acronym, expansion)
pairs which were a good source of synonym relations. Since this involves relation
extraction, we defer the description of our technique to Section 2.4.2.2.

2.4.2 Construction Pipeline

We divide our construction process into three major parts:

1. Entity Extraction. To build a technical knowledge base, the first step is to iden-
tify the dictionary or the set of entities. A common filter that can be applied to all
triple extraction techniques is to ensure that the entities in the triples are also present in
our dictionary. Therefore, apart from being useful in annotating textual resources, the
dictionary helps in ensuring that the triples that we acquire are accurate at least so far
as the entities are concerned. This is described in detail in Section 2.4.2.1.

2. Relation Extraction. After we have identified the entities, the next step is to de-
velop extractors to identify relationships between them. We focus on extracting two types
of relations—i) known, domain-specific relations identified prior to the extraction process
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Acquire 
entities

Identify 
relationships 

between 
entities

Inferencing 
relationships 

between 
entities

Structured and 
unstructured sources

Figure 2.1: Construction methodology of TeKnowbase. The three main parts are i)
Acquiring dictionary of entities from sources such as Wikipedia, Webopedia/TechTarget
and online textbooks, ii) Identifying relationships between the entities using heuristics ap-
plied on structured and unstructured triples iii) inferencing more triples using inferencing
models

by domain experts, ii) unknown relations, that were extracted without any information
of the domain. The procedure is described in detail in Section 2.4.2.2.

3. Inferencing of Triples. Like other knowledge bases, TeKnowbase is not complete.
Given a relation, this component is used to automatically identify pairs of entities (not
already participating in that relation) that are most likely to be connected to each other.
More details on this procedure are provided in Section 2.4.2.3.

These three parts are described in the Figure 2.1.

2.4.2.1 Entity Extraction

The first step in creating any domain-specific knowledge base is the identification of en-
tities. A number of supervised as well as unsupervised techniques have been proposed
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to identify entities from the text (described in detail in Section 2.3). We follow a more
straightforward approach—we specifically target technology websites and write wrappers
to extract a list of entities related to computer science.

Wikipedia. We used Wikipedia’s article titles as well as its category system as a source
of concepts. Our corpus of Wikipedia articles consists of all articles under the category
Computing. We used the PetScan 6 tool to collect articles under 3-hop subcategories
of “Computing” category. In all, there were approximately 54, 000 articles. The title
of each article was considered an entity. Examples entities we found were Heap_Sort,
Naive-Bayes_Classifier, etc. While Wikipedia has articles on a number of technical
entities and concepts, it is not exhaustive. To illustrate, the terms average_page_depth

(related to Web Analytics) and fraction_ridge (related to biometrics) could not be found
in Wikipedia, so we made use of alternative resources to augment our entity list.

Webopedia and TechTarget. Websites such as Webopedia and TechTarget follow a
specific format to list the key terms from Computer Science. We analyzed the HTML code
for these websites and wrote domain-specific wrappers to extract a list of terms. Figure
2.2 shows a snapshot of the terms and the HTML code from the TechTarget website.
We extracted approximately 24, 000 entities. Some of the entities that we extracted from
these two sources are average_page_depth, fraction_ridge,

Online Textbooks. The third source of our entities was indexes on online textbooks.
We extracted 16, 500 entities from the indexes of 8 online textbooks. These were on the
following topics

1. Computer Networks

2. Database Management Systems

3. Artificial Intelligence
6https://petscan.wmflabs.org/
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(a) Snippet of the terms in the webpage for
Whatis.Techtarget

(b) Snippet of the corresponding HTML code

Figure 2.2: Snippet of the HTML page describing the terms and the corresponding code
from Whatis.Techtarget

4. Discrete Mathematics

5. Machine Learning

6. Operating Systems

7. Software Engineering

8. Network Security

Combining Entities from Different Sources. We used edit distance to resolve over-
lapping entities from these sources and ended up retaining over 70, 000 entities. The
distance for edit distance was set to 1.

2.4.2.2 Relation Extraction

We divided the set of relationships to be extracted into two parts—i) set of known rela-
tions, identified by domain experts, which have to be provided as input to the extraction
process, and ii) set of unknown relations, which will be automatically determined by the
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extraction process. Table 2.2 lists 24 domain-specific relations that we identified to be
extracted.

We further divided our relationship extraction task into two parts. First, extraction from
structured sources, and second, extraction from unstructured, textual sources. Our goal
was two-fold: to extract as many different kinds of relationships as possible as well as
construct a taxonomy of entities/concepts.

Based on these two dimensions, we divided our extraction procedure into 4 types, as
described in Table 2.3.

1. Extracting Known Relations from Structured Sources. Since our aim is to
extract relations between the named entities, we manually made a list of relations that our
knowledge-base should contain—this is our list of known relations. The relations included
the taxonomic relation typeOf (as in, 〈jpeg typeOf file_format〉) and other interesting
relationships such as algorithmFor, subTopicOf, applicationOf, techniqueFor, etc. In
all, we identified 24 relationships that we felt were interesting and formulated techniques
to extract them from Wikipedia. We focused on two kinds of structured sources—i)
Overview pages, comprising of “List of” and “Outline of” pages, and ii) Structured pieces
of information present in articles on various topics, such as table of contents, section list
within articles, and list hierarchies. Both the sources and the extraction techniques are
described in the following section.

1. Overview Pages (500 pages): We made use of two kinds of structured pages—
“List” pages and “Outline” pages (such as, the pages, List of data structure, or
Outline of Cryptography, etc.). These pages organize lists of entities with head-
ings and sub-headings. The “Outline” pages were used to extract subtopic re-
lation and “List” pages were used to extract type relations with good accuracy
(see Section 2.5 for an evaluation of these relations). Figure 2.3 shows snapshots
of two overview pages—Outline of Cryptography and List of data structures.
From those pages, we were able to extract triples such as 〈cipher, subtopic,
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Sr. no Relation Examples of 〈head_entity, tail_entity〉
1 algorithm 〈breadth-first_search, graph_traversal〉
2 application 〈activity_recognition,hidden_markov_model〉
3 approach 〈waterfall_development,software_development_process〉
4 classification 〈educational_software,application_software〉
5 component 〈user_interface, operating_system〉
6 concept 〈declarative_programming, logic_programming〉
7 data-structure 〈conceptual_graph, conceptual_schema〉
8 examples 〈linked_list, persistent_data_structure〉
9 implementation 〈strongswan, internet_key_exchange〉
10 measures 〈precision, information_retrieval〉
11 method 〈spectral_method, parallel_computing〉
12 models 〈entity-relationship_model, conceptual_model〉
13 problem 〈covering_problem, graph_theory〉
14 properties 〈distributivity, negation〉
15 research 〈neural_imaging, neural_engineering〉
16 software 〈windows_10_mobile, mobile_operating_system〉
17 subtopic 〈exterior_algebra, multilinear_algebra〉
18 synonym 〈bfs, breadth-first_search〉
19 system 〈google_translate, statistical_machine_translation〉
20 tasks 〈feature_extraction, digital_image_processing〉
21 technique 〈multilinear_pca, exploratory_data_analysis〉
22 terminology 〈suslin_hypothesis, metamathematics〉
23 theory 〈de_morgans_law, boolean_algebra_topic〉
24 type 〈binary_tree, tree〉

Table 2.2: List of known relations identified by domain experts.

Structured Unstructured
Known
Relations

Simple heuristics applied to
Structured sources

Pattern finding for synonym rela-
tion

Unknown
Relations

Simple heuristics applied to Tem-
plates

OpenIE applied on unstructured
text

Table 2.3: 4 kinds of IE tasks based on source and types of relations to be extracted
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cryptography〉 or 〈integer,type,data_structure〉.

2. Articles on Specific Topics. These pages refer to the discussion on specific topics
such as, say, “Coding Theory”. These pages consist of many structured pieces of
information as follows:

(a) The table of contents (TOC) (1838 TOCs): From our list of known re-
lations, we searched for keywords within the TOC. If the keyword occurred
in an item of the TOC, then the sub-items were likely to be related to it. In
particular, in Figure 2.4, the Coding Theory page consists of the following item
in its TOC: “Other applications of coding theory” and this, in turn, consists
of two sub-items “Group testing” and “Analog coding”. Since one of the key-
words from our known relations is “application”, and the page under considera-
tion is “Coding Theory”, we extract the triples 〈group_testing,applicationOf,
coding_theory〉 and 〈analog_coding,applicationOf, coding_theory〉.

(b) Section-List within Articles (1909 section lists): Next, there are several
sub-headings in articles that consist of links to other topics. For instance, the
page on “Document Classification” consists of a subheading “Techniques”—this
section simply consists of a list of techniques that are linked to their Wikipedia
page. Since “technique” is a keyword from our list of known relations, we
identify this section-list pattern and acquire triples such as 〈tf-idf,technique,
document_classification〉. This is shown in Figure 2.4 (d).

(c) List hierarchies in Articles (113 list hierarchies): As in the case of “List”
pages and “Outline” pages, we make use of list hierarchies in articles to extract
the typeOf relationships. Figure 2.4 (a) shows an example of a list page for data
structures. We see a list of terms under the heading “Lists” and can extract
triples of the form 〈doubly_linked_list, type, list〉. Further, we were able
to extract taxonomic hierarchies of two levels by relating the headings to the
article title. Continuing the previous example, 〈list,type, data_structure〉
was extracted based on the article title.
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(a) Snapshot of “Outline of Cryptography” page. It
lists a number of topics from the field of Cryptography
which can be used to extract subtopic relation

(b) Snapshot of “List of data structures”
page. It lists a number of data structures
which can be used to extract type relation
with good accuracy

Figure 2.3: Snapshot of two overview pages used to extract subtopic and type relation

2. Extracting Unknown Relations from Structured Sources. This comprises
of structured pieces of information organized in some other form that helps us directly
deduce relationships between a pair of concepts. We used Wikipedia templates to deduce
new relationships between the entities.
Templates (1139 templates): Wikipedia has various pieces of structured information
embedded in the form of templates. Templates are used to provide an overview of topics
related to the Wikipedia article. Figure 2.5 shows a template from the “Database Manage-
ment Systems” page. It organizes all the topics related to Database Management System

into Types, Concepts and Objects etc. This allows us to extract the row headings as poten-
tial relations and triples such as 〈query_optimization, functionOf, database_managemen-

t_systems〉. However, based on our evaluation (see Section 2.5), we found that templates
could have a variety of row headers and they were not always reliable. Therefore, we did
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(a) Snippet from “List of Data
structures” page to extract
typeOf relations using the two
level hierarchy.

(b) Snippet of the TOC in
“Coding theory” page to extract
applicationOf relations

(c) Snippet of section list to extract
algorithm relation

(d) Snippet of section list to extract
technique relation

Figure 2.4: Snippet of pieces of structured elements found in Wikipedia articles that can
be used to extract known relations
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Figure 2.5: Snapshot of template for the topic Database Management System

not canonicalise these relations, but instead treated them as a generic “relatedTo” relation
(therefore, instead of functionOf, we had functionOf_(relatedTo)).

3. Known Relations from Unstructured Sources. As already described in Sec-
tion 2.4.1, our unstructured sources include a textual description of terms in both Webo-
pedia and TechTarget as well as Wikipedia text of articles corresponding to entities, and
text extracted from indexes of online textbooks. We limited the text in Wikipedia to the
first paragraph. Our known relation, in this case, was synonym relation. The two types of
sources we used to extract this relation are described as follows:

1. Indexes of online textbooks. The simple way in which the abbreviations along
with their expansions were organized in the indexes allowed us to extract synonym

relation with high accuracy. Figure 2.6 shows a few indexes present in a “Computer
Networks” textbook. It is clear that the pattern CBC (cipher-block chaining) in-
dicates that cipher-block chaining is an expansion for CBC. So, we looked for pat-
terns “X (Y)” where X and Y were entities already extracted and deduced the triple
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〈X,synonym,Y〉.

2. Patterns from Wikiepdia and Webopedia text. We were also successful in
identifying the synonymOf relation by using the patterns “is abbreviation for”, “X
(Y)” and “is short for”. We obtained over 1, 000 such triples.

Figure 2.6: Snapshot of indexes present in the “Computer Networks” online textbook.
The simple pattern in which the abbreviations and their expansions are arranged allowed
us to extract synonymof relation with high accuracy

Wikipedia, Webopedia 
and Techtarget web 

corpus Ran 
OpenIE

400,000 
triples

Remove 
entities not 
in dictionary

300,000 
triples

Retain 
triples 

with 50% 
match in 
the entity

Refined 
triples 3506 triples

Non-technical 
entities in 

results

Long 
phrases 

containing 
the entity

Generic 
entities as 
arguments

Remove 
triples 
where 
either 

argument 
starts 

with “the”

Figure 2.7: Pipeline of post-processing steps on the triples extracted from OpenIE
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4. Unknown Relations from Unstructured Sources. Our next set of extraction
involved identifying unknown relations from unstructured text. We ran the latest ver-
sion of OpenIE [169] on each of these sources. While the number of extractions was
quite large (approximately 400, 000 triples), there were a lot of “junk” extractions such as
〈as_a_specific, example_for, file_distribution〉. In order to improve the accuracy,
we applied the following filters to the extracted triples. Figure 2.7 shows the set of
post-processing steps we performed on the extractions from OpenIE.

Filter 1: Triples which did not contain entities from our entity dictionary were discarded.
This filter alone reduced the number of unusable triples by nearly 300, 000. We searched
for the longest matching entity in both the subject as well as the object of the triple. As
long as there was a match we retained the triple.

Filter 2: We found that entities in the triple could be too long. Therefore, our second
filter retained only those triples which had an entity match of at least 50%—that is,
50% of the entity identified by OpenIE was a match for an entity in our dictionary.
For instance, 〈huffman coding, is, just one of many algorithms for deriving prefix

codes〉 is a triple extracted by OpenIE. Since OpenIE sometimes assigns pieces of text
(as in the example above) rather than crisp entities, we found that despite matching the
longest entity, the triple still did not make sense. The entities extracted from this triple
after retaining longest matching entity are huffman_coding and prefix_code. Therefore,
our second filter retained only those triples where the entity match was at least 50% of
the words in the subject or object.

Filter 3: Despite these two filters, we found cases where the subject or object referred to
conceptual terms such as the_algorithm as part of the triple 〈the algorithm,generates,a

path〉, where the entities are algorithm and path. Therefore, our third filter removed
triples where the subject or object started with the word “the” and were less than 3 words
in length.

After applying all these filters, we retained 3506 triples. In general, we were able to
identify fine-grained relationships among entities. Table 2.6 shows a few examples.
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2.4.2.3 TeKnowbase Completion

So far we were successful in acquiring entities and triples from different web resources
using a combination of IE techniques. In this section, we focus on acquiring more triples
between the entities based on the triples already present in TeKnowbase. This task is well-
known as inferencing in knowledge bases or knowledge base completion [175, 144, 108].
Consider the triple 〈knights_tour, typeof, state_space_search〉 and 〈state_space_sea-
rch, typeof, graph_algorithm〉, it can be easily inferred that 〈knights_tour, typeof,

graph_algorithm〉 using the transitive property, even if this triple is not present in the
knowledge base. To extract such rules, a number of inferencing models have been pro-
posed. One such model that we experimented with is described as follows:

1. Neural Tensor Network. [175] have introduced a neural tensor network (NTN)
that models each relation through its hyperparameters and generalizes several other neural
network models. The bilinear tensor product is the primary operation used to relate
entities to each other in a neural tensor network, unlike other neural networks. Each
entity in the knowledge base is represented as a vector in a higher dimension. This vector
is obtained by taking a reduced mean of the vectors of the constituent words in the entity
name. The vectors for each word is obtained using Word2Vec [134] using the Skip-gram
model. Moreover, they have also shown that the accuracy of the model improves when it
is initialized with vectors trained on large unstructured corpora. We have used a similar
approach and experimented with the following models:

• Word2Vec (with the entities treated as one unit) on Wikipedia corpus and text-
books: We trained phrase vectors for each entity using Word2Vec. The training set
consisted of an unstructured Wikipedia corpus as well as text from online textbooks.
These vectors were then used to initialize the neural tensor network model.

• Word2Vec (with the entities treated as one unit) trained only on Wikipedia corpus:
Same as above but the vectors were only trained on Wikipedia corpus. Information
from textbooks was not included.
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1. 〈xbasic,typeOf,programming_language〉
2. 〈binomial_heap,typeOf,tree〉
3. 〈palmdos,typeOf,operating_system〉
4. 〈delayed_column_generation,typeOf,convex_programming〉
5. 〈levenshtein_coding,typeOf,entropy_coding〉

Table 2.4: Some new triples that were added to TeKnowbase using the Neural Tensor
Network inferencing model.

• Word2Vec trained on Wikipedia corpus and textbooks: We used Word2Vec to train
vectors for each word and later obtained vector representation for each entity by the
reduced mean of component word vectors. Similar to i), we used text from online
textbooks (apart from unstructured text from Wikipedia) to train these vectors and
used them to initialize the neural tensor network model.

• Word2Vec trained only on Wikipedia corpus: Same as above, except that we ex-
cluded textbook information to train vectors used to initialize the neural tensor
network model.

We found that i) performed the best, i.e. Word2Vec with entities treated as one unit ini-
tialized with textbooks information. A total of 428 triples could be added to TeKnowbase
using the inferencing model. Some of them are listed in Table 2.4. Evaluation of these
triples is described in Section 2.5.

2.4.2.4 Availability/Statistics of TeKnowbase

TeKnowbase is made available under the Creative Commons Attribution Licence 3.0 and
can be downloaded from https://github.com/prajnaupadhyay/TeKnowbase. Each en-
tity in TeKnowbase is associated with a URI. The URI consists of the URL from which
the entity was extracted. The URL is typically a page dedicated to describing the entity.
The source code and the files used to generate TeKnowbase can be found at the following

https://github.com/prajnaupadhyay/TeKnowbase
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No. of unique entities 70,285
No. of unique relations 2,574
Taxonomic relations (typeOf) 27,078
Total no. of triples 146,657
No. of overlapping entities with DBPedia 17,987
No. of overlapping entities with Freebase 34,785
No. of triples extracted from Wikipedia 99,357
No. of triples extracted from Unstructured sources 4,506

Table 2.5: Statistics from TeKnowbase. Apart from 70, 285 unique entities, there are
32, 458 variations (disambiguated as well as stemmed versions) of them.

location:

https://bitbucket.org/prajnaupadhyay/teknowbasecode/src

Some statistics about TeKnowbase are listed in Table 2.5 and described as follows:

1. Number of Entities. Line 1 in Table 2.5 reports the number of unique entities
as 70,285. Apart from that, we extracted around 32,458 variations of them in the form
of disambiguations and stemmed versions.

2. Number of Relations. We extracted 2574 unique relations. We were able to
extract a large number of arbitrary relations apart from the 24 identified types by applying
appropriate filters on the extractions from OpenIE. Examples of relations extracted by
OpenIE include is_a_high-speed_form_of. The triple participating in this relation is
〈gigabig_ethernet, is_a_high-speed_form_of, ethernet〉. This is given in table 2.6.

3. Number of Triples. We extracted 146,657 triples. Out of them, 27,078 were
triples that participated in type relation and formed the taxonomy of concepts. More than

https://bitbucket.org/prajnaupadhyay/teknowbasecode/src
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Relation Examples of 〈head_entity, tail_entity〉 # Triples
type 〈topological_sorting, graph_algorithm〉 27,078
concept 〈nash_equilibrium, game_theory〉 595
subTopic 〈hamming_code, algebraic_coding_theory〉 2,026
application 〈group_testing, coding_theory〉 324
terminology 〈blob_detection, image_Processing〉 27,018
is_a_high-speed_form_of 〈gigabig_ethernet, ethernet〉 n/a
is_an_adaptation_of 〈ironpython, python〉 n/a
uses 〈utc, gregorian_calendar〉 n/a

Table 2.6: Statistics for and examples of a subset of relationships extracted. The first set
of 5 relations were extracted from structured sources and the second part with 3 relations
from unstructured textual sources (see Section 2.4.2.2)

99,000 triples were extracted from Wikipedia. The remaining triples were extracted from
unstructured sources, consisting of filtered OpenIE extractions and triples participating
in synonym relations.

4. Overlap with Other Knowledge Bases. One of the goals of constructing TeKnow-
base was to have a knowledge base in Computer Science that defined fine-grained entities
and relationships which could not be found in other existing knowledge bases. So, we
also measured the overlap of TeKnowbase entities with that of DBPedia and Freebase.
We did this using exact string matching of entities i.e. there is an overlap if the exact
entity is present in both the sources. 34,000 entities were in common with Freebase and
17,000 entities were found in common with DBPedia. This means that more than half
of the entities in TeKnowbase are unique. This information is present in Line 5 and 6 of
Table 2.5. Entities that we have in common with DBPedia and Freebase are linked using
the owl:sameAs relation.

Table 2.6 shows examples of the kind of triples we extract and the number of such triples
in our knowledge base.
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2.5 Evaluation of Quality of TeKnowbase

2.5.1 Setup

We chose the top-5 frequent relations extracted for evaluation. These were: typeOf,
terminology, synonymOf subTopicOf and conceptIn. Together, these five relations consti-
tute about 63% of the triples in our KB. We used stratified sampling to sample from
each type of relation. For each relation, we sampled 2% of the triples. Since not every
triple extracted from the unstructured sources were canonicalized, we evaluated these
triples separately by sampling about 2% of the triples. Each triple was evaluated by two
evaluators and we marked a triple as correct only if both evaluators agreed.

We also evaluated the class of rarer relations in the following way. We first created 5
classes of triples consisting of relations participating exactly in 1, 2, 3, 4 and 5 triples.
Then, for each class, we sampled 10% of the triples. Following a similar approach, each
triple was evaluated by two evaluators and we marked a triple as correct only if both
evaluators agreed. Table 2.8 shows the accuracy values for the relations from this class.

For inferencing, we experimented with 4 different models (as described in Section 2.4.2.3).
We first obtained a list of entities that were tagged in the textbooks and constructed an
induced TeKnowbase on those entities. We only considered triples participating in those
entities to be added to the training set and the test set. To create the training set, we
considered the following relations:

1. terminilogy(relatedTo)

2. typeOf

3. conceptIn

4. subTopicOf

5. applicationOf
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6. system(relatedTo)

7. componentIn

8. subField(relatedTo)

9. algorithmFor

10. isSoftware(relatedTo)

11. examples(relatedTo)

12. is a form of

We then sampled triples for each of the relations above. For terminilogy(relatedTo)

and typeOf relations, we added all the triples in induced TeKnowbase to the training
set. We generated a list of true triples using the transitive property on the typeOf rela-
tions and added it to the test set. For instance, given triples 〈palmdos,typeOf,dr_dos〉 and
〈dr_dos,typeOf,operating_system〉 in the training set, we returned a triple 〈palmdos,type-
Of,operating_system〉 in the test set, ensuring that it does not already exist in the training
set. For the rest of the relations, we added 80% of the triples to the training set and 20%
to the test set. To generate negative examples, we shuffled the head entities of the positive
set of triples.

2.5.2 Results and Analysis

Table 2.7 shows the accuracy of triples for each relation. We computed the Wilson
interval at 95% confidence for each relation. On closer examination of these results, we
found that we achieved the best results for the synonym relation consisting of expansions of
abbreviations, such as ALU and Arithmetic Logic Unit as well as alternate terminologies
such as Photoshop and Adobe Photoshop. Table 2.8 shows the evaluation and confidence
intervals for the class of rarer relations. The triples in this category are extracted using
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# Relation (rows 1–5)

#
Evalu-
ated

triples

Accuracy

1. typeOf 515 99.0%± 0.8%
2. terminologyOf 676 98.9%± 0.7%
3. synonymOf 70 100%± 0.0%
4. subTopicOf 42 91.3%± 8.2%
5. conceptIn 334 95.4%± 2.1%

6. Unstructured sources 435 63.2%± 3.7%

7. Inferencing with NTN 428 64.2%± 4.5%

Table 2.7: Evaluation of a subset of triples in the TKB.

# Category (rows 1–5)

#
Evalu-
ated

triples

Accuracy

1. Relations that participate in 1 triple 152 71.7%± 3.48%
2. Relations that participate in 2 triples 55 74.5%± 5.63%
3. Relations that participate in 3 triples 35 60%± 7.98%
4. Relations that participate in 4 triples 25 76.0%± 8.28%
5. Relations that participate in 5 triples 31 70.9%± 7.87%

Table 2.8: Evaluation of triples participating in rarer relations in TeKnowbase.
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OpenIE, Table of Contents and Templates. The accuracy is lower than the accuracy of
the top-5 relations because of errors in the extraction using OpenIE and Table of Contents
(described later in this section).

The best source of extractions is the Wikipedia list pages. In our list of top-5 relations,
only 3 were extracted from Wikipedia list pages—typeOf, subtopicOf and synonymOf, and
all of them were nearly 100% accurate.

The major source of errors in many of these relations was due to extractions from TOC
items. This heuristic did not work well to identify the correct relation. To illustrate,
one of the errors was made when “Game types” was an item in the TOC of the page
“Game Theory”. It listed “Symmetric/Asymmetric” as a type of game, but we extracted
〈symmetric/asymmetric typeOf game_theory〉 which is incorrect.

Unstructured Sources. The overall accuracy of triples from the unstructured text was
found to be 63.2%. Recall that we ensure that the entities are always correct since we
filter out triples that do not match an entity in our dictionary. Therefore, the main reason
for low accuracy is that extracted relations were incorrect. Some incorrect extractions
include: 〈user requests mail〉, 〈packet switching protocol〉. We are analyzing these
errors in more detail and improving the accuracy of these extractions in future work.

Taxonomy. We specifically analyzed the taxonomy (all triples consisting of the typeOf

relation) since this is an important subset of any KB as well as the largest subset in our
TKB. As previously mentioned, our taxonomy consists of over 25, 000 triples, and our
evaluation yielded an accuracy of 99.0%±0.8% at 95% confidence. The top two sources of
these triples were Wikipedia lists and List Hierarchies. Around 2000 distinct classes were
identified, including, file formats (nearly 800 triples), programming languages (nearly
700 triples), etc.

Inferencing with Neural Tensor Network. The neural tensor network model per-
formed the best when training corpora from textbooks was added. It improved the ac-
curacy of prediction for both Word2Vec models (with words treated separately and with
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Training Set Word2Vec Phrase2Vec
Trained without textbooks 57% 61%
Trained with Textbooks 58% 62%

Table 2.9: Accuracy obtained using different models used with NTN

entities treated as a single unit). Additionally, we also observed that Word2Vec with
entities treated as one unit outperformed the model where separate vectors are learned
for each word in the technical domain. We were able to add 428 triples to TeKnowbase
using this model with an accuracy of 64.25%.

2.6 Evaluation of Usability of TeKnowbase

In this section, we show that TeKnowbase entities and relations can be useful in 2 ap-
plication settings—classification of technical documents and improving the ranking of
academic search. We hasten to note that we are not claiming new algorithms or tech-
niques here, nor are we comparing our methods to the state-of-the-art. We simply wish
to demonstrate that using TeKnowbase can result in substantial gains over baselines.

2.6.1 Classification Experiment

[67] showed that the addition of features from domain-specific ontological KBs can im-
prove classification accuracy. Adapting this idea for our setting of a technical KB, a doc-
ument belonging to the class “databases” may not actually contain the term “database”,
but simply have terms related to databases. If this relationship is explicitly captured in
TeKnowbase, then that is a useful feature to add. We adapted this idea for our setting
of a technical KB and classified posts from StackOverflow7.

7stackoverflow.com

stackoverflow.com
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2.6.1.1 Setup

StackOverflow is a forum for technical discussions. A page on the website consists of
a question asked by a user followed by several answers to that question. The question
itself may be tagged by the user with several hashtags. The administrators of the site
classify the question into one of several technical categories. Our task is to classify
a given question automatically into a specific technical category. We downloaded the
StackOverflow data dump and chose questions from 3 different categories: “databases”,
“networking”, and “data-structures”. We created a corpus of 1500 questions including
the title (500 for each category). The category into which the questions were manually
classified by the StackOverflow site was taken as the ground truth.

2.6.1.2 Features Generation

We generated the following set of features for training.

BOW: Bag of words.
BOW+BOE: Bag of words and bag of entities. Entities are treated as a whole, rather
than a bag of words. Note that these entities were identified using the entity list of
TeKnowbase.
BOW+BOE+TKB: In addition to the words and entities above, for each entity, we
added features from the 1-hop neighborhood of the entity. For example, if the entity
run_length_encoding occurred in the post, then we added as a feature, data_compression
since we have the triple 〈run_length_encoding methodOf data_compression〉.

2.6.1.3 Classification Algorithms

We trained both a Naive-Bayes classifier as well as SVM with each of the feature sets
above.
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2.6.1.4 Results

We performed 5-fold cross-validation with each classifier and feature set and report the
accuracies in Table 2.10. Clearly, simply adding new features from TeKnowbase helps in
improving the accuracies of the classifiers. This result is encouraging and we expect that
optimizing the addition of features (such as, coming up with heuristics to decide which
relations to use) will result in further gains.

BOW BOW +
BOE

BOW +
BOE +

TKB
SVM 82.1% 87.1% 92.0%
Naive Bayes 86.3% 88.4% 89.6%

Table 2.10: Average classification accuracies.

BOW
BOW + BOE + TKB,

W/T/L
tf-idf 0.373 0.380, 32/9/40
BM-25 0.312 0.326, 41/9/31

Table 2.11: NDCG@20 values obtained with tf-idf and BM-25 ranking models. The
numbers of queries where these models won (W), tied (T) or lost (L) to BOW is listed
along with the NDCG scores.

2.6.2 Ranking Experiment

The use of a bag-of-entities (BOE) model to represent queries and documents for doc-
ument retrieval is outlined in [207]. We adapt this method to our setting to retrieve
research articles in computer science. We note that the use of knowledge-base embeddings
has been further explored in [208] (though their knowledge-base is different in structure
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and content to ours). We made use of the data generously provided by [208] to conduct
our own ranking experiment with a BOE model.

2.6.2.1 Setup

The data consists of 100 technical queries (such as semantic web, natural language

interface, etc.) derived from an analysis of the query log of Semantic Scholar8 and a list
of documents that are relevant to each query. We chose 81 of these 100 queries which
contained entities from the knowledge bases we used for ranking and ran our experiments
on those queries.

2.6.2.2 Techniques

We experimented with the following representations of both queries and documents.

BOW: Bag of words.
BOW+BOE+TKB: Bag of words and bag of entities. A pre-processing step identi-
fies all entities occurring in the document and these entities are from the entity list of
TeKnowbase. These entities are retained as a whole and not treated as a bag of words.
Additionally, we expanded each entity tagged in the query/document by the entities oc-
curring in the 1-hop neighborhood in TeKnowbase.

2.6.2.3 Ranking Models

We have used tf-idf [156] and BM-25 [163] ranking models to rank the candidate docu-
ments.

8https://www.semanticscholar.org

https://www.semanticscholar.org
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2.6.2.4 Results

We calculated NDCG@20 [92] and report the values in Table 2.11. We also counted on
how many queries the NDCG score won (T), tied (T) or lost (L) to the bag of words model
using TeKnowbase. We conclude that identifying and using entities in the document and
query representations using TeKnowbase improves the quality of results. We believe that
more sophisticated ranking models that use entity embeddings such as in [208] can further
improve the quality of results and this is a direction for future work. This establishes the
usability of TeKnowbase in the ranking scenario.

2.7 Conclusions

In this chapter, we described the construction of TeKnowbase, which is a knowledge-base
of technical concepts related to computer science from both structured and unstructured
sources. Our approach consisted of two steps—constructing a dictionary of terms related
to computer science and extracting relationships among them. Our experiments showed
that our triples are accurate. Apart from using heuristics to extract triples, we also
experimented with inferencing models and showed that they showed improvement after
adding information from online textbooks. There are a lot of improvements that can be
made to our system, purely to increase coverage. We used simple techniques, such as
surface patterns, to extract relationships from textual sources. We can try more complex,
supervised techniques to do the same. In order to extract unknown relationships, we are
interested in exploring Open IE and inferencing techniques in more detail, particularly in
identifying interesting and uninteresting relationships.



Chapter 3

ASK: Aspect-based Academic Search

The rapid growth of research papers in digital form has motivated the need for academic
search engines, such as Google Scholar1, PubMed2, and Semantic Scholar3. These search
engines allow researchers across the world to quickly filter through a large corpus of
articles. Apart from retrieving documents relevant for the query, these search engines
also perform more complex tasks such as recommending new articles based on a query
article [34] or providing suggestions that help guide users retrieve relevant documents
[100].

A researcher who has been introduced to multiple aspects of a topic would also be willing
to explore the latest research on that topic. More specifically, she would be interested in
an aspect-based retrieval of relevant documents for a query. An aspect describes some
subtopic of the query the user is interested in. In this chapter, we focus on this problem
and highlight the challenges faced by existing systems. We first illustrate the problem
using motivating examples and then describe our technique.

1https://scholar.google.com
2https://ncbi.nlm.nih.gov/pubmed/
3https://semanticscholar.org
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Table 3.1: Titles of relevant papers for queries along Application and Algorithm aspect

Query Aspect Corresponding Relevant Document

computer
_vision

application On-road vehicle detection using optical sensors: A review

computer
_vision

algorithm Semi-Supervised Ensemble Methods for Computer Vision

genetic_
algorithm

application Multi-Objective Genetic Algorithm for Robust Clustering
with Unknown Number of Clusters

genetic_
algorithm

algorithm Novel Hybrid Approaches For Real Coded Genetic Algo-
rithm to Compute the Optimal Control of a Single Stage
Hybrid Manufacturing Systems

3.1 Motivation and Problem

An academic search user often has an aspect of interest in mind while retrieving documents
relevant to a query. An aspect describes a subtopic of the query for which the user
wishes to retrieve information. To give an idea, consider the query computer_vision

and an aspect of interest, say, application, as opposed to another aspect of interest, such
as algorithm. This means that the user is interested in retrieving papers that describe
applications of computer vision. Therefore, a paper titled “On-road vehicle detection
using optical sensors: A review” should be ranked higher by the retrieval system than
“Semi-Supervised Ensemble Methods for Computer Vision”, because the former describes
an application of computer vision, while the latter describes semi-supervised algorithms
for computer vision, so would be more relevant for the algorithm aspect. Table 3.1 shows
some examples of relevant papers for two queries and two aspects.

In the following paragraphs, we demonstrate with examples why this problem is challeng-
ing.
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Scenario 1: One way of retrieving research papers relevant for the query and the aspect
is to enter the terms for the query and the aspect as a single query in an academic search
engine. On entering the query computer vision application on Google Scholar, a ranked
list of results is returned as shown in Figure 3.1.

Figure 3.1: Top-2 results retrieved for the query computer vision application by google
scholar search engine as of 20 July 2020

The result returned at the top position is “OpenCV Computer Vision Application Pro-
gramming Cookbook Second Edition”. This is a paper that describes a library to im-
plement computer vision applications. However, the document retrieved at the second
position “A human action recognition system for embedded computer vision application”
is more relevant because it is wholly dedicated to describing an application of computer
vision, instead of also talking about its implementation. So the topmost document is not
the best document to be suggested for application aspect. It was retrieved at the top
position because it consists of the term application in the title and the abstract. On the
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other hand, the document retrieved at the second position is more relevant because of the
presence of the term action recognition system along with application, because action

recognition system is known to be an application of computer vision. This signifies that
the relevance is not determined only by the presence of the aspect term in the document.
A number of other terms apart from the aspect term determine the relevance.

Scenario 2: On being unable to retrieve enough relevant documents, the user will look
for other options to retrieve relevant documents. She may go through the related queries
suggested by the search engine. Figure 3.2 shows the suggestions provided by google
scholar for the query computer vision application.

Figure 3.2: Suggestions generated by Google Scholar for the query computer vision
application as on 20 July 2020

The suggested queries also are unable to retrieve relevant results because they are gener-
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Figure 3.3: Top-2 results retrieved for query computer vision road vehicle detection
method by Google Scholar search engine as of 20 July 2020

ated from the list of documents retrieved for the query computer vision application.
The first two suggestions—computer vision application opencv and computer vision

application programming cookbook are not the best suggestions for the application as-
pect. This is because no application of computer_vision is mentioned in the suggestion,
and expanding the query with this suggestion retrieves “OpenCV Computer Vision Ap-
plication Programming Cookbook Second Edition”, which is not the best document for
the query and the aspect.

Scenario 3: Consider the query computer vision road vehicle detection method in-
stead of computer vision application. The results for this query retrieved by the Google
Scholar search engine are shown in Figure 3.3. The paper retrieved at the top position is
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Figure 3.4: Top-2 results retrieved for query use computer vision based methods by
Google Scholar search engine as of 20 July 2020

“On-road vehicle detection using optical sensors: A review”. Both the results retrieved at
the top-2 positions are relevant for computer vision and application aspect. A common
observation for both the documents is that they do not mention the term application

anywhere in the title, or the abstract. The relevance is determined by the presence of the
term vehicle_detection, because vehicle detection is a well-known application of com-
puter vision.

Scenario 4: Consider the query use computer vision based methods instead of computer
vision application. The results for this query retrieved by Google Scholar search engine
is shown in Figure 3.4. Both the results retrieved at the top-2 positions are relevant for
computer vision and application aspect. The term application is also not present in both
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the documents. In this case, we see that the relevance is determined by the presence of
the term using or based instead of application, because both using or based are terms
similar to application and both the documents retrieved for the query are relevant.

Problem

The above scenarios demonstrate that the relevance for a query and the aspect is de-
termined not only by the presence of the aspect and query terms but also by terms
similar to the aspect as well as terms determined by the relationship between the query
and the aspect. Determining the set of relevant terms is challenging, and it would be
easier if we had a knowledge base containing information like 〈road_vehicle_detection,
application, computer_vision〉, which would help us determine terms dependent on the
query and the aspect. Apart from that, we have to develop techniques to determine
terms similar to the aspect as well. So, it is important to model the relevance of the
terms dependent on the query and the aspect using a domain-specific knowledge base.

3.1.1 Problem Definition

In this section, we will formally define some key terms related to the problem.

Definition 7. Query. Users express their information need as strings of words called
queries. In the context of this problem, a query q is an entity in the domain of Computer
Science.

Definition 8. Aspect. An aspect a is a keyword that describes a sub-topic of the query q
for which the user wishes to retrieve documents. Providing an aspect along with the query
specifies the set of relevant documents. For instance, as shown in Table (3.1), for the
query genetic algorithm, a paper titled “Multi-Objective Genetic Algorithm for Robust
Clustering with Unknown Number of Clusters” is relevant for the application aspect. An
aspect can be represented by a relationship or entity in a technical knowledge base. Note
that a document can be relevant for multiple aspects of the same query.
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3.2 Approach and Contributions

In this chapter, we develop a new retrieval model to return relevant documents for a query
and an aspect. We need a new model because simply expanding the query with the aspect
term and using standard retrieval techniques such as query likelihood will assign a high
relevance score to documents that contain the query and the aspect term both, which
may not be the best document to recommend. Using techniques like pseudo-relevance
feedback [112] will provide a set of terms for query expansion to retrieve better results,
but the terms are not generated by considering the relationship between the query and
the aspect. While the use of aspects in the retrieval of documents has been widely used
in faceted search [82, 34] and diversification of search results [165, 12], they address a
fundamentally different problem than ours. We take a query and an aspect as input and
retrieve documents relevant for both, while these techniques take only the query as an
input to their system. After that, they identify important aspects for the query so that
the underlying problem of ambiguous queries or diversification of results is solved. On
the other hand, we address a novel problem that takes a query and an aspect as input
and retrieves relevant documents for the same.

We use the idea of language models [153] for the same. It assumes that the document
and the query are samples of their underlying probability distributions. If we have an
estimate of these distributions, then we can rank the documents based on the similarity
of their language models with the language models estimated for the document and the
query. In our case, we have two inputs to the system, a query, and an aspect. So, we have
to estimate the language model for both. The language model for the aspect models the
set of terms relevant for the aspect, such as using or based. The language model for the
query models the terms relevant for the query and aspect using TeKnowbase. A language
model for the query and the aspect is estimated by a mixture of both distributions.

Figure 3.5 describes the components of our system. There are 3 main components. After
the user enters a query and an aspect, the query suggestion component suggests alter-
native queries for the query and the aspect to the user. The user can choose one of the
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q = 

a = 

Query 
suggestion 
component

Useful suggestions 
provided to the user 
for query and aspect

Ranking 
component

.

.documents

TeKnowbase

OutputInput

Figure 3.5: Architecture of ASK. The input consists of the query (q) and an aspect (a).
The query suggestion component suggests alternative queries for the query and the aspect
to retrieve documents. The ranking component returns a ranked list of documents for the
query and the aspect. Both of these components use a domain-specific knowledge base
in the background

suggested queries to retrieve a relevant document. The second component is the rank-
ing component which returns a ranked list of documents relevant for the query and the
aspect. The suggestions and the ranking of documents is done using an aspect-based
retrieval model (described in Section 3.4.2)

Contributions. We summarize our main contributions below:

1. We introduce the novel task of aspect-based retrieval of research papers for the
query.

2. We develop ASK, a novel language model-based technique to solve the task of
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aspect-based retrieval using TeKnowbase.

3. Devised rules to determine the relevance of a document for a query and an aspect.

Organization. The rest of the chapter is organized as follows—Section 3.3 describes the
related work. Section 3.4 describes our retrieval model that makes use of TeKnowbase
to estimate the language model for the query and the aspect. Section 3.5 describes the
experiments, evaluation scheme, results, and discussion. Finally, we conclude in Section
3.6.

3.3 Related Work

In this section, we describe related work in the area of aspect-based document retrieval
and query suggestion.

3.3.1 Aspect-based Document Retrieval

Aspect-based retrieval or faceted retrieval allows users to retrieve documents along differ-
ent dimensions. These dimensions can be as simple and known beforehand (such as time
or venue) or could be complicated relationships between the query and the document
(that have to be generated based on the query). For instance, while searching for news
articles, one can refine the search either by time or venue. Aspect-based search has been
explored for both regular and academic searches. A summary of related contributions is
presented below:

3.3.1.1 Regular Search

In the context of regular search, several systems providing faceted search have been built
for many years. In [82], the author proposed design interfaces for hierarchical faceted
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search. [187] addressing the vocabulary problem for faceted search. [103] developed a
personalized faceted retrieval system. In all of these systems, the facets are predefined
properties directly mapped to the document. In our case, we do not know the mapping
between the facet value and the document. The retrieval model that we propose returns
a ranked list of documents given a query and facet/aspect as input.

In many cases, the standard facets/ aspects are not enough to provide a great user
experience [202]. In such scenarios, they have to be automatically generated. [202, 76,
94] proposed methods to generate aspects for queries. While it primarily deals with
determining how good the generated aspects are with respect to correctness and novelty,
we are interested in retrieving relevant documents given a query and an aspect. We can
use these techniques to generate aspects for our setting and then use our model to retrieve
documents relevant to the generated aspects.

Aspects have been represented by subsets of query words. To illustrate, the query
Microsoft Office 2007 reviews has two aspects, Microsoft Office 2007 and reviews.
Aspects have been used for diversifying search results [12], [165], [48], [47]. They have
been used to handle results when query can have multiple interpretations, such as the
query java which has two interpretations—programming_language and island. For am-
biguous queries, [12] identified categories for the query and the document according to
a taxonomy. However, all queries in our case consist of concepts, and there is hardly
any need for disambiguation. We are more interested in exploring the relationship of
the query words with the words in the document. [165] used query reformulations sug-
gested by existing search engines as sub-queries to retrieve diverse results. [48] used query
subtopics as aspects. [47] proposed an algorithm to automatically determine topic terms
to diversify search results.

3.3.1.2 Academic Search

In the context of academic search, research paper recommendation has been thoroughly
studied and a number of systems have been developed for the same. These include recom-
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mendation tools that retrieve papers based on the user’s interest [180, 113] or similar to a
given set of papers [155]. [70] built Scienstein that allows users to search for papers using
authors or reference lists apart from the usual keyword-query search. These tools make
use of the underlying structure of the citation graph as well as machine learning tech-
niques on the document text. [52] made an effort to provide faceted retrieval for research
papers in computer science. The facets were—publication years, authors, or conferences.
These facets are different from aspects in our scenario. [34] proposed techniques to further
categorize the relationships between the query paper and the recommended paper. These
relationships are expressed in the form of facets like background, alternative_approaches,
methods and comparisons. [42] used similar facets to summarize scientific papers. These
facets are extracted by identifying the context of the text surrounding the citation. Al-
though these facets are similar to aspects in our problem, they describe the relationship
between two papers, unlike our case where the relationship has to be identified between
a keyword query and the paper.

3.3.2 Query Suggestion

The purpose of query suggestion is to recommend a list of related queries to the en-
tered query usually done using query logs or search results. These fall into two major
categories—1) query auto-completion, where the suggested queries start with the prefix
entered by the user, 2) query recommendation, where the suggestion need not necessarily
start with the entered prefix, but is related to the entered query. A summary of these
techniques in both regular and academic search is presented below:

3.3.2.1 Query Suggestion using Query Logs

Most of the large-scale search engines rely on query logs to generate query suggestions.
In [18, 93], authors cluster query logs to find the most similar suggestion for the query.
In [21], authors extract frequently occurring phrases from query logs and suggest them
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to the user. [69] proposed a retrieval model to generate suggestions for task-based search
by using sub-tasks for the entered query as suggestions. The probabilities are estimated
using data from query logs and suggestions generated by popular search engines. [151]
proposed a neural model to generate suggestions for queries that do not occur in the query
log. [53] developed a model to suggest queries using query logs, suggestions offered by
popular search engines and community-created knowledge bases. Apart from only using
query logs, session information has been used by [31], [177], [68] to generate suggestions.
Modifications done to the original query by the user to obtain relevant information in a
single session have been utilised by [118] and [97] to generate suggestions. In [44], authors
identify pages that satisfy user’s need after multiple reformulations and use them to gen-
erate query suggestions. Query flow graphs and query-URL bipartite graphs (generated
from query logs) have also been used to generate suggestions in [27], [132] and [128]. The
main data source in all of the above techniques is obtained from query logs, which makes
them unsuitable to be applied for our task.

3.3.2.2 Query Suggestion without Query Logs

In [23], [22], authors develop an instant search system that computes and presents search
results online and refreshes the results with each letter typed or modified by the user.
[25] developed a probabilistic retrieval model to suggest queries in the absence of query
logs using key phrases extracted from relevant documents. All of these techniques provide
query auto-completion, where the suggestions start with the prefix already entered by the
user. To use these techniques, we have to reformulate our query by adding the aspect
term to it. Doing this drastically reduces the number of candidate suggestions starting
with the reformulated query, so these techniques cannot be applied and we need a new
technique to retrieve relevant query suggestions for a query and aspect.
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3.3.2.3 Query Suggestion in Academic Search

Not a lot of work has been done to generate query suggestions for academic search. Efforts
to suggest queries for professional search have been made in [101] where the authors
suggest a list of ranked boolean queries for a topic query entered by the user. While
the approach is interesting, suggesting boolean queries is not a good idea as users prefer
keyword query suggestions over boolean suggestions in academic search [37]. In [195],
authors develop a suggestion mechanism for academic queries to establish the importance
of query suggestions in academic search. They use query logs as the data source and
simulate a user-interaction model to generate suggestions. Again, the absence of query
logs makes it unsuitable to be adapted in our setting.

To the best of our knowledge, aspect-based retrieval for academic search is a novel prob-
lem. ASK solves this task by estimating a language model for a given query and aspect
using TeKnowbase. The relationships in TeKnowbase are used to represent aspects and
an inferencing technique using meta-paths has been proposed to address the sparsity of
relations in TeKnowbase.

3.4 Aspect based Retrieval

We introduce the novel problem of aspect-based search and develop ASK (Aspect-based
academic Search using domain-specific KBs) to solve it. ASK takes a query and an aspect
as input and assists the users by providing useful query suggestions for the query and the
aspect. It then retrieves a ranked list of relevant documents for the query and the aspect.
ASK uses TeKnowbase as the source of domain knowledge. We now give an overview of
the main components of ASK as follows:

1. Input. ASK takes a query and an aspect as input. Both these concepts have been
defined in Section 3.1.1.
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2. Domain-Specific Knowledge Base. ASK uses TeKnowbase [191, 192] as the
domain-specific knowledge base to assist in suggestion of queries and retrieval of doc-
uments relevant to the query and the aspect provided as input. TeKnowbase consists
of entities such as nearest_neighbor_search, robotics, or boosting, and taxonomic
as well as other domain-specific relationships like application, implementation,
or algorithm. Examples of triples in TeKnowbase are: 〈robotics, application,

nearest_neighbor_search〉 and 〈tiny_encryption_algorithm, algorithm, block-

_cipher〉. The triple 〈robotics, application, nearest_neighbor_search〉 conveys
information that robotics is an application of nearest_neighbor_search. This also
means that the terms appearing in entities connected via a relationship type in
TeKnowbase have a higher probability of appearing in documents relevant for the
aspect described by that relationship. We use this idea to determine the relevance
of the document for the query and the aspect.

3. Query Suggestion. To assist a user in retrieving relevant documents, ASK sug-
gests alternate queries for the query and the aspect. The query suggestion compo-
nent has two parts 1) candidate suggestion generation and 2) ranking of suggestions.
The procedure of generating and ranking query suggestions is described in Section
3.4.4. These are ranked using a language model [153] estimated for the query and
the aspect using TeKnowbase which is described in detail in Section 3.4.2.

4. Ranking. Given a query, the documents are ranked using retrieval models [171].
In this work, our idea is to estimate a language model [153] for each aspect and
rank the documents in the corpus using the language model estimated for the query
and the aspect. Section 3.4.2 describes our language model for the query and the
aspect. The procedure of ranking the documents using this model is described in
Section 3.4.5.

5. Output. The system returns a ranked list of relevant documents for the query and
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LM for “Movies”
Term Probability
movie 0.3
cinema 0.21
director 0.23
script 0.25
apple 0.002
seeds 0.005
... ...

LM for “Fruits”
Term Probability
fruit 0.33
apple 0.18
plant 0.2

nutrition 0.3
building 0.0015
movie 0.0008
... ...

Table 3.2: Example of Language Models for two documents about “Movies” and “Fruits”

the aspect.

3.4.1 Language Models

Language models are used to model unstructured documents [153]. They assign some
probabilities to a set of terms or words. Each document d (which is a collection of terms)
is assumed to be a sample from such a language model Md. To illustrate, a document
about “Movies” will have a high probability for terms such as movie, cinema or director as
compared to another term such as apple. On the other hand, a document about “Fruits”
will have a high probability for terms such as apple or plant. Table 3.2 shows language
models for two hypothetical documents about Movies and Fruits.

The true language model associated with a document cannot be estimated since the
document is only a sample from it. So, we can use the Maximum Likelihood Estimation
(MLE) approach to estimate the language model such that the seen document’s likelihood
is maximized. The probability of each term in the document can be estimated using the
term frequencies in the document using the following equation:
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P (w|Md) =
tf(w, d)

length(d)
(3.1)

where tf(w, d) is the frequency of term w in document d and length(d) is the total
number of terms present in document d. However, this probability distribution assigns
zero probability to terms not present in the document. This is not accurate because the
actual LM for the document can have a non-zero probability assigned to terms not present
in the document. So, smoothing techniques such as Dirichlet Smoothing [217] (Equation
3.2) are used to smoothen this distribution.

P (w|Md) =
tf(w, d) + µP (w|C)

length(d) + µ
(3.2)

where P (w|C) is the probability of term w in the entire collection and µ is a Dirichlet
smoothing parameter. It is generally set to 1500. The key idea of Dirichlet smoothing
is to increase the document’s length by µ number of terms generated according to the
background probability distribution.

Query Likelihood. Using language models, Ponte and Croft introduced query likelihood
techniques to model the relevance of a document d for a query q [153]. Query likelihood
estimates a language model for each document in the collection and ranks them by the
likelihood of seeing the query terms as a random sample given that document model. The
probability P (d|q) of a document being relevant to the query q can be written as follows
using the Bayes rule:

P (d|q) =
P (q|d)P (d)

P (q)
(3.3)

P (q) is the same for all documents, so this quantity can be ignored. P (d) is the prior
probability which can be assumed to be the same for all the documents, independent of
the query. This leads us to the following equation:

P (d|q) ∝ P (q|d) (3.4)
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The probability that d is relevant for q is proportional to the probability of observing
the query as a random sample from the document’s language model. The document’s
language model is estimated as follows:

Md(w) =
tf(w, d) + µP (w|C)

|d|+ µ
(3.5)

where tf(w, d) is the frequency of a term in d. This distribution is further smoothed using
Dirichlet Smoothing. Because it estimates from document length, estimates from short
documents and long documents are comparable.

Given a document model Md, P (q|d) is estimated as follows:

P (q|d) =
∏

w∈terms(q)

Md(w) (3.6)

where terms(q) is the set of terms present in q. The order of terms in the query becomes
irrelevant and it is treated as a bag of words/terms, and the probability of observing
a term is independent of observing another term. The documents are then ranked in
decreasing order of P (q|d).

3.4.2 Aspect-based Retrieval Model

We use language models to solve the problem of aspect-based retrieval of documents as
well as query suggestions. As already described in Section 3.4.1, using query likelihood
techniques where the query has been augmented with the aspect term will assign a high
relevance score to documents containing the query and the aspect term, which may not
lead to the best documents at the top positions. Pseudo-relevance techniques model the
probability of terms from the list of top-k documents retrieved for the query, assuming
that these top-k documents are highly relevant. The terms that are assigned the highest
probability are chosen to be expanded to the query. These techniques do not consider
the relationship between the query and the aspect to model the probability of the set of
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terms, due to which the best documents might not be returned. We need to model the
probability of terms considering the relationship between the query and the aspect also.

To address these issues, we propose the approach for re-ranking the top-k documents
relevant for the query (retrieved using the query likelihood method). We model the
relevance of these top-k documents using an aspect-dependent probability (independent
of the query) and a query and aspect-dependent probability. These two components are
described as follows:

1. Aspect Dependent Prior Probability. It is important to model the relevance of
terms for the aspect. As already pointed out in Section 3.1, there are certain terms apart
from the term describing the aspect that are likely to appear in a document relevant for
the aspect, independent of the query. In the case of application aspect, presence of terms
like usage or using indicates that the document is relevant for the application aspect. The
probability of a term w appearing in d given an aspect a, independent of the query, is
called the prior. It is denoted by P (w|a).

2. Query and Aspect Dependent Probability. Apart from modeling the relevance
of the terms for the aspect, there are terms determined by the query and the aspect
together. In the example of genetic_algorithm and application aspect, introduced in
Section 1, clustering is a term highly relevant for genetic_algorithm and application
aspect. This is because clustering is known to be an application of the genetic algorithm.
So, we model this as the probability of a term appearing in d given a query q and aspect
a which is denoted by P (w|q, a).

3. Mixture of the Two Probability Distributions. The final relevance of a term
is modeled by a mixture of the two probabilities. Equation (3.7) describes our probability
distribution. It is denoted as MM .
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MM(w) = λP (w|a) + (1− λ)P (w|q, a) (3.7)

Our mixture probability distribution is used to score the query suggestions as well as
documents relevant for the query and the aspect, described in Section 3.4.4 and 3.4.5,
respectively. We describe the estimation of the components of our mixture model in
Section 3.4.3.

3.4.3 Estimation of Probabilities

In this subsection, we describe the techniques that we used to estimate the mixture model
described by Equation 3.7. We made use of the Open Research Corpus and algorithms
already implemented on Galago to estimate these probabilities. We later conducted our
experiments on the same dataset (described in Section 3.5). We now describe the esti-
mation of the query dependent and the query independent component as follows.

3.4.3.1 Estimation of Query-Independent Component

P (w|a) models the relevance of the term w for an aspect a as described in Section 1..
This probability can be estimated from a set of relevant documents for this aspect. To
acquire a set of relevant documents for the aspect, we first conducted a user study with
Computer Science researchers (not directly related to the project) and were able to collect
500 relevant documents for each aspect. However, the estimation from a small set of doc-
uments of size 500 would be inaccurate. So, we used heuristics to collect more documents
relevant to the aspect. These two techniques are described in detail as follows:

1. User Study to Collect Relevant Documents for the Aspect. We describe
the steps of the user study experiment as follows:
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1. We first chose 10 queries (entities from the domain of Computer Science). The
queries were chosen based on the users’ familiarity with them.

2. We also chose 3 aspects, application, algorithm, and implementation. The annotation
task involved determining the aspect label for a query and a document out of these
3 labels. Note that a document can have more than one aspect label or none of
these. To determine these labels, we referred to the rules described in Step 4.

3. The next step involved determining the candidate set of documents to be evaluated
by the user for each query. We obtained this set by choosing the top-10 documents
retrieved for the query augmented with terms for aspect i.e. “query + aspect”. We
then showed the users the query and a candidate document and asked them to
determine the relevance of the document for the query and all the aspects.

4. Here we describe the rules and the questions that were asked to the users to deter-
mine the 3 different aspect labels for a document and the query.

(a) Application. If the queried entity is used as a solution in the problem ad-
dressed by the paper, then the paper is relevant for the application aspect
for the query, and a score of 2 is assigned. If not, a score of 0 is assigned.
For instance, for the query autoencoder, the paper “Exploring autoencoders
for unsupervised feature selection” addresses the problem of feature selection
using autoencoders. So, autoencoders solve the problem of feature selection
and this paper is relevant for the application aspect for autoencoder. On the
other hand, the paper “Parallelizing the Sparse Autoencoder” addresses the
challenges faced in the fast training of autoencoders. So, autoencoder is not
used to solve the problem addressed by the paper and it gets a score of 0. There
can be cases when a query belongs to the problem and solution both, such as,
in the paper “Deep auto-encoder neural networks in reinforcement learning”, a
new framework is proposed to jointly train deep autoencoders with RL algo-
rithms. In such cases, a score of 1 is assigned. Table 3.3 summaries these rules.
The documents that were assigned a score of 1 or 2 were considered relevant
for the application aspect.
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Score Criteria Example
2 i) Queried topic is used to solve

the problem proposed in the pa-
per, iii) queried topic is not a part
of the problem

Exploring autoencoders for unsu-
pervised feature selection

1 i) Queried topic is used to solve
the problem, ii) Queried topic is
a part of the problem

Deep auto-encoder neural net-
works in reinforcement learning

0 i) Queried topic does not solve the
problem

Parallelizing the Sparse Autoen-
coder

Table 3.3: Set of rules to determine the scores for papers relevant for the query
autoencoder and application aspect

(b) Algorithm. The first step in identifying if a paper is relevant for the al-
gorithm aspect is to identify whether it is/is not relevant for the application
aspect for the query. This is required because an algorithm proposed to solve
a different problem using the queried entity should be given less score than an
algorithm that addresses a problem for the query. Given a paper “New hybrid
evolutionary algorithm for solving the bounded diameter minimum spanning
tree problem”, it proposes a new algorithm for solving a variant of the mini-
mum spanning tree problem. So, this should be given a higher score than a
paper “Image registration with MST algorithm”, which proposes an algorithm
for image registration using a minimum spanning tree. So, if the problem ad-
dressed by the paper is related to the query and an algorithm is proposed as
the solution, then a score of 3 is assigned. If the query is used in the solution
and an algorithm is proposed in the paper, then a score of 2 is assigned. If an
algorithm is used/improved but not proposed in the paper, then a score of 1 is
assigned. In other cases, 0 is assigned. Table 3.4 summaries these rules. The
documents that were assigned a score of 1, 2 or 3 were considered relevant for
the algorithm aspect.

(c) Implementation. We first determine if the paper is relevant for the applica-
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Score Criteria Example
3 i) Queried topic does not solve the

problem proposed in the paper, ii)
an algorithm is the novel contri-
bution of the paper

New hybrid evolutionary algo-
rithm for solving the bounded di-
ameter minimum spanning tree
problem

2 i) Queried topic is used to solve
the problem, ii) an algorithm is
the novel contribution of the pa-
per

Image registration with MST al-
gorithm

1 i) some algorithm is used/im-
proved but not proposed in the
paper

A weighted coding in a genetic
algorithm for the degree con-
strained minimum spanning tree
problem

0 None of the above The minimum spanning tree: An
unbiased method for brain net-
work analysis

Table 3.4: Set of rules to determine the scores for papers relevant for the query minimum
spanning tree and algorithm aspect
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tion aspect of the query. If not, and a solution is proposed that deals with one
of the following—1) improving the run-time/space complexity or 2) building
a software/prototype implementation/hardware implementation, then a score
of 2 is assigned. If the paper is relevant for the application aspect and the
solution deals with one of the above-mentioned cases, then a score of 1 is as-
signed. In other cases, 0 is assigned. To illustrate, “Genetic Ant Algorithm for
Continuous Function Optimization and Its MATLAB Implementation” gets a
score of 2 for genetic_algorithm, because the paper is not relevant for the
application aspect for genetic algorithm and it also describes a MATLAB im-
plementation of genetic algorithm. The paper “A Novel Approach towards
FPGA Implementation of a Multiple Parameter Optimization Technique using
Genetic Algorithm” is scored 1 because it is also relevant for the application
aspect. The genetic algorithm solves the problem of implementing multiple
parameter optimization techniques on FPGA, and because it deals with im-
plementations on hardware, it is relevant for the implementation aspect. Table
3.5 summaries these rules. The documents that were assigned a score of 1 or
2 were considered relevant for the implementation aspect.

2. Targeted Search for an Aspect with Filtering. Obtaining annotations for
documents is a difficult task and only using 500 annotated documents for each aspect
may lead to the estimation of an inaccurate model. In order to increase the size of our
annotations, we used heuristics to collect more documents given an aspect. We formulated
a query containing only the aspect as a keyword and retrieved documents for it using the
query likelihood model. For instance, for the application aspect, we collected all the
documents returned for the query “application”. However, on manual inspection, we
found that all of these documents were not papers relevant for the application aspect but
only contained the term “application” in the title or abstract. So, we retained only those
documents which contained the phrase “application of” in the title on the intuition that
such documents describe some application. Similarly, we used phrases like “algorithm
for” and “implementation of” to filter the set of documents relevant for the algorithm and
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Score Criteria Example
2 i) Queried topic is not used

to solve the problem, ii) pro-
posed technique deals with one
of the following—1) improving
the run-time/space complexity or
2) building a software/prototype
implementation/hardware imple-
mentation

Genetic Ant Algorithm for Con-
tinuous Function Optimization
and Its MATLAB Implementa-
tion

1 i) Queried topic is used to solve
a different problem, ii) pro-
posed technique deals with one
of the following—1) improving
the run-time/space complexity or
2) building a software/prototype
implementation/hardware imple-
mentation

“A Novel Approach towards
FPGA Implementation of a
Multiple Parameter Optimiza-
tion Technique using Genetic
Algorithm”

0 None of the above A genetic algorithm tutorial

Table 3.5: Set of rules to determine the scores for papers relevant for the query genetic
algorithm and implementation aspect
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the implementation aspect, respectively. While this filtering technique returns the set of
documents relevant for the aspect with good accuracy, using this technique with query
and aspect will still not consider the relationship between them, and the results may not
be relevant.

Having a set of ground-truth documents D for each a, we estimated P (w|a) as follows:

P (w|a) =
1

|D|
∑
d∈D

tf(w, d)∑
w′∈d tf(w′, d)

(3.8)

where tf(w, d) is the frequency of the term in document d. The probability of a term w

is proportional to its frequency of occurrence in the document set D.

3.4.3.2 Estimation of Query-Dependent Component

To determine the relevance of a term for a query and the aspect, we used relations
in TeKnowbase. The relationships in TeKnowbase can represent the aspect that our
system takes as input. Note that any relation in TeKnowbase can be used an aspect
in our setting. Let Ra denote the relation in TeKnowbase representing the aspect a.
As already described in Section 2, the terms in entities connected to Ra from q have a
higher probability of appearing in documents relevant for the aspect a, such as, given
the triple 〈clustering, application, genetic_algorithm〉, the presence of clustering

in a document indicates high relevance for the query genetic_algorithm and application
aspect. However, TeKnowbase is sparse, so, we need some mechanism to predict entities
participating in relation Ra with q to improve the estimation of terms. To do so, we
propose a link prediction technique based on two well-known algorithms.

1. Path Ranking Algorithm (PRA) [111] estimates the probability of reaching an
entity e from a query q in the knowledge base by doing random walks over paths
connecting q and e. It uses this probability to compute a final score for e being
related to q via relation Ra.
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2. MetaPath2Vec [55] is an embedding based technique, which computes vector
representations for entities given a path such that entities that are likely to be
connected by that path are given vector representations closer to each other and
those unlikely to be connected are given vector representations farther away from
each other. It also considers those entities that are not connected via any path to
the query, unlike PRA.

The reason for using these two algorithms is to include both direct and indirect inferencing
of relations. Direct inferencing is achieved using PRA since it only considers those entities
as candidates which are connected via some path to the query. The indirect inferencing is
achieved using MetaPath2Vec since all entities, irrespective of whether they are connected
via any path to the query are considered as candidates. A linear combination of the scores
returned by these two algorithms is then used to finally score the entities as potential
candidates in participating in relation Ra with q. Both these algorithms use the idea of
meta-paths [182]. A meta-path is formally defined as follows:

Definition 9. Meta-path. A meta-path P [111] between nodes v1 and vl+1 in a
knowledge base is a path defined as a sequence of edges or walks denoting the sequence
v1

R1−→ v2
R2−→ . . .

Rl−→ vl+1. So, P = R1 ◦R2 ◦ . . . ◦Rl denotes a composite relation between
v1 and vl+1.

Figure 3.6 (a) shows a meta-path P = application ◦ type ◦ type_inverse between
nodes robotics and incremental_heuristic_search. Both the entities also participate in
the triple 〈robotics, application, incremental_heuristic_search〉. This implies that
the meta-path described by application ◦ type ◦ type_inverse is a potential represen-
tative of application relationship in TeKnowbase. In Figure 3.6 (b), clustering and
genetic_algorithm are not connected via any relation. However, the same meta-path
application ◦ type ◦ type_inverse exists between clustering and genetic_algorithm.
So, the triple 〈clustering, application, genetic_algorithm〉 can be inferred using this
meta-path.

We now describe the key concepts related to the Path Ranking Algorithm from [111] and
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Figure 3.6: Examples of meta-paths for application relation. (a) Meta-path between
robotics and incremental_heuristic_search. The meta-path P = application ◦ type
◦ type_inverse exists between them and they are also connected by application re-
lation. (b) Meta-path between clustering and genetic_algorithm. clustering and
genetic_algorithm are not related by application relation but still it can be inferred
because of the existence of the same meta-path P = application ◦ type ◦ type_inverse
between them

MetaPath2Vec algorithm from [55].

Path Ranking Algorithm (PRA). Given a meta-path P = R1 ◦ R2 ◦ . . . ◦ Rl, the
domain of P is defined as follows:

domain(P) = {e : R1(e, e
′) = 1} (3.9)

Similarly, range of P is defined as:

range(P) = {e′ : Rl(e, e
′) = 1} (3.10)

whereR(e′, e) = 1 if there exists an edge with type R that connects e to e′ in the knowledge
base and is 0 otherwise. R1R2...Rl are relationships labels found in a knowledge base.

Given a source node ei and a meta-path P, a path-constrained random walk defines a
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Algorithm 1: Algorithm to generate the set of meta-paths for a relation Ra

Input: Ra: the relation representing the aspect a, TKB
Output: MP , count

1 // Lines 1–13: Extract the set of meta-paths and count their frequency for a
given relation Ra from TKB

2 MP = ∅
3 foreach (e1, e2) s.t. R(e1, e2) = 1 do

4 foreach i ∈ 2 to l do
5 foreach P = R1 ◦R2 ◦ . . . ◦Ri s.t. R1(e1, a2) ∧R2(a2, a3) ∧ ... ∧Ri(ai, e2)

do
6 if P ∈MP then
7 count(P) = count(P) + 1
8 else
9 count(P) = 1

10 MP = MP
⋃
{P}

11 end
12 end

13 end
14 return MP , count

probability distribution as follows. If P is an empty path, then

hei,P(ej) =

1, if ei = ej

0 otherwise
(3.11)

For a non-empty path, it is defined recursively as follows:

hei,P(ej) =
∑

e′∈range(P′)

hei,P′(e′).P (ej|e′;Rl) (3.12)

where P (ej|e′;Rl) =
Rl(e

′,ej)
Rl(e′,.)

is the probability of reaching node ej from node e′ with a
one step random walk with edge type Rl.
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Since PRA is an algorithm for inferring the presence of a given relation Ra between
pairs of entities in a knowledge base using meta-paths, it first has to identify the set of
useful meta-paths for the relation Ra. Algorithm 1 shows the steps to extract and score
meta-paths useful for a relation Ra. It takes the length l of the path as a parameter, and
extracts meta-paths of length at most l. The main step in the algorithm involves iterating
over all pairs (ei, ej) of entities such that Ra(ei, ej) = 1, and extracting meta-paths of
length up to l between them.

Given a set of paths MP extracted for a relation Ra, they are treated as features of
a linear model and the strength of the existence of a relationship between ei and ej is
computed as follows:

scoreei(ej) = θ1hei,P1(ej) + θ2hei,P2(ej) + ...+ θnhei,P3(ej) (3.13)

where the θi’s are the weights that are learned over all such relation paths.

MetaPath2Vec. MetaPath2Vec [55] is an embedding-based technique for link predic-
tion in heterogeneous graphs. It introduces the heterogeneous skip-gram model, which is
modeled after the skip-gram model [135] introduced by Mikolov for the Word2Vec algo-
rithm. The heterogeneous skip-gram model is used to model the neighborhood of a node
in a heterogeneous graph using meta-path-based random walks. Given a meta-path P,
the algorithm assigns closer vector representation to entities highly likely to be connected
by P and farther representations to pairs to entities that are unlikely to be connected
by P.

We selected the top-k meta-paths based on their frequency of occurrences as input to
metapath2vec and obtained vector representations Ve for every entity e. This is described
in lines 1–2 of Algorithm 2.

Algorithm 3 describes the steps to estimate probability of an entity e being related to
query entity eq via the relation Ra. It takes as inputMP , the set of meta-paths extracted
using Algorithm 1, count, the data structure storing the frequencies of the meta-paths
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in MP , V , the vector representations obtained for entities by training MetaPath2Vec
algorithm using Algorithm 2, and E, the set of entities in TKB. It returns a set of
probabilities P (E|q), which is the probability of each entity e being related to eq via
relation Ra. The various components of the algorithm are described as follows:

Algorithm 2: Algorithm to generate vector representations V

Input: MP : the set of meta-paths extracted for relation Ra, count, TKB, k
Output: V

1 topk = Top k meta-paths in MP scored according to count
2 V = Embedding representations for entities obtained by training MetaPath2Vec

algorithm on TKB with topk paths
3 return V

1. Direct Inference using Meta-Paths. We follow a more straightforward ap-
proach to score the paths. In Algorithm 1, we also maintain a count of the number
of times a meta-path is extracted for Ra. If a meta-path is observed more times for a
relation Ra, it is considered more useful. So, instead of using a training set of positive and
negative relation instances, we directly use the frequency to score the paths. Given a set
of meta-paths MP extracted for the relation Ra, PRA assigns scores to entity pairs by
using a linear combination of probabilities of reaching the target entity from the source
entity via those meta-paths. This score is a measure of the existence of the relation Ra

between the entity pair. So, we computed the score between pairs of entities using this
approach. Having a set of meta-paths MP = P1,P2, ...,Pn, we computed the score for
each node reachable from source ei as follows:

scoreei(ej) = α1hei,P1(ej) + α2hei,P2(ej) + ...+ αnhei,P3(ej) (3.14)

where each αi is set to count(Pi).

Since we have to estimate a probability distribution, we convert scoreei(ej) to a probability
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Algorithm 3: Algorithm to estimate Pa(E|q)

Input: E: set of entities in TKB, V : vector representations for entities after
training MetaPath2Vec algorithm, MP , count

Output: Pa(E|q)
1 // Compute scoreeq (e) from eq to all the entities e in E

2 foreach e1 ∈ E do
3 foreach P ∈MP do
4 scoreeq(e2) = scoreeq(e2) + count(P) ∗ heq ,P(e2)
5 end
6 end

7 foreach e1 ∈ E do
8 // Compute probability using PRA algorithm

9 DIeq(e1) =
exp(scoreeq (e1))∑

ek∈|E| exp(scoreeq (ek))

10 // Compute probability using embedding representations obtained using
MetaPath2Vec

11 h′eq(e1) = exp(cosinesim(V (eq),V (e1)))∑
ek∈|E| exp(cosinesim(V (eq),V (e1)))

12 // Compute mixture of the two probabilities
13 Pa(e1|eq) = β ∗DIeq(e1) + (1− β) ∗ h′eq(e1)

14 end
15 return Pa(E|q)

distribution using softmax as follows:

DIei(ej) =
exp(scoreei(ej))∑

ek∈|E| exp(scoreei(ek))
(3.15)

where E is the set of entities in TeKnowbase. The steps for direct inference of relationship
are described in lines 2–9 of Algorithm 3.

2. Indirect Inference using Meta-paths. We used the softmax function to convert
cosine similarities between entities into a probability distribution as described in Equation
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(3.16). This is described in line 11 of Algorithm 3.

h′ei(ej) =
exp(cosine_sim(V (ei), V (ej)))∑

ek∈|E| exp(cosine_sim(V (ei), V (ek)))
(3.16)

3. Combining Direct and Indirect Inferencing. The final probability distribution
is a mixture of the DIei(ej) and h′ei(ej). β is used to mix the two distributions. This is
described by Line 13 of Algorithm 3.

Pa(ei|ej) = β ∗DIei(ej) + (1− β) ∗ h′ei(ej) (3.17)

4. Final Estimation of Mixture Distribution. Since the documents and query
suggestion are represented as bag of words (described in details in Section 3.5.2 and
3.4.5), we defined the distribution over terms instead of entities. We used the following
equation:

P (w|q, a) =
∑
e

Pa(e|eq), s.t. w ∈ terms(e) (3.18)

where terms(e) is the set of words present in the entity e. eq is the entity that q represents.
Equation (3.8) estimates the prior probability of the term given only the aspect. Equation
(3.18) estimates the probability of a term given the query and the aspect both. The
overall probability is a mixture given by P (w|a) and P (w|q, a). λ is used to mix the two
distributions. The final distribution, as described at the beginning of the section is given
below:

MM(w) = λP (w|a) + (1− λ)P (w|q, a) (3.19)

The query suggestions and the documents are ranked in increasing order of divergence of
the distribution described by Equation (3.19) with their language models, described in
detail in Section 3.4.4 and Section 3.4.5, respectively.
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3.4.4 Generating Query Suggestions

Query suggestions are either generated from query logs [18, 93] or from the set of relevant
documents [25, 53, 69]. In the absence of logs for our system, we used the relevant
documents to generate the set of candidate suggestions. The following steps describe the
procedure to generate and rank the suggestions given a query and an aspect.

1. Extracting Key Phrases. We extracted key phrases/keywords from the top-1000
documents (retrieved using the query-likelihood model) relevant to the query using the
popular keyword extracting algorithm RAKE4. RAKE extracts important key phrases
from text and also assigns confidence values to them.

2. Determining Candidate Suggestions. However, on manual inspection, we found
that not all key phrases were good candidate suggestions. We retrieved, for instance, key
phrases such as k choose or describe generalizes for the query latent_dirichlet_all-

ocation, which do not describe any information about the query. We applied the score
assigned by RAKE as a filter and only retained those key phrases whose score was > = 5.
Even after applying this filter, we found key-phrases that were too long and assigned
high scores by RAKE, such as multiresolution airport detection via hierarchical

reinforcement learning saliency model traditional airport detection methods usua-

lly utilize geometric characteristics from the top-1000 documents for the query late-

nt_dirichlet_allocation. This should not be considered as a candidate suggestion. We
removed such suggestions by only retaining those key phrases that had at most 5 terms/-
words. The key phrases retained after applying these two filters form our candidate
suggestions.

3. Ranking Suggestions. We estimated language models for each suggestion. Given
a suggestion s, a document model Ms is estimated for it. It is described by the following

4https://pypi.org/project/rake-nltk/
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equation. Dirichlet smoothing is used to smoothen Ms [217].

Ms(w) =
tf(w, s) + µP (w|C)

length(s) + µ
(3.20)

where tf(w, s) is the frequency of w in s, and P (w|C) is the probability of w appearing
in the entire collection. P (w|C) assigns a probability to words not seen in the suggestion
to make it accurate. This probability is estimated as being proportional to the general
frequency of the word in the entire collection. The relevance of a suggestion for a query
and the aspect is modeled by the risk associated with using MM to approximate Ms.
This is expressed by KL-divergence between MM and Ms. The suggestions are returned
in an order of increasing KL-divergence.

KL(MM ||Ms) =
∑
w

MM(w)log
MM(w)

Ms(w)
(3.21)

3.4.5 Ranking of Documents

We represent a document as bag of words and estimated a language model Md for it.
Dirichlet smoothing is used to smoothen Md. It is denoted by the following equation:

Md(w) =
tf(w, d) + µP (w|C)

length(d) + µ
(3.22)

where tf(w, d) is the frequency of w in d, and P (w|C) is the probability of w appearing in
the entire collection. We use a risk-minimization framework to rank the documents. The
risk associated with usingMM to approximateMd is expressed by KL-divergence between
MM and Md. The documents are returned in an order of increasing KL-divergence.

KL(MM ||Md) =
∑
w

MM(w)log
MM(w)

Md(w)
(3.23)
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3.5 Experiments

We evaluated the quality of the generated query suggestions as well as the retrieved doc-
uments using our mixture model probability distribution. Section 3.5.1 describes how
our technique performs better than the state-of-the-art in the task of document retrieval.
Section 3.5.2 demonstrates that the query suggestions generated using our mixture model
are better than those generated by state-of-the-art techniques. The source code for the
techniques used is available at:

https://bitbucket.org/prajnaupadhyay/ask/src/master/

3.5.1 Experiments for Document Retrieval

In this section, we describe the experiments performed to compare the quality of top-5
documents retrieved for benchmark queries and aspects using our technique as well as
the baselines.

3.5.1.1 Setup

Dataset. We used the Open Research Corpus dataset5 for our experiments. It consists
of 39 million published research papers in the domain of computer science, neuroscience,
and biomedical. We used the title and abstract fields of the data since the full text was
not available due to copyright issues. We used Galago6, which is an API for experiment-
ing with text search to index the Open Research Corpus dataset. Some of the baseline
models (such as the query likelihood model and the pseudo relevance feedback techniques)
are already implemented in Galago.

5https://allenai.org/data/data-all.html
6https://www.lemurproject.org/galago.php

https://bitbucket.org/prajnaupadhyay/ask/src/master/
https://allenai.org/data/data-all.html
https://www.lemurproject.org/galago.php
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Aspects. We experimented with 3 different aspects, namely, application, algorithm and
implementation. Note that we can take in any other aspect—one that exists as a relation
in TeKnowbase, such as technique or software, or any other aspect as described in [76]
or [202] even if it does not exist as a relation in TeKnowbase. We set λ and β to 0.5 in
Equations (3.7) and (3.17) respectively. We restricted ourselves to meta-paths of size at
most 3, which was also the size of paths used in the Path Ranking Algorithm [111]. We set
k=5 for choosing the top-k meta-paths for generating embeddings using MetaPath2Vec
(described in Section 2.).

Benchmarks. Our benchmark queries were taken from the set of 100 queries released
by [208]. We specifically chose those queries that existed as entities in TeKnowbase to
evaluate the performance of aspect-based retrieval using KB. Out of these 100 queries,
43 existed as whole entities in our knowledge base. Note that the relevance can still
be calculated for entities not in TeKnowbase as well. For those entities, the second
component of Equation 3.19 will be zero, and the relevance will be determined by the
aspect-based distribution alone. Our queries are shown in Table 3.6.

Sr no. Query

1 artificial intelligence

2 augmented reality

3 autoencoder

4 big data

5 category theory

6 clojure

7 cnn

8 computer vision

9 cryptography

10 data mining

11 data science

12 deep learning
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13 differential evolution

14 dirichlet process

15 duality

16 genetic algorithm

17 graph drawing

18 graph theory

19 hashing

20 information geometry

21 information retrieval

22 information theory

23 knowledge graph

24 machine learning

25 memory hierarchy

26 mobile payment

27 natural language

28 neural network

29 ontology

30 personality trait

31 prolog

32 question answering

33 recommender system

34 reinforcement learning

35 sap

36 semantic web

37 sentiment analysis

38 smart thermostat

39 social media

40 speech recognition

41 supervised learning
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42 variable neighborhood search

43 word embedding

Table 3.6: Benchmark queries

Baselines. As pointed out in Section 1, we can explicitly add the keyword representing
the aspect to the query and use a standard retrieval model to generate results. We
can further use the relevance model to obtain feedback or use diversification techniques
to improve the results. Retrieving papers relevant for a query and an aspect can also
be treated as a text classification problem, where a classifier can be trained for each
aspect to assign relevant and non-relevant labels to the documents. Owing to the success
of neural networks in text classification [99], [96], [219], [212], we used state-of-the-art
neural network classifiers to classify the documents into one or more of these aspects
given a query (baseline number 6). Following are our baselines.

1. Query likelihood model with query only ( QL+query). Query likelihood
[153] estimates a language model for each document in the collection and ranks
them by the likelihood of seeing the query terms as a random sample given that
document model. Equation 3.24 describes the equation compute this probability.

P (d|q) ∝ P (q|d) =
∏

w∈terms(q)

tf(w) + µP (w|C)

|d|+ µ
(3.24)

where tf(w) is the frequency of the term w in the document d. Dirichlet smoothing
is used to smoothen this probability. µ is the parameter for Dirichlet smoothing
and is set to 1500. P (w|C) is the probability of observing the term in the entire
collection and is proportional to the frequency of the term in the corpus.

2. Query likelihood model with query + aspect name (QL + query + as-
pect). We used the same model as above, only the query was changed. We added
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the terms application, algorithm or implementation to the query based on the as-
pect required and retrieved the results. Table 3.7 gives examples of how we modified
the query for this baseline.

3. Query expansion with pseudo relevance feedback on QL + query + aspect
(QL + query + aspect + QE). We performed pseudo-relevance feedback over
the results obtained by QL + query + aspect to improve the results. The query
was expanded by 100 terms selected using the pseudo-relevance technique. Top
1000 documents were used for feedback and the weight of the original query was set
to 0.75. Given a query with k keywords q1, q2, ..., qk, the pseudo-relevance model is
described by the following equation:

P (w|q1, q2, ..., qk) =
∑
M∈M

P (M)P (w|M)
k∏
i=1

P (qi|M)

where M is the set of feedback document models. M consists of top-1000 docu-
ments retrieved by searching for query+aspect.

4. Query expansion using TeKnowbase relationships and entities. (QL +
query + aspect + TKB). This baseline uses TeKnowbase to expand the query
using relationships and entities. Given a query q and aspect described by keyword
a, we formulated a new query as q’ = q a e_1 e_2, ...e_n, where each e_i, 1 ≤ i ≤ n

is an entity connected to the entity represented by q and relation described by
keyword a in TeKnowbase. Table 3.7 lists the expanded query used for this baseline
for query variable_neighborhood_search and application aspect. The results are
then retrieved using query likelihood model.

5. Search result diversification using xQUAD and TeKnowbase. (xQUAD
+ TKB) Diversification of search results is necessary when the query submitted to
the retrieval system is ambiguous or has multiple aspects to be explored. xQUAD is
a diversification framework that uses sub-queries to retrieve diverse results. These
sub-queries cater to different aspects of the original query and help to return doc-
uments that address diverse aspects. We are specifically interested in using the
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xQUAD diversification technique with the sub-queries generated from TeKnowbase.
Given a query q and aspect a, the set of sub-queries was represented by {q a e, ∀〈q
a e〉 ∈ TKB }. For instance, for a query variable_neighborhood_search and aspect
application, the sub-queries that we used are described in Table 3.7.

The xQUAD diversification framework is described as follows. Given a query q, an
initial ranking of documents R, the number of documents to be retrieved τ and a
parameter λ, xQUAD re-ranks the set of documents in R according to a probabilistic
framework described in Algorithm 4.

Algorithm 4: xQUAD probabilistic framework

1 S = φ;
2 while |S| < τ do
3 d∗ = argmaxd∈R\S(1− λ)P (d|q) + λP (d, S̄|q);
4 R = R \{d∗}
5 S = S ∪{d∗}
6 end
7 return S

Given an initial ranking of documents R, a new ranking is iteratively computed by
choosing the document that maximizes the value returned by the following equation:

(1− λ)P (d|q) + λP (d, S̄|q) (3.25)

There are two components in this equation that model the relevance and the di-
versity of the documents. Their mixture is determined by λ. The relevance of the
document is determined by P (d|q). This value can be estimated using standard
language modeling techniques. The diversity component is described by P (d, S̄|q).
This models the probability of observing this document given that it is not already
present in the set S of documents already retrieved. To derive this component, the
set of sub-queries of the original query q is considered. These sub-queries model the
different aspects of q and help in retrieving documents that address these aspects
and are thus diverse from one another. Given a set of sub-queries Q = {q1, q2, . . . }
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generated for q, the diversity component can be further extended as follows:

P (d, S̄|q) =
∑
qi∈Q

P (qi|q)P (d, S̄|qi) (3.26)

where P (qi|q) is the probability of relative importance of qi to q. Assuming that
retrieving a document d is independent of the documents present in S, Equation
3.27 can be written as:

P (d, S̄|qi) = P (d|qi)P (S̄, qi) (3.27)

Given S = {d1, d2, . . . , dn}, P (S̄|qi) can be further written as:

P (S̄|qi) = P (d1, d2, . . . , dn|qi) =
∏
dj∈S

(1− P (dj|qi))

The final relevance equation can be written as:

(1− λ)P (d|q) + λ(
∑
qi∈Q

P (qi|q)P (d|qi)
∏
dj∈S

(1− P (dj|qi)) (3.28)

6. Neural Networks for classification (HANN). We used hierarchical atten-
tion neural networks [212] (HANN) for classifying the paper/abstract into one/-
more/none of the 3 categories: algorithm, application and implementation. The
training data consisted of 1500 annotated documents collected using the scheme as
described in Section 3.5.1.2. The training was done for 200 epochs after which the
accuracy started converging. Top 1000 candidate documents retrieved according
to query likelihood model (used in Equation (3.24)) for each query were re-ranked
according to the following equation:

P (d|q, a) = HANN(d, a) ∗ P (d|q)

where HANN(d, a) is the probability of the document being classified into aspect
a returned by the neural network classifier. P (d|q) is estimated using Equation
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(3.24).

7. Mixture Model (MM). This is our retrieval model indicated by MM and de-
scribed by the Equation (3.7). Top 1000 documents retrieved according to the
query-likelihood model for the benchmark queries were re-ranked. The documents
were returned in increasing order of KL-divergence as described in Equation (3.23).

3.5.1.2 Evaluation Methodology

Evaluation Scheme. In the absence of an extensive ground-truth dataset, we conducted
a crowd-sourced user-evaluation exercise to measure the performance of our model. We
built a web-based interface to facilitate the evaluations. We recruited students and re-
searchers of Computer Science (not directly related to the project) to conduct the evalu-
ations. A total of 110 users participated in this experiment. They were asked to evaluate
the top-5 documents returned by our method as well as competing techniques for pairs
of a given query and an aspect. Determining if a paper is relevant for a query and an
aspect is not straightforward. So, instead of asking the evaluators if a paper is relevant
for an aspect, we developed multiple rules to determine whether a paper is relevant for
the query and the aspect and asked the evaluator to answer yes or no. These rules were
already described previously in Section 3.4.3.

Evaluation Metrics. Each benchmark query and abstract pair was graded by at least 2
evaluators. We converted the response from the experts into a graded relevance scale using
the rules described in Table 3.3, 3.4 and Table 3.5. We took the average of the relevance
values marked by the two users for each query and document pair. We computed the
Precision, which is the fraction of relevant documents retrieved to the total number
of retrieved documents, and Discounted Cumulative Gain (DCG) to measure the
performance of our model as well as the baselines. DCG and precision are computed as
follows:
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Baseline Modified query Retrieval
model

QL + query +
aspect

variable neighborhood search application Query likelihood

QL + query +
aspect + QE

variable neighborhood search application Query likelihood
with pseudo-
relevance feed-
back

QL + query +
aspect + TKB

variable neighborhood search application knapsack
graph problems vehicle routing problems arc
routing

Query likelihood

xQUAD +
TKB

variable neighborhood search, sub-queries used for di-
versification were:

1. variable neighborhood search application
knapsack

2. variable neighborhood search application
graph problems

3. variable neighborhood search application
vehicle routing problems

4. variable neighborhood search application arc
routing

xQUAD

Table 3.7: Given the query variable neighborhood search and aspect application, differ-
ent queries were constructed to retrieve results for different baselines. This table lists
these queries for 4 baselines.
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DCGp =

p∑
i=1

reli
log2(i+ 1)

(3.29)

Precisionp =
1

p

p∑
i=1

reli (3.30)

where reli is the relevance score for the document retrieved at the ith position and p is
the total number of documents retrieved.

3.5.1.3 Results and Discussions

Table 3.8 shows the results for algorithm, application and implementation aspects. We
observed that for all the 3 aspects, our model outperforms the rest of the baselines in
terms of precision and DCG.

The DCG@5, precision@5, and precision@1 values for our technique for algorithm aspect
are 6.27, 0.7, and 0.75, respectively, and are the best values amongst all aspects and
all baselines. This means that at least 3 out of 5 documents retrieved by our model for
algorithm aspect were marked as relevant, and for 75% of the queries, our model retrieved
a relevant document at the 1st position. xQUAD + TKB comes second after our model,
with a DCG@5 of 5.16, precision@5 of 0.58, and precision@1 of 0.62. QL + query +
aspect + QE performs better than QL + query + aspect by using pseudo-relevance
feedback techniques to perform query expansion but performs poorer than our model. It
obtained a DCG@5 of 5.12, precision@5 of 0.58, and precision@1 of 0.61 as compared to
QL + query + aspect, which obtained a DCG@5 of 5.03, precision@5 of 0.56, and
precision@1 of 0.59. Using relations in TeKnowbase to expand the query in QL + query
+ aspect + TKB and generating sub-queries in xQUAD + TKB improved results
over QL + query + aspect + QE, but still their performances were worse than our
model. The results of the neural network classifier were evaluated to be very poor.



104 ASK: Aspect-based Academic Search

For application aspect, our model performed the best amongst all the baselines. We
obtained a DCG@5 of 2.64, precision@5 of 0.45 and precision@1 of 0.47, which implies
that the document retrieved at the 1st place for almost 50% of the queries were judged as
relevant. xQUAD + TKB comes second and obtained a DCG@5 of 2.56, precision@5
of 0.43, and precision@1 of 0.43. QL + query + aspect + TKB obtained a DCG@5 of
2.56, precision@5 of 0.43, and precision@1 of 0.41. The performance of QL + query +
aspect + QE is identical, except its DCG@5 is 2.5, which is lower than DCG@5 for QL
+ query + aspect + TKB. QL + query + aspect + TKB and QL + query +
aspect + QE both performed better thanQL + query + aspect for application aspect.
The values obtained for QL + query + aspect for DCG@5 was 2.38, precision@5 was
0.41, and precision@1 was 0.35. The results retrieved by HANN were poor.

The DCG@5 and precision@5 for implementation aspect obtained by our technique were
2.33 and 0.44, which are the best values amongst all the baselines. QL + query +
aspect + QE comes second, with DCG@5 value of 2.29 and precision@5 value of 0.37.
xQUAD + TKB and QL + query + aspect + TKB obtain the same performance
and come 3rd. They obtain a DCG@5 value of 2.0 and precision@5 value of 0.32. Both
of them performed better than the simple addition of aspect term to the query i.e. QL
+ query + aspect, which obtained a DCG@5 of 1.92 and precision@5 of 0.30. The
performance of HANN is poor for the implementation aspect as well, with 0.79 obtained
for DCG@5 and 0.16 for precision@5.

Table 3.9 shows examples for 3 queries along 3 specified aspects. By modeling the aspect
and query dependent probability explicitly, we were able to retrieve better results as
compared to changing the query by adding aspect terms and performing pseudo-relevance
feedback over the results as described in Section 1 and 3.4. The second paper retrieved
for genetic_algorithm by xQUAD + TKB for application aspect does not describe
any application of genetic_algorithm but contained a few terms like “a wide application
prospect” in the abstract due to which it was retrieved in the top positions. Both the
papers retrieved by our method address the application aspect for genetic_algorithm even
if “application” is not mentioned in the title. Using sub-queries with xQUAD + TKB
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Table 3.8: Results for algorithm, application and implementation aspect

Algorithm Application Implementation
Approach DCG

@5
p@5 p@1 DCG

@5
p@5 p@1 DCG

@5
p@5 p@1

MM 6.27 0.70 0.75 2.64 0.45 0.47 2.33 0.44 0.40
QL+query 2.69 0.3 0.33 1.42 0.25 0.22 1.05 0.16 0.23
QL+query+aspect 5.03 0.56 0.59 2.38 0.41 0.35 1.92 0.30 0.43
QL+query+aspect+QE 5.12 0.58 0.61 2.5 0.43 0.41 2.29 0.37 0.49
QL+query+aspect+TKB 5.16 0.58 0.61 2.56 0.43 0.41 2.0 0.32 0.42
xQUAD + TKB 5.16 0.58 0.62 2.56 0.43 0.43 2.0 0.32 0.42
HANN 0.77 0.1 0 0.44 0.08 0.02 0.79 0.16 0.01

for genetic_algorithm did not improve the retrieval performance over QL + query
+ aspect because genetic_algorithm is not connected to any entity via application

relation, so no sub-queries were formed for expansion. Adding relevance feedback terms
also did not work because the list of pseudo-relevant documents did not contain relevant
documents in the first place due to plain keyword-based retrieval. Similarly, for algorithm
aspect, the top 2 papers retrieved for computer_vision are not about algorithms but
overview papers and were retrieved in the top positions because of the occurrence of
algorithm in their abstracts. The papers retrieved by our model both propose algorithms
for computer vision-related problems. For implementation aspect, the first paper retrieved
by our model describes methods to parallelize autoencoder and the second paper discusses
the implementation of autoencoder on hardware, so both are relevant. The second paper
retrieved by xQUAD + TKB mentions the term implement multiple times but is not
relevant. So, it is clear that our technique models the semantics associated with the
query and the aspect better than any other keyword-based technique.
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Table 3.9: Top-2 papers retrieved for 3 queries along 3 aspects for our method and a
competing baseline

Approach genetic algorithm computer vision autoencoder

Application Algorithm Implementation

MM Genetic Ant Algorithm for
Continuous Function Opti-
mization and Its MATLAB
Implementation

Communication in
a hybrid multi-layer
MIMD system for
computer vision

Parallelizing the
sparse autoencoder

Solve Zero-One Knapsack
Problem by Greedy Ge-
netic Algorithm

Job-shop scheduling
applied to computer
vision

Memristor crossbar
based unsupervised
training

xQUAD
+ TKB

Recent Developments in
Evolutionary and Genetic
Algorithms: Theory and
Applications

Computer Vision:
Evolution and
Promise

Performance of the
Fixed-point Autoen-
coder

Comparison and Analy-
sis of Different Mutation
Strategies to improve the
Performance of Genetic
Algorithm

Raydiance: A Tan-
gible Interface for
Teaching Computer
Vision

Autoencoder using
kernel method

3.5.2 Experiments for Query Suggestion

Apart from ranking documents, we used our mixture model to generate suggestions for
a query and an aspect. We first obtained the list of candidate suggestions from relevant
documents, as described in Section 3.4.4 and then ranked them in increasing order of
divergence with the estimated mixture model. The divergence is measured according to
Equation 3.20. Top 10 suggestions were used for evaluation.
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3.5.2.1 Setup

We used the same dataset, aspects, and benchmark queries used for the document ranking
experiment (described in Section 3.5.1).

Baselines. We experimented with the following baselines:

1. Similarity based phrase search (SimSearch). This approach searches for can-
didate suggestions to find those that contain the user-submitted query. As stated
already, we can change the query by adding the keyword describing the aspect to
retrieve results. So, for each aspect, we formulated such queries and retrieved sug-
gestions that contained the query and the aspect keyword. However, this retrieved
very few suggestions. So, we only retrieved suggestions that contained the aspect
term in the suggestions and ranked them in decreasing order of score assigned by
RAKE.

2. Mixture Model. This is our technique that ranks suggestions in increasing order
of divergence with the estimated mixture model.

3.5.2.2 Evaluation Methodology

Evaluation Scheme. Due to the lack of a standard dataset for evaluation, we used
humans for evaluating the generated query suggestions. To evaluate the suggestion for
the query and the aspect, we first retrieved the top-10 documents by expanding the query
with the generated suggestion. The evaluation consists of two parts. 1) First, only the
suggestion is shown to the evaluator who is asked the following questions i) does the
suggestion contain terms apart from the query, aspect, or common modifiers like vari-
ous, common, different, etc. If yes, then it is considered interesting, otherwise, it is not
interesting. For e.g. suggestions such as “common artificial intelligence applications” or
“various artificial intelligence applications” are not interesting because apart from the
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query and the aspect terms, it only contains modifiers like common or various. Such
suggestions are simple re-phrasings of the original query. 2) The next step is to show
a suggestion and the top-10 documents retrieved to the evaluator and ask if any one of
them is relevant for the query and the aspect. The relevance of a document for the query
and the aspect is determined in a similar fashion as described in Section 4.1.2. If any one
of the top-10 documents is found to be relevant for the query and the aspect, the second
question is answered as yes. We mark the suggestion as relevant for the query and the
aspect if the answer to questions 1) and 2) is yes. For the query artificial_intelligence

and aspect application, the suggestion artificial intelligence-based financial application is
relevant because 1) it consists of terms apart from the query and the aspect which are not
common modifiers and 2) it helps retrieve a document “Innovative methods for improv-
ing portfolio management based on artificial intelligence instruments”, which is relevant
for the application aspect, at the second position, when expanded with the query. To
be relevant, the suggestion need not describe an actual application but should contain
terms that can retrieve a relevant document in the top positions. To illustrate, for the
query autoencoder and aspect application, the suggestion application layer ddos attack is
relevant, even though it does not describe an application of autoencoder because autoen-
coder has been used to detect distributed denial of service attacks. The paper “Detection
of Application Layer DDoS attack by feature learning using Stacked AutoEncoder” is
retrieved at the 1st position when this suggestion is expanded with the query.

Metrics. We used Precision to evaluate the quality of query suggestions.

3.5.2.3 Results and Discussion

The results of the evaluation of query suggestions are shown in Table 3.10. We fur-
ther filtered these results (for both the techniques) by only retaining those suggestions
that mention at least one entity from TeKnowbase. These techniques are referred to as
SimSearchE and MME. Our mixture model retrieves better suggestions than SimSearch
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for all three aspects. The best precision is observed for algorithm aspect, which obtained
a precision@10 of 0.68, precision@5 of 0.66, and precision@1 of 0.65, which is higher than
SimSearch, which obtained a precision@10 of 0.52, precision@5 of 0.5, and precision@1 of
0.35. This means that more than 6 out of 10 suggestions retrieved for algorithm aspect
on an average by our technique were relevant, and for two-thirds of the baseline queries,
we retrieved a relevant suggestion at the top position. On the other hand, SimSearch
could retrieve an average of 5 relevant suggestions out of 10 queries, and could only re-
trieve a relevant suggestion at 1st position for 35% of the queries. For the application
aspect, our technique retrieved relevant suggestions for more than 50% of the queries at
1st position, while it was only 32% for SimSearch. Our precision values were also better
than SimSearch at 5 and 10. For the implementation aspect, we retrieved a relevant
suggestion for almost 60% of the queries at the top position by using our technique, while
this percentage was 52% for SimSearch. Additionally, we were able to retrieve more than
6 out of 10 relevant suggestions on an average for the implementation aspect using our
technique while SimSearch could retrieve more than 5 out of 10. It is clear that our
technique retrieves better quality suggestions for each aspect than those retrieved using
SimSearch.

Algorithm Application Implementation
Approach p@10 p@5 p@1 p@10 p@5 p@1 p@10 p@5 p@1
MM 0.68 0.66 0.65 0.445 0.453 0.56 0.55 0.55 0.52
SimSearch 0.52 0.50 0.35 0.37 0.26 0.32 0.42 0.44 0.39
MME 0.68 0.66 0.65 0.54 0.52 0.54 0.653 0.62 0.59
SimSearchE 0.52 0.50 0.35 0.32 0.28 0.3 0.45 0.55 0.48

Table 3.10: Quality of query suggestions generated for algorithm, application and imple-
mentation aspect. MM is our technique while MME is the technique that retains only
those suggestions containing at least an entity from TeKnowbase. SimSearch is the base-
line, SimSearchE is the technique that retains only those suggestions containing at least
an entity from TeKnowbase.

Table 3.11, 3.12 and 3.13 show top-5 suggestions generated for algorithm, application, and
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implementation aspect respectively. It is clear that our technique is successful in ranking
relevant suggestions at higher positions. For instance, for computer_vision and algorithm
aspect, we are able to rank important algorithms related to computer vision, like scale
edge detection algorithm based higher as compared to suggestions like computer vision
algorithm or many computer vision algorithm retrieved by simple keyword search. For
application aspect for query genetic algorithm, the baseline retrieved suggestions that
are not relevant although they contain application. To give an idea, genetic algorithm
special-purpose application domain toolboxes retrieves paper that describes a manual for
a software that helps new users understand the genetic algorithm, which is not relevant
for application aspect. On the other hand, the suggestion genetic algorithm based data
clustering retrieved by our technique is relevant even if the application word is not men-
tioned in it. For implementation aspect, our technique ranks relevant suggestions like
model predictive control implementation in the second position and higher than baseline,
which retrieves paper presents two different implementations, which is not relevant. Also,
our technique returns suggestions like based image retrieval CBIR system, which does not
contain the word implementation, but is still relevant, because autoencoders have been
used to speed up the retrieval of images in content-based image retrieval.

Table 3.14 reports the timings required for generating the suggestions as well as ranking
the documents. The experiments were conducted on a 32-core Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz with 128GB of RAM. The computation of KL-divergence has
been parallelized for reducing the time overhead. The primary goal of this work has been
to improve the quality of results retrieved for the query and the aspect and the time
overhead can be further improved in the future.

3.6 Conclusion

In this paper, we developed ASK (Aspect-based academic Search using domain-specific
KB), which introduced and solved the task of aspect-based academic search. Given a
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Table 3.11: Comparison of the suggestions retrieved by our model and the baseline for
query computer vision and algorithm aspect

MM SimSearch

iterative optimization algorithm based computer vision algorithms
scale edge detection algorithm based computer vision algorithm
simple correlation based algorithm many computer vision algorithms
based algorithm three papers present optimization algo-

rithms
approximate algorithm based image processing algorithms

Table 3.12: Comparison of the suggestions retrieved by our model and the baseline for
query genetic algorithm and application aspect

MM SimSearch

multi objective genetic algorithm appli-
cation

genetic algorithm intrusion detection
system ppt application

genetic algorithm application genetic algorithm user runs custom ap-
plications using

adaptive genetic algorithm application genetic algorithm special purpose ap-
plication domain toolboxes

genetic algorithm greedy algorithm ap-
plication

genetic algorithm real world embedded
industrial application

genetic algorithm based data clustering genetic algorithm produce net applica-
tion java technology
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Table 3.13: Comparison of the suggestions retrieved by our model and the baseline for
query autoencoder and implementation aspect

MM SimSearch

examined memristor crossbar based im-
plementation

examined memristor crossbar based im-
plementation

model predictive control implementa-
tion

paper presents two different implemen-
tations

system performance evaluation based embarrassingly simple implementation
idf based information retrieval system model predictive control implementa-

tion
based image retrieval cbir system implementation could achieve accuracy

Times(s)/Aspects Algorithm Application Implementation
Time for documents retrieval 144 127 82
Time for query suggestion 38.41 28.35 11.82

Table 3.14: Average time taken for document retrieval and query suggestion for the 3
aspects in seconds



ASK: Aspect-based Academic Search 113

query and an aspect, ASK returns a ranked list of documents as well as query suggestions
that address that aspect for the query. The key idea used was to estimate a language
model for the query and the aspect both using a technical knowledge base. We used the
relationships in the knowledge base to represent aspects and used meta-paths to infer
such relationships over entities not connected via this relation. The final distribution was
estimated by taking a mixture of the query-independent and the aspect-query dependent
distribution. We tested our model for 43 queries and 3 aspects with satisfactory results.
The results retrieved by our mixture model were evaluated to be better than a number
of state-of-the-art keyword-based, relevance feedback, diversification, and neural models.

In the future, we can make the query suggestions more diverse to each other by adding
a diversity component while ranking, similar to the approach described in Algorithm 7
in Chapter 4. Further, we can focus on reducing the time-overhead of the aspect-based
search and query suggestions.

The aspect-based search of articles can be applied to other technical domains as well,
such a Biology/Bio-informatics. The Gene Ontology Resource stores information about
different genes and proteins, their functions and the biological processes they are in-
volved with. One such example of a triple in the GO resource is 〈TOP2A, function, DNA

topoisomerase/gyrase; participates in chromosome condensation〉, which states that the
TOP2A gene is involved in chromosome condensation. A user, who in interested to
retrieve scientific articles that describe the functions involved with a gene can specify
function as an aspect and TOP2A as the query. Additionally, gene functions can also
be inferred using our meta-path based or any other existing techniques [65] to further
improve the language model for the query and the aspect.
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Chapter 4

PreFace: Faceted Retrieval of
Prerequisites

4.1 Motivation and Problem

A student who wishes to study a new topic will face difficulty understanding certain
concepts, for which she does not have the required prerequisite knowledge. A pre-
requisite [119] for a concept a is another concept b that can be recommended to be
studied before a for a better understanding of a. For instance, the prerequisites of
convolutional_neural_network include artificial_neural_network and backpropagation,
and Figure 4.1 shows a graph of prerequisites for convolutional neural networks. The
nodes in the graph represent the prerequisites and the edges indicate the prerequisite
relationship.

Moreover, a topic in Computer Science usually has multiple aspects of understanding.
To illustrate, for the query convolutional_neural_network, the set consisting of concepts
like face_perception, data_classification and security_applications can be recom-
mended as prerequisites for the application aspect, because all of them describe ap-

115
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convolutional_
neural_network

sigmoid_
function

deep_
learning

restricted_
boltzman_
machine

rectifier_(neural_n
etwork)deep_

belief_
network

back
propagation

unsupervised_
learning

artificial_
neural_
network

multilayer_
perceptron

gradient_
descent

activation_
function

recurrent_
neural_network

perceptron

Figure 4.1: Graph of prerequisites for convolutional_neural_network

plications of convolutional_neural_network. Another set of concepts, such as matlab

and python can be recommended for the software aspect, since they help implement
convolutional_neural_network. It would be helpful to have a retrieval system that, takes
a topic as a query and returns a prerequisite graph, as shown in Figure 4.1 and prereq-
uisites suggested in groups, called facets, relevant for multiple aspects of the query, as
shown in Table 4.1.

We now discuss in detail the issues that a computer science enthusiast faces when she
comes across a new topic. She will start by querying for that topic on the web. However,
there is no guarantee that the documents returned will help her understand the topic.
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Figure 4.2: Snapshot of the first paragraph of Wikipedia page for
convolutional_neural_network as on 23 July 2020

The following examples will illustrate the scenario.

Scenario 1: Figure 4.2 shows a snapshot of Wikipedia page for convolutional_neural_-
network. This page references a number of other Wikipedia pages, such as backpropagati-
on, deep_learning and if the student is not aware of these topics, then she has to refer
to the Wikipedia pages of these concepts as well. This leads to a chain of searches, and
the student will end up spending a significant amount of time trying to understand the
concept [189]. It is desirable that there exist techniques to automatically generate a pre-
requisite graph for the query, as shown in Figure 4.1.

Scenario 2: To solve the issue described above, a number of techniques to determine
prerequisites for a concept have been proposed over the years. Most of these techniques
address this problem by constructing prerequisite functions that take in a pair of con-
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Figure 4.3: Snapshot of the libraries mentioned in the Wikipedia page for
convolutional_neural_network as on 23 July 2020

cepts and determine whether one is a prerequisite of the other [119], [116], [149] or by
constructing prerequisite graphs [198], [211] and [167]. These functions generally use
the concepts referred to in its description found on the web or textbooks. However,
it’s not necessary these concepts will lead to extraction of good quality of prerequisites.
For e.g. in Figure 4.2, concepts like image_recognition or video_recognition are also
mentioned in the Wikipedia page, along with other concepts such as computer_vision

in subsequent paragraphs. These are applications of convolutional_neural_networks,
and should be recommended to the student only if she wishes to study the applications
of convolutional_neural_networks. Similarly, Figure 4.3 lists some libraries, such as
keras or tensorflow, that are implemented in python or c. Because all of these concepts
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convolutional_
neural_network

machine_
learning

artificial_
neural_network

python

algorithm statistics mathematicsC (programming 
language)

computer_
vision

java

Figure 4.4: Prerequisites returned for convolutional_neural_network by RefD

are mentioned in the Wikipedia article for convolutional_neural_network, existing tech-
niques, such as RefD [119], return them as prerequisites, as shown in Figure 4.4. It
returns python, C (programming language) along with artificial_neural_network in the
same prerequisite graph. While some of the concepts such as artificial_neural_network
shown in Figure 4.4 should be recommended in the graph, concepts such as python or
C_(programming_language) should be suggested to the user only if she wishes to imple-
ment convolutional neural networks. As a result, existing techniques suffer from poor
precision and recall in retrieving prerequisites.

4.1.1 Problem Definition

In this section, we formally describe the terminologies that will be used throughout this
chapter. Some of these terms have already been defined in the previous chapters. We
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Table 4.1: Example of 4 faceted prerequisites retrieved by PreFace for convolut-
ional_neural_network

Facets Aspects

gradient_descent, backpropagation,
optimization

algorithm

security_application, face_perception application
activation_function, sigmoid ,
transfer_function

function

matlab, python software

include them here again for the sake of completeness.

Definition 10. Concept. A concept Ci is any technical topic that can be studied and
understood. In our case, it is an entity from the domain of Computer Science.

Definition 11. Concept Space. C is the set of all concepts called the concept space.
| C | = m.

Definition 12. Query. A query q ∈ C is a concept from the concept space about which
the user would like to study.

Definition 13. Prerequisite. A prerequisite of a concept q is another concept p that can
be recommended to be studied before q. In other words, having a knowledge of p improves
the understanding of q. This is denoted by q→p. A concept q cannot be a prerequisite of
itself, so q 6→q. Given the concept convolutional_neural_network, some prerequisites that
can be suggested are artificial_neural_network, rectifier or matlab.

Definition 14. Necessary Prerequisites. A necessary prerequisite of a concept q is a
prerequisite b which has to be studied before q. This is denoted by q=⇒b. An absence of
such a relationship is denoted by q 6=⇒b. As explained before, artificial_neural_network
and rectifier are necessary prerequisites for convolutional_neural_network.

Some properties of a necessary prerequisite are:
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1. Irreflexive: A concept q cannot be a necessary prerequisite of itself, i.e. q 6=⇒q.

2. Asymmetric: If q=⇒b, then b 6=⇒q.

3. ∀ b s.t. q=⇒b, q→b holds.

Definition 15. Prerequisite Function. Let Pf : C × C → {T, F} be any prerequisite
function. For Ci, Cj ∈ C, Pf (Ci, Cj) returns T (true) if Ci is a prerequisite of Cj,
otherwise, F (false).

Definition 16. Prerequisite Graph. PG = (V,E) is the prerequisite graph, where each
Ci ∈ C is a node in V and there exists an edge from node Ci to Cj if Cj is a necessary
prerequisite of the concept Ci.

To acquire an overall understanding, one has to understand different aspects of the
queried topic. A knowledge of a software such as matlab can help the user implement
convolutional_neural_network. So, matlab can be suggested as a prerequisite for the
software aspect of convolutional_neural_network. If the aspect is application, then a
concept such as face_perception can be recommended since it is known to be an applica-
tion of convolutional_neural_network. If the aspect is algorithm, then prerequisites such
as optimization or gradient_descent can be recommended. So, we formally describe an
aspect as follows:

Definition 17. Aspect. An aspect a is a keyword that describes some subtopic of q.
q→(p,a) denotes that the prerequisite p of q can be recommended to understand aspect a
of query q. In the context of this chapter, an aspect can be an entity or a relation in a
technical knowledge base.

Aspects can be used to define query facets. According to [56], “a query facet is a set of
items which describe and summarize one important aspect of a query. Here a facet item
is typically a word or a phrase. A query may have multiple facets that summarize the
information about the query from different perspectives.”. We extend this idea of query
facets to prerequisites of a query and define a facet as follows.
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Definition 18. Facet. A facet refers to a set F of prerequisites of q that can be recom-
mended for an aspect a of a query. This means forall p ∈ F , q→(p,a). To illustrate, the
set of concepts {matlab, octave} is a facet which can be suggested for software aspect of
convolutional_neural_network. The set of concepts {gradient_descent, optimization}
can be suggested for algorithm aspect of artificial_neural_network.

4.2 Approach and Contributions

We propose PreFace, an approach to automatically generate a prerequisite graph and
identify facets of prerequisites for a query using TeKnowbase. As already shown in Figure
4.4, existing techniques such as RefD [119] return prerequisites that may not be necessary.
PreFace retains necessary prerequisites in the prerequisite graph by using the notion of
similarity to the queried concept. We use graph embedding representations for entities
trained on TeKnowbase to determine the similarity of concepts.

Additionally, PreFace also returns facets of prerequisites for different aspects of inter-
est of the query. Existing techniques can be used to solve the two sub-problems sep-
arately, namely facet extraction [170], [63], [94] and prerequisite determination [119],
[38] i.e. we can first extract facets for a query and then only retain concepts that are
prerequisites to the query for each facet. However, this approach does not guarantee
good results. The existing query-based facet extraction systems from knowledge bases
[94, 63] use paths to group entities in a knowledge graph into facets. This may lead
to facets consisting of entities not similar to each other with respect to the query. Fig-
ure 4.5 shows the path which connects medical_imaging and fast_fourier_transform to
convolutional_neural_network. [94] constructs facets by grouping nodes connected via
the same sequence of nodes and edges from convolutional_neural_network together. In
this case, the sequence 〈convolutional_neural_network, implementation_inverse, gpgpu,

application_inverse〉 is the sequence of path that places medical_imaging and fast_four-

ier_transform in the same facet. Although both are applications of gpgpu, both of
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Figure 4.5: Path connecting convolutional_neural_network to medical_imaging and
fast_fourier_transform

them are not applications of convolutional_neural_network. So, the sequence of path
〈convolutional_neural_network, implementation_inverse, gpgpu, application_inverse〉
might not always lead to concepts that are applications of convolutional_neural_network,
but there is no way to specify this information in these techniques. As a result, it re-
turns facets that are not semantically similar to each other with respect to the query.
We address these issues in a two-step process—we first construct highly similar facets
by hierarchically clustering [50] key-phrases relevant to the query. We represent these
key-phrases as bag-of-words and entities using TeKnowbase which clusters highly similar
key-phrases into the same facet. Next, we estimate language models [153] for the facets
as well as the query. We make use of the aspect-based relevance model described in
Chapter 3 and an existing prerequisite function to estimate the aspect based relevance of
the query so that facets for different aspects are returned. Finally, these facets are ranked
in increasing order of their similarity of their language models with that of the query.

In short, PreFace takes a query in the domain of Computer Science and returns the
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following:

1. A prerequisite graph PG of necessary prerequisites, which have to be necessarily
studied before the query. For e.g, Figure 4.1 shows a prerequisite graph returned for
convolutional_neural_network. It consists of nodes such as artificial_neural_-

networks and backpropagation, which are necessary prerequisites for convolutiona-
l_neural_network.

2. A set of faceted prerequisites for them. For example, Table 4.1 shows prerequisites
for 4 interesting facets—i) algorithm, ii) application, iii) function, and iii) software

Contributions. The salient contributions of this work are:

1. Introduced the idea of necessary prerequisites and the novel problem of faceted
retrieval of prerequisites

2. Proposed techniques to construct a prerequisite graph consisting of necessary pre-
requisites.

3. Development of a language model-based framework to retrieve interesting facets for
a query of interest using TeKnowbase.

4. User evaluations to compare our approach with existing techniques for prerequisite
determination and facet extraction.

Organization. This rest of this chapter is organized as follows. Section 4.4 describes
the components of PreFace. Section 4.5 describes the experimental setup. In Section 4.3
we describe the related work in this field.
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4.3 Related Work

While ours is the first attempt at developing a retrieval model for faceted prerequisite
extraction, both of these techniques i.e. facet extraction and prerequisite determination
have been independently explored. Below we review both approaches.

4.3.1 Facet Extraction

Extracting facets (or aspects) has been studied over a long time, using knowledge graphs
and/or search results. Below we list related work in each of these areas.

4.3.1.1 Facet Extraction for Regular Search

Facets are either predefined categories on the corpus or are built dynamically based on
the query.

Static Facet Categories. Among existing works that use static facet categories are
Ontogator [129] and mSpace [170] that use RDF graphs to annotate images to facilitate
faceted browsing. [148] developed BrowseRDF, which helps the user browse an RDF
graph by providing constraints to be applied on graph properties. They also proposed
metrics to measure the quality of facets and rank them. [77] helps a user answer complex
queries using a faceted search on Wikipedia. The properties are extracted from Wikipedia
info-boxes and displayed to the user for further refining the results. gFacet[84] and Visi-
Nav [79] are tools that provide visualization of the web of data supported with faceted
filtering techniques using RDF graphs and properties.

Dynamic Generation of Facets. Among the systems that generate facets dynami-
cally are those that build SPARQL queries on the fly to be executed on the respective
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SPARQL endpoints. [64] and [63] have used these approaches to build facets for a query.
The authors proposed QDMiner [56] to retrieve facets from search results by extracting
frequently occurring lists in relevant documents. These lists were extracted from struc-
tured data in the documents, like HTML lists or tables. [94] proposed QDMKB that
improved the results generated by [56] using FreeBase. Another extension to QDMiner
was done by [102] where they improved the quality of facets generated by using a proba-
bilistic graphical model. Both QDMiner and QDMKB assume that the corpus is rich in
meta-data, which is not always true. The techniques that use knowledge bases to gener-
ate facets assume that they are sufficient, which may not be the case for domain-specific
graphs.

Constructing Faceted Hierarchies Constructing a hierarchy or taxonomy of items
from a document collection has been a popular area of research. [45] proposed a system
to construct facet hierarchies for a text corpus and then assigned the documents to each
of these facets. [199, 178, 131]. This is different from our facets which are co-ordinate
terms and not hierarchies.

4.3.1.2 Faceted Academic Search

In the context of academic search, [70] built Scienstein that allows users to search for
papers using authors or reference lists apart from the usual keyword-query search. These
tools make use of the underlying structure of the citation graph as well as machine learn-
ing techniques on the document text. [52] made an effort to provide faceted retrieval
for research papers in computer science. The facets were—publication years, authors,
or conferences. These facets are different from aspects in our scenario. [34] proposed
techniques to further categorize the relationships between the query paper and the rec-
ommended paper. These relationships are expressed in the form of facets like background,
alternative_approaches, methods and comparisons. [42] used similar facets to summa-
rize scientific papers. These facets are extracted by identifying the context of the text
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surrounding the citation. The facets used by these papers are different from the facets
that we are interested in. Our facets are facets for prerequisites of the query, which is
a concept, while the facets described in the related work are relationships between the
research papers.

4.3.2 Prerequisite Determination

Prerequisite Functions. Among the techniques that take a pair of concepts and return
whether one is a prerequisite of the other, [184] used crowd-sourcing to create a gold
standard dataset that was used to train a classifier using features from Wikipedia. This
classifier takes two concepts (names of Wikipedia pages) as input and tells whether one
is a prerequisite of the other. In [119], the authors proposed RefD using frame seman-
tics to compute prerequisites between concepts using Wikipedia. RefD represents each
concept as a frame of related concepts and measures the reference distance between two
concepts based on this representation. Wikipedia has also been used as source of features
to build a supervised classifier in [167]. The authors make use of Wikipedia clickstream
data to build the classifier. In [121], the authors used RefD to infer concept prerequisite
relationships from course prerequisite pairs. They later proposed active learning tech-
niques to reduce the amount of training data in [120]. [74] have proposed information
theoretic measures to determine dependencies between concepts in a scientific corpus. In
[149], authors have trained classifier using lecture transcripts from MOOCs to improve
the prediction of prerequisite pairs. [211] have proposed an optimization framework to
model prerequisite links among concepts as latent links which can be used to infer pre-
requisite links between course pairs across universities. Supervised learning model has
been used in [126] to determine prerequisite relations by extracting high quality phrases
from educational data.

Organization of Topics. A number of techniques have been proposed to present in-
formation in an organized manner. These include generating hierarchies over document
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collections [105] or ordering documents in a sequence. [172] proposed metro-maps to show
the developments between research papers. [201] proposed methods to generate reading
orders for a concept of interest in the domain of physics [73] and [91].

Although a number of techniques exist that solve the two sub-problems that we are con-
cerned with, to the best of our knowledge, there exists no other system that solves both
of these problems. Please note that we do not compete with any prerequisite function
or are proposing a new technique to determine prerequisites. Our approach takes any
prerequisite function and automatically identifies facets using the function and TeKnow-
base.

4.4 PreFace

We propose PreFace, which is a system to extract prerequisites as well as facets for a
queried topic of interest. Figure 4.6 shows the components of PreFace. It takes a query
and returns i) a prerequisite graph, where the nodes are the necessary prerequisites, and
the edges indicate the prerequisite relationship. ii) a ranked list of faceted prerequisites
for the query. The two components of PreFace are shown in the figure.

4.4.1 Prerequisite Graph Generation

In this section, we describe the technique to generate the prerequisite graph for a query.
We use the idea of frame semantics to represent a concept and describe it in the next
paragraph.
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Figure 4.6: Architecture of PreFace

4.4.1.1 Frame Semantics

Frame semantics [35] is a theory in linguistics developed by Charles J. Filmore. The key
idea proposed by Filmore is that a concept is defined by a set of related concepts called
frame. For instance, a concept such as knuckle has to be understood along with the
knowledge of finger, hand or arm. So, these terms constitute the frame for knuckle. A
frame is defined formally as follows.

Definition 19. Frame. Given a concept a, a frame fr for a is a set fr = {a1, a2, ..., a|fr|},
where each ai, 1 ≤ i ≤ |fr| is a concept related to a. To illustrate, a frame for
convolutional_neural_network is shown in Figure 4.7. The set of concepts that are re-
ferred to in articles or tutorials describing a can be used as a frame for a. A popular
technique to determine the frame for a is to use the concepts mentioned in the Wikipedia
page of the article describing a.

The frame plays a crucial role in determining the prerequisites of a concept. Using the set
of concepts mentioned in the Wikipedia page for convolutional_neural_network will lead
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Figure 4.7: A frame for convolutional_neural_network
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to the presence of concepts such as keras or torch in its frame. This results in retrieving
prerequisites such as python or C, which are relevant for the software aspect. Instead, if
we can determine a better frame that does not contain any of these concepts, then we
can improve the precision of necessary prerequisites.

We use the notion of similarity between the concepts to determine a better frame for a con-
cept. The key idea used is to remove concepts highly dissimilar to the queried concept from
the frame. To define the similarity between the concepts, we make use of their neighbor-
hoods in TeKnowbase. As an example, the neighborhood of convolutional_neural_network
consists of neural_network, deep_learning or machine_learning, which is also the neigh-
borhood of time_delay_network. So, both these concepts are similar to each other. On
the other hand, concepts like python or C have different neighborhoods, so their simi-
larity to convolutional_neural_network is low. Graph embedding-based techniques, like
Node2Vec, [75] are popular ways to assign vector representations to nodes in a graph in
such a way that the nodes that have similar neighborhoods are assigned vector represen-
tations closer to each other. We use the embeddings generated for entities in TeKnowbase
using Node2Vec as vector representations for the entities, using which we develop tech-
niques to prune the frame. Our technique is described in Section 4.4.1.2

4.4.1.2 Our Approach

We propose an algorithm to determine the correct frame for a query q to be used with
any prerequisite function. The idea of frames has been used previously in prerequisite
functions, like RefD [119]. Algorithm 5 describes our algorithm. After the frame has
been determined, we generate the prerequisite graph for the query using Algorithm 6.
Following steps describe these two algorithms in detail:

1. Determining Frames. As stated in the examples in Section 4.1, using the set of
concepts mentioned in a tutorial (such as Wikipedia page) as the frame for the query
returns both necessary and soft prerequisites. We have to remove such concepts from the
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Algorithm 5: Generate frames

Input: Candidates(q), q, TKB
Output: Frame: New frame computed for all candidates

1 Candidates(q) = Candidates(q) ∪ q
2 foreach e ∈Candidates(q) do
3 S = set of concepts in the original frame for e
4 // Construct new frame for a concept e

5 Let D be a |S| × |S| array
6 foreach (ei, ej) ∈ S × S do
7 Di,j = cosine_distance(V (ei), V (ej))

8 // Vi and Vj are the vector representations for entities ei and ej
obtained by training Node2Vec algorithm on TKB

9 end
10 Cluster S using agglomerative clustering with D
11 Use CH-index to choose the best cluster set and set the frame Frame(e) = the cluster to

which e belongs
12 end
13 return Frame
14

given frame. Using a similarity threshold to remove concepts from the frame, or fixing the
size of the frame to keep the k most similar entities needs an additional parameter—size
or similarity threshold as input. So, we propose the idea of partitioning the set of concepts
in the frame using agglomerative clustering [50]. The steps for partitioning and choosing
the appropriate frame are described in Lines 2–13 in Algorithm 6. It takes the query q, a
function Candidates that returns a set of candidate prerequisites for q, and TKB, which
is TeKnowbase. The set of candidate concepts are usually considered to be all concepts
reachable up to 2-hops from the Wikipedia article of the concept. We describe the steps
of the algorithm in detail as follows:

1. Let S be the set of concepts in the original frame of q, ei be each concept in S and
V (ei) be the vector representation of each ei in S.

2. We compute the pairwise distances between concepts in S using cosine distance
between their vector representations. (Lines 5–9)
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Algorithm 6: Generate prerequisite graph PG for q

Input: Frame, TKB,PF , q, Candidates(q)
Output: PG

1 // Determine prerequisites for query q using new frames

2 PC = ∅
3 foreach c ∈ Candidates(q) do
4 if PF (c, q, Frame(c), F rame(q)) == True then
5 PC = PC ∪ c
6 continue
7 end
8 P

′

C = PC

9 // Improve recall of prerequisites for q

10 foreach sibling si of q in TKB do
11 determine the cosine similarity of si with q using their embedding representations
12 end
13 L = list of siblings of q in TKB ranked in decreasing order of cosine similarity
14 foreach ei in L do
15 Candidates(ei) = Set of candidate prerequisites for ei
16 PD = ∅
17 foreach c ∈ Candidates(ei) do
18 if PF (c, ei, F rame(c), F rame(ei)) == True then
19 PD = PD ∪ c
20 continue
21 end
22 if ((P

′

C ∪ PD)− PC) < α then
23 P

′

C = P
′

C ∪ PD

24 break
25 end
26 // Construct prerequisite graph PG for q

27 Construct a graph PG where nodes belong to P
′

C

28 foreach pair of nodes (a, b) in PG do
29 Add edge from a to b if PF (a, b, Frame(b)) == True
30 end
31 From PG, delete edges (a, b) such that b is a descendant in the knowledge base’s taxonomy of a.
32 Detect cycles in PG and remove the edge that has the lowest score returned according to

prerequisite function PF

33 return PG
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3. Next, we cluster the set S using agglomerative clustering. Agglomerative clustering
[50] is a bottom-up clustering strategy that initially assumes each item in the set as
a single cluster. It then merges the most similar pairs of clusters together at each
iteration. To measure the inter-cluster distance, a single linkage clustering strategy
is used. The single linkage clustering strategy uses the distance of the most similar
items between two clusters as the distance between those two clusters. At each
iteration, two pairs of most similar clusters are merged until we are left with the
entire set S as a single cluster. (Line 10)

4. The optimum cluster is chosen using CH-index by optimizing the inter-cluster and
intra-cluster distances. The clustering that minimizes the intra-cluster distance and
maximizes the inter-cluster distance is chosen as the optimum clustering. (Line 11)

5. After we have chosen the optimum clustering, we choose the cluster the queried
concept belongs to as the frame. The concepts that belong to the same cluster
as the query are highly similar to the query, and the concepts that are assigned
to different clusters are the ones different from the query. Figure 4.7 shows the
cluster that was returned as the frame for convolutional_neural_network using our
algorithm. The original frame i.e. the set of concepts mentioned in the Wikipedia
page for convolutional_neural_network consisted of concepts such as python or C,
which now do not appear in the cluster that convolutional_neural_network belongs
to. (Line 11)

We determine the frame for every candidate prerequisite of q using the above technique.

2. Determining Prerequisites. We then use the prerequisite function RefD to
compute q’s prerequisites using the frames that we constructed for the concepts in the
previous step. RefD or the reference distance between two concepts A and B is defined
as:
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RefD(A,B) =

∑k
i=1 r(ci, B).w(ci, A)∑k

i=1w(ci, A)
−∑k

i=1 r(ci, A).w(ci, B)∑k
i=1w(ci, B)

(4.1)

where C is the concept space, each concept ci in C has a weight w(ci, A) associated
with A, and the references are encoded by setting r(ci, B) = 1, if B is referenced by ci
in either Wikipedia pages, books or cited in papers. RefD uses a threshold thresh to
determine prerequisite relationship between A and B. Using this formula, a concept A is
a prerequisite of concept B in the following way:

RefD(A,B) ∈


(thresh, 1], if B is a prerequisite of A

[−thresh, thresh], if no prerequisite relation exists

[−1,−thresh), if A is a prerequisite of B

(4.2)

Using RefD and the new frames, we determined the prerequisite relationship between
the query and all the candidate prerequisites. Our set of prerequisites are denoted by PC .
(Lines 2–7 of Algorithm 6).

3. Augmenting Prerequisites from a Similar Concept. We propose the idea
of improving the recall of retrieved prerequisites PC by identifying similar concepts and
adding their prerequisites to the set of prerequisites obtained for q. We make use of
TeKnowbase taxonomy for the same. TeKnowbase taxonomy helps us identify other
concepts which share the same parent as that of q. These concepts are called the siblings
of the query. TeKnowbase identifies the most similar sibling for q using cosine similarity
of the vector representations of the concepts trained using Node2Vec [75]. Some examples
of similar concepts that we obtained are listed in Table 4.2. For concepts which do not
have any siblings, we consider the space of all concepts ranked according to their cosine
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Figure 4.8: Prerequisite graph obtained for convolutional_neural_network using differ-
ent frame representations shown in Table 4.7. (a) Prerequisite graph obtained using
the original frame (b) Prerequisite graph obtained using the frame generated using our
technique

similarity value to q. We follow the following procedure—we maintain a list of similar
concepts ranked according to their cosine similarity with q. We compared the list of
prerequisites retrieved for q with that of the most similar concept. Let PD be the set
of prerequisites retrieved for the similar concept. We set a parameter α which is the
minimum number by which we want to increase the prerequisites retrieved for q using
similar concepts. If |PD − PC | < α, then we move to the next similar concept and add
its prerequisites. We repeat this procedure until the number of new prerequisites added
to PC is greater than α. Continuing with the example, time_delay_neural_network was
retrieved as the most similar concept to convolutional_neural_network. The prerequisites
retrieved for time_delay_neural_network consisted of feedforward_neural_network and
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Concept Similar Concept
convolutional_neural_network time_delay_neural_network
bloom_filter quotient_filter
longitudinal_redundancy_check cyclic_redundancy_check
canonical_lr_parser simple_precedence_parser
space_hierarchy_theorem time_hierarchy_theorem

Table 4.2: Similar concepts

decision_boundary, which were not retrieved for convolutional_neural_network. Adding
these prerequisites improves the recall of prerequisite retrieval for the query (Lines 10–25
of Algorithm 6). We experimentally demonstrate this in Section 4.5.

4. Constructing the Prerequisite Graph PG, Pruning and Generating Order.
For every pair of concepts in PC , we further determined if one is a prerequisite of the other
using the prerequisite function. We also removed those pairs of prerequisites (a, b) where
a was a descendant in TeKnowbase taxonomy of B. For instance, binary_search_tree
cannot be a prerequisite of binary_tree. We remove cycles by removing the edge that
has the lowest score returned by the prerequisite function (Lines 27–33). A topological
sort of the graph returns a reading order for q. Figure 4.8 (a) shows the prerequisite
graph constructed for convolutional_neural_network using RefD. RefD considers all the
concepts mentioned in the Wikipedia page of convolutional_neural_network in its frame.
This includes keras or torch. As a result, concepts such as python, C or java were returned
as the prerequisites. The prerequisite graph constructed using the frame generated by our
technique is shown in Figure 4.8 (b). It does not consist of prerequisites such as python

or C, but concepts like backpropagation or perceptron are present, which are necessary
prerequisites.



138 PreFace: Faceted Retrieval of Prerequisites

4.4.2 Generating and Ranking Facets for Prerequisites

The previous section described techniques to construct a prerequisite graph of necessary
prerequisites. In this section, we describe techniques to extract facets of prerequisites
for the queried topic. We formulate this as a retrieval problem where the system first
extracts candidate facets and then ranks them based on their relevance to the query.

query
Facet 

extraction 
Retrieval 

model

Facet 
Ranking Facet 1

Facet n
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.

.

.

.

TeKnowbase

Figure 4.9: Components of the Facet Extraction and Ranking System

4.4.2.1 Components of Facet Extraction and Ranking System

Figure 4.9 shows the components of the facet extraction system. An overview of these
components is as follows:

1. Facet extraction. As already described in Section 4.1, the quality of facets re-
trieved by existing techniques is not the best. So, we need a different technique
to extract these facets. The facet extraction component extracts candidate facets
for the query entered by the user. This component is described in detail in Section
5.1.3.1.
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2. Retrieval model. This component uses language models to model the query as
well as the facets. We propose the idea of estimating language models for the
query as well as the facets and ranking the facets based on their similarity to the
language model of the query. The language model for the query is estimated using
a prerequisite function, aspect-based retrieval model described in Chapter 3, and
TeKnowbase. This component is described in detail in Section 4.4.2.3.

3. Ranking of facets. This component ranks the set of candidate facets based on
their relevance with the query. It uses KL-divergence measure to rank the facets.
This component is described in detail in Section 4.4.2.4.

4. TeKnowbase. TeKnowbase is the backbone of our facet extraction system. It
helps in the extraction as well as the modeling the relevance of the facets.

We now describe the 3 main components of our system elaborately in the next subsection.

4.4.2.2 Facet Extraction

A facet is a group of prerequisites that describe some aspect of the query. Existing
techniques retrieved facets of poor quality because the concepts in each facet were not
highly similar to each other. To address this issue, we used TeKnowbase to ensure that
highly similar concepts belonged to a facet. We used the relevant documents returned
in the top positions for the query to generate candidate facets. The key idea used is
to extract frequently occurring key-phrases from these documents and cluster them to
generate facets. Below we describe in detail these two steps:

1. Extracting Key-Phrases from Documents. To extract key phrases relevant
to the query, we followed a similar approach that was used to extract candidate query
suggestions for a query (described in Chapter 3, Section 3.4.4). We indexed the Open
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Research Corpus dataset1 on Galago2 and retrieved top-1000 documents for a query. We
then used Rake3, a tool to extract and score essential phrases from a document. To
further clean the list of extracted phrases, we performed two data cleaning operations
as follows—i) we retained only those phrases that had a length of at most 5, and ii)
phrases with a score (returned by Rake) less than five were removed from the set of
candidate phrases. The main reason for using phrases instead of entities as facets is
because phrases capture the context better than entities. Consider the two phrases—
“applications like robot navigation” and “robots using new camera technologies” retrieved
for query computer vision. The phrases mention entities from TeKnowbase like robot

navigation, robots and camera, which are highly relevant for the application aspect for
computer vision by our aspect-based retrieval model (already described in Chapter 3
and later described in Section). Additionally, both these phrases consist of terms such as
applications and using which are not entities in TeKnowbase, but are also highly relevant
terms for the application aspect for computer vision by our aspect-based retrieval model.
So, using words along with entities helps us model the relevance of key phrases.

2. Clustering Key-Phrases into Facets. The next step is to cluster these phrases
and obtain a list of candidate facets. To cluster these phrases into semantically related
groups, we used a hierarchical clustering algorithm with complete linkage to extract our
facets. Please note that any clustering algorithm can be used to generate clusters of facets.
Before clustering, we have to represent the phrases as feature vectors. So, we used a bag
of entities representation for the key-phrases along with a bag of words. The phrases were
tagged with entities from TeKnowbase. Additionally, this set was expanded by adding
entities situated at a 1-hop distance from already tagged entities in TeKnowbase. This was
done to capture better context. Consider the phrase using backpropagation retrieved for
artificial neural networks. backpropagation will be tagged in this phrase. The triple
〈backpropagation, type, algorithm〉 exists in TeKnowbase, so algorithm exists in the

1https://allenai.org/data/s2orc
2https://www.lemurproject.org/galago.php
3https://pypi.org/project/rake-nltk/

https://allenai.org/data/s2orc
https://www.lemurproject.org/galago.php
https://pypi.org/project/rake-nltk/
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1-hop neighborhood of backpropagation, and will be added to its feature set. So, it
will now have high similarity to other phrases containing algorithm, and will appear in
the same cluster as them. The distance between the phrases was measured using cosine
distance. We adopted the agglomerative strategy for hierarchical clustering which is a
bottom-up approach. Each data point starts in its own cluster, and pairs of clusters are
merged as one moves up the hierarchy. While merging two clusters, The Complete-Link
Clustering technique [50] considers the similarity of two clusters as the similarity of their
most dissimilar members. The set of candidate facets are the clusters returned by the
hierarchical clustering algorithm.

4.4.2.3 Retrieval Model

The next step is to estimate language models for the candidate facets extracted from the
previous step. We use TeKnowbase and the Open Research Corpus [15] to estimate a
language model using the relevance equation (Equation 4.3), and then rank the candidate
facets using a probabilistic framework described in Algorithm 7. Algorithm 7 takes as
input the query q, τ , the number of facets to be returned, λ, the mixing parameter to
combine the two components of relevance equation, and F , the set of candidate facets.
It greedily selects the best facet at each iteration that balances the trade-off between its
relevance to the query and dissimilarity to the facets already retrieved. We discuss our
framework in detail in the following section.

1. Modeling Facet Relevance. The overall relevance of a facet is determined by a
query-dependent and independent component. A desirable facet should contain neces-
sary as well as soft prerequisites for the query, which is modeled by the query-dependent
component. At the same time, a facet should consist of a large number of highly similar
concepts, which is determined by the query-independent component. The overall rele-
vance is determined by combining these two components. Both of them are described as
follows:
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Algorithm 7: Probabilistic framework for PreFace (λ, τ, F, q)

1 S = ∅
2 f∗ = argmaxf∈FQ(f) ∗ 1

DKL(PreFace||Mf )

3 S = S ∪ {f∗}
4 while |S| < τ − 1 do
5 f∗ = argmaxf∈F\SQ(f) ∗ DKL(Mf ||MS)

DKL(PreFace||Mf )

6 F = F \ {f∗}
7 S = S ∪ {f∗}
8 end
9 return S

1. Query dependant facet relevance. The query dependent facet relevance is
denoted by PreFace(w|q). This equation is represented as:

PreFace(w|q) = λPreq(w|q) + (1− λ)
∑
i

P (qi|q)P (w|q, qi), (4.3)

where
∑

i P (qi|q) = 1. The query dependent facet relevance is modeled by two
components. The first component is determined by the prerequisites of q, esti-
mated using prerequisite functions. It is denoted by Preq(w|q), which is called the
prerequisite probability. This models the probability of a term w appearing in a pre-
requisite of q. The second component models the relevance for different aspects of
the query. It is denoted by

∑
i P (qi|q)P (w|q, qi), where each aspect for q is denoted

by qi. These two components are described as follows:

(a) Prerequisite probability. Preq(w|q) models the probability of a word w

appearing in a prerequisite of q. Any existing prerequisite function can be
used to estimate this probability.

(b) Query and aspect probability. We also have to identify the aspects of
the query, and then model the relevance of a term for each aspect. This is
modeled by the second component of our relevance equation. Given an aspect
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qi, the relevance of a term given a query q and aspect qi is modeled using ASK,
an aspect-based retrieval model, proposed in Chapter 3 [190]. The query and
aspect component is denoted by P (w|q, qi) and is modeled as follows:

P (w|q, qi) = γPind(w|qi) + (1− γ)Pdep(w|q, qi) (4.4)

where P (w|qi) is the component determined by the aspect alone and P (w|q, qi)
is the query dependent component, determined by both the query and the
aspect. The final relevance is given by a mixture of the two components.
γ is used to mix these two components to determine the final probability
distribution. This model has been discussed in detail in Chapter 3.

2. Query independent facet relevance. The query independent facet relevance
models the relevance of the facet, independent of the query. This is generally
determined by the strength of similarity between key phrases in a facet. At the same
time, a facet that contains a large number of similar key phrases is more important
than one that contains a lesser number of key phrases provided the strength of
similarity between the two is the same. So, we use the size of the facet as a measure
of its quality, after a similarity threshold is applied to it. The query independent
facet relevance is modeled by Q(f). This component is used while ranking the
facets.

2. Modeling Facet Diversity. The user should be recommended facets that are
diverse to one another. This means that if a facet describing the algorithms for un-
derstanding convolutional_neural_network appears in the top-k retrieved facets, it is
desirable that they are not suggested again. This is done by returning facets whose lan-
guage model diverges the least from the query and the most from the language model of
already retrieved facets. This is achieved by the following equation:

DKL(Mf ||MS)

DKL(PreFace||Mf )
(4.5)
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where Mf is the language model of a facet f , MS is the language model representation
of the set of facets already retrieved and PreFace is the language model for the query.
DKL(Mf ||MS) is the KL divergence between the language model for the facet and the
language model of already retrieved facets. DKL(PreFace||Mf ) is the KL divergence
between the language model for the query and the language model of the facet. They are
calculated according to the following equation:

DKL(Mf ||Ms) =
∑
w

Mf (w)log
Mf (w)

Ms(w)
(4.6)

DKL(PreFace||Mf ) =
∑
w

PreFace(w)log
PreFace(w)

Mf (w)
(4.7)

The language model of a facet f and set S is described by the following equations. These
models are smoothed using additive smoothing techniques.

Mf (w) =
tf(w, f) + 1

length(f) + |V |
(4.8)

MS(w) =

∑
fi∈S tf(w, fi) + 1∑

fi∈S length(fi) + |V |
(4.9)

In other words, the greater the divergence between the language model of the facet and
language model of S, the better is the facet and the lower the divergence between the
query language model and the facet language model, the better the facet.

3. Estimation of Components. In this section, we describe the techniques to esti-
mate the probabilities that are used in our probabilistic framework.
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1. Estimating Preq(w|q). This component models the probability of words likely
to appear in the prerequisites of the query. To estimate this component, we can
use any standard prerequisite function from the literature. For our work, we used
the already introduced prerequisite function, RefD (or reference distance) [119],
because it is a simple, unsupervised metric and gives good results. RefD takes
two concepts as input and returns a score for the prerequisite relationship between
them and the concepts that return a score greater than thresh are considered as
prerequisites. Given such a prerequisite function that returns a score between pairs
of concepts, we estimated Preq(w|q) as follows:

Preq(w|q) =
∑
i

βiPreqs(w|si) (4.10)

where si is the entity in that shares the same parent in TeKnowbase taxonomy.
Preqs(w|si) is estimated as follows:

Preqs(w|si) =

∑
ek∈ent(w)RefD(ek, si)∑
ek∈C RefD(ek, si)

, RefD(ek, si) > thresh (4.11)

where C is the concept space and ent(w) is the set of entities that contain the term
w in TeKnowbase. The intuition behind using a mixture of Preqs(w|si), where si is
an entity that shares the same parent as q is that siblings in TeKnowbase taxonomy
have similar prerequisites, and we can make our distribution more accurate by
including concepts that were not otherwise returned as prerequisites for the query.

2. Estimating query and aspect probability. The second component in Equation
4.3 models the query and aspect probability. To estimate this component, we have
to identify aspects for the query. These aspects should be both highly relevant to
the query have high coverage. We estimated this component using TeKnowbase.
The following steps describe the procedure to estimate the second component using
TeKnowbase.

(a) Acquiring and scoring the set of entities. We used the set of key-phrases
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retrieved using the procedure described in Section 1. to extract the set of
relevant entities E. We tagged entities from TeKnowbase in those key-phrases
and scored each entity e ∈ E using the following formula:

score(e) = co_occ(e, q)RefD(e, q), RefD(e, q) > thresh (4.12)

where co_occ(e, q) counts the number of times e and q have appeared together
in a document across all the relevant documents retrieved for q. RefD(e, q)

returns the score depicting how much is e a prerequisite of q.

(b) Using TeKnowbase entities as aspects. Having a set of entities E, we
have to partition it into groups such that each group is highly relevant to the
query as well as is semantically similar to each other. We can then choose a
representative from each group as an aspect for q. To do this, we used the
links in TeKnowbase, assuming that entities connected to each other in the
knowledge base are semantically similar to each other. We achieved this by
creating an induced sub-graph G on TeKnowbase using the set of entities in E
and then applied the star clustering algorithm [17] on G to cluster entities into
groups. The Star Clustering algorithm works on a graph and takes a similarity
threshold σ as input. It retains edges that have strength greater than σ and
then clusters the nodes of the graph into groups. It is a greedy algorithm
that chooses the node with the highest degree first and assigns all its adjacent
nodes to its cluster. It repeats the procedure with other nodes that have not
yet been assigned to any cluster. Star clustering algorithm is fast with a run
time complexity of O(V + E) and does not need the number of clusters as
input. In TeKnowbase, all links are assumed to have a strength of 1, so σ was
set to 1. After retrieving the set of clusters, we scored each cluster using the
following equation:

score(C) =
∑
ci∈C

score(ci) (4.13)

where score(ci) is the score of each entity calculated using Equation 4.12. We
retained the top-10 clusters and chose the highest scored entity in each cluster
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as an aspect. The clusters which contain more entities appearing frequently
with the query will get a higher score. The highest scored entity in that cluster
can be used as a representative.

(c) Using TeKnowbase relationships as aspects. Apart from using entities
in TeKnowbase as aspects, we expanded the set by adding relationships from
TeKnowbase as aspects. We used the aspects that were used in [190], namely
algorithm, application and implementation, and also additionally used two re-
lationship types—type and technique, as the aspects.

(d) Estimating query independent aspect probability. We estimated the
query-independent aspect probability by explicitly querying the aspect alone
and retrieving the top documents. To further clean the list, we retained only
those documents that mention the aspect term in the title or abstract. Having
this set of documents D, we estimated the query independent aspect probabil-
ity as follows:

P (w|qi) =
1

|D|
∑
d∈D

tf(w, d)∑
w′∈d tf(w′, d)

(4.14)

(e) Estimating query dependent aspect probability. We estimated this com-
ponent from both the search results and TeKnowbase. To estimate this com-
ponent from search results, we explicitly queried for q and qi and retrieved top
ranked documents. To further make our estimation accurate, we only retained
those documents that contained both the query and aspect terms in either the
title or the abstract. We then estimated P (w|q, qi) as follows:

Pdocs(w|q, qi) =
1

|D|
∑
d∈D

tf(w, d)∑
w′∈d tf(w′, d)

(4.15)

where D is the set of documents with each document containing the query and
the aspect term both. To improve the accuracy of our estimation, we made use
of TeKnowbase. TeKnowbase consists of entities connected to q via relation
described by the aspect qi. So, the words appearing in entities connected to
the q via qi should be given a higher probability. However, TeKnowbase is
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sparse, and only using those links to estimate this probability will not result in
an accurate estimation. So, we used the approach adopted in [190] and Chap-
ter 3 for improving the estimation using meta-paths in TeKnowbase. The key
idea used is to go through the pairs of entities related via a given relationship
type described by the aspect qi and extract the setMP of meta-paths between
them. We then scored every meta-path in MP according to their frequency.
Having a set of meta-paths MP = P1, P2, ..., Pn, we computed the score for
each node reachable from source ei using the Path Constrained Random Walk
Algorithm [111] as follows:

scoreei(ej) = α1hei,P1(ej) + α2hei,P2(ej) + ...+ αnhei,Pn(ej) (4.16)

where αi’s are weights for each of these paths. We set αi = count(Pi) in
Equation 4.16. Since we have to estimate a probability distribution, we con-
vert scoreei(ej) to a probability distribution using softmax and denote it as
DIei(ej).

DIei(ej) =
exp(scoreei(ej))∑

ek∈|E| exp(scoreei(ek))
(4.17)

where E is the set of entities in TeKnowbase. This is converted into PKB(w|q, qi)
as follows:

PKB(w|q, qi) =
∑
e

DIe(q) (4.18)

where w ∈ terms(e). We then compute the query and aspect probability by
mixing the probability distributions given by Equation 4.15 and Equation 4.18.
The final probability for query and aspect, both, is given as follows:

P (w|q, qi) = αPdocs(w|q, qi) + (1− α)PKB(w|q, qi) (4.19)

(f) Estimating the probability of aspect given a query. This models how
important is the aspect qi to q. All the aspects can be given equal probability
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or the probability can be proportional to score(qi), described by Equation 4.12.
Given a set of aspects, the second component of the final relevance equation
is a linear combination of the query and the aspect probabilities, described as
follows: ∑

i

P (qi|q)P (w|q, qi) (4.20)

The final relevance equation is a mixture of Equation 4.20 and Equation 4.10
and the facets are ranked using Equation 4.21.

4.4.2.4 Ranking of Facets

The facets are re-ranked at each iteration, until the desirable number (τ) of facets are
retrieved. This is described by the following equation:

f∗ = argmaxf∈F\SQ(f) ∗ DKL(Mf ||MS)

DKL(PreFace||Mf )
(4.21)

where Q(f) is the quality of a facet, described in the previous section. The facet retrieved
at this position is removed from the pool of candidate facets and added to S.

4.4.2.5 Item Ranking

After the facets have been ranked, we have to rank the entities in the facet to be shown
as prerequisites to the user. To do so, we first identified a representative element re for
each facet. We tagged entities in the facet and chose the most frequently occurring entity
as the representative. After choosing the representative, we computed the score for each
entity e tagged in the facet as follows: freq(e)sim(e, re), where freq(re) is the number of
times e appears in that facet, and sim(e, re) is the normalized cosine similarity between
the vector representations of entities e and re. These vector representations were obtained
by training the Node2Vec algorithm on TeKnowbase. The entities in each facet are then
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ranked in decreasing order of this score.

4.5 Experiments

In this section, we discuss our experiments to evaluate the quality of the prerequisite
graph as well as faceted prerequisites. The source code for our technique is available at:

https://bitbucket.org/prajnaupadhyay/preface

4.5.1 Experiments for Necessary Prerequisites

In this section, we describe the experiments to compare the quality of prerequisites re-
trieved by our technique (henceforth referred to as OWN_KB) as well as the baselines
(listed in Section 4.5.1.2).

4.5.1.1 Setup

We used TeKnowbase and a Wikipedia dump of 01 December 2015. The prerequisite
function RefD proposed in [119] was used along with our technique used to generate the
prerequisite graph described in Section 4.4.1. We note that any prerequisite function can
be used here, and our knowledge base-based technique will remain the same.

4.5.1.2 Baselines

Apart from comparing our results with the results generated by an existing prerequisite
function, we also compared our results with other techniques that can help us obtain a

https://bitbucket.org/prajnaupadhyay/preface
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better frame for the query. We used different representations for the entities in TeKnow-
base obtained from different sources, such as using Word2Vec on free text. These vector
representations can then be provided as input to our algorithm to cluster the existing
frame. This would compare how well existing representations, such as vectors obtained
using Word2Vec compare with knowledge graph embedding representations, in generating
a better frame for the query.

RefD: This is the prerequisite function described in [119]. It used the entire Wikipedia
page as a frame.

OWN_TEXT: We first trained phrase vectors for entities in TeKnowbase usingWord2Vec.
We used the text present in the Wikipedia page of each entity as input to the Word2Vec
algorithm. The embeddings generated are used in our technique as described in Section
4.4.1.

OWN_COMBINEDCONCAT: This used the concatenation of the embeddings gener-
ated from TeKnowbase and Word2Vec described in Section 4.4.1.

OWN_COMBINEDSUM: The representation here was obtained by taking a sum of
the vector representations generated from TeKnowbase and Word2Vec.

OWN_KB: This is our technique, outlined in Section 4.4.1, that uses the pruned frame
generated using embeddings from the knowledge base and adds the prerequisites of a
similar entity.

4.5.1.3 Benchmarks

We selected 35 concepts as our benchmark queries which cover different sub-topics of
computer science like data structures, algorithms, systems, and machine learning. They
are listed in Table 4.3.
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Table 4.3: Benchmark queries

Sr no. Query
1 adaboost
2 adaptive_huffman _coding
3 associative _array
4 avl_tree
5 b-tree
6 beam_search
7 bidirectional _search
8 binary_heap
9 binomial_heap
10 bloom_filter
11 brownboost
12 cache _invalidation
13 canonical_lr _parser
14 circular _buffer
15 clock _synchronization
16 convolutional _neural_network
17 d-ary_heap
18 database_index
19 finalizer
20 fractal_tree _index
21 logitboost
22 longitudinal _redundancy_check
23 luhn_mod_n _algorithm
24 message_passing
25 multi_level _feedback_queue
26 quotient_filter
27 radix_tree
28 reference _counting
29 serializability
30 space_hierarchy _theorem
31 time_hierarchy _theorem
32 van_emde_boas _tree
33 vector_clock
34 verhoeff _algorithm
35 wavl_tree



PreFace: Faceted Retrieval of Prerequisites 153

4.5.1.4 Gold Standard

The gold-standard list of prerequisites for the 35 concepts was generated by 2 experts. We
divided the concepts between them. At first, we made a list of prerequisites returned by all
the techniques (our technique as well as the baselines) for each concept. We showed this
list to them and asked them to choose the necessary prerequisites. Later, we asked them
to add prerequisites that were not returned by any of the techniques. We ensured that
the concepts added by the experts had a Wikipedia page by manually looking for them on
Wikipedia because we are using Wikipedia for our experiments. For instance, concepts
like hash_function and hashing which were included as prerequisites for bloom_filter

were treated as one because there is no separate Wikipedia page for hashing (they repre-
sent the same concept). Also, the experts included false_positive and false_negative

as prerequisites to bloom_filter. On looking for a Wikipedia page for these concepts,
we found that there was one combined page—false_positives_and_false_negatives de-
scribing both these concepts and no separate Wikipedia pages for both. So, we used
false_positives_and_false_negatives in such cases. Finally, the experts exchanged their
list of prerequisites to proofread the list of prerequisites written by the other. Differences
were resolved by discussion. The average number of prerequisites was 11 per concept with
the minimum and maximum being 8 and 15 respectively.

4.5.1.5 Evaluation Methodology and Metrics

Precision, Recall and F1-Scores. We evaluated the quality of prerequisites first. For
each benchmark query, we computed the precision, recall, and F1 scores using the gold
standard. We also compared the precision and recall values after using different frames
and adding prerequisites from a similar concept.

Quality of Prerequisite Graph. In addition to measuring the accuracy of the nodes
in the prerequisite graph, it is also important that we measure the quality of the reading
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order that the prerequisite graph generates. To do this, we have to evaluate the edges
and edge sequences in the graph. Since we do not have the gold standard values for every
pair of concepts in the reading order, we relied on the expert’s judgment for the same.
We asked two experts to rate each edge (a, b) in PG on a scale of 1 to 4. That is,

Option 1. When b has to be necessarily studied before a

Option 2. When b is a field of study i.e. a is a concept belonging to the broad area of b

Option 3. When a is a necessary prerequisite of b, i.e. inversely related

Option 4. When b is relevant for implementation or some other aspect of a and should
not be suggested as necessary prerequisite for a

We computed the accuracy of edges as follows:

Acc1 =

∑
ei∈E1

I(ei)

|E1|
,where I(ei) = 1, if the edge ei

is either marked as Option 1, else I(ei) = 0

(4.22)

where E1 is the set of all edges in the prerequisite graph.

Only evaluating the edges in PG is not enough. A graph PG with 5 edges all marked either
as Option 1 except one will have 0.8 as the value for Acc1. The value of Acc2 will be 0 if
all the edge-sequences of length 2 involve the edge not marked as 1. So, it is important
that we also evaluate the edge sequences of length 2. The accuracy of edge-sequences of
length 2 is computed as follows:

Acc2 =

∑
ei∈E2

I(ei)

|E2|
,where I(ei) = 1, if both the edges in edge sequence ei

are marked as Option 1 or Option 2, else I(ei) = 0

(4.23)

where E2 is the set of all edge-sequences of length 2 in the prerequisite graph.
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Representation Scheme Precision Recall F1-Score
RefD 0.25 0.36 0.25
OWN_KB 0.77 0.31 0.41
OWN_TEXT 0.25 0.12 0.13
OWN_COMBINEDCONCAT 0.48 0.24 0.30
OWN_COMBINEDSUM 0.39 0.22 0.26

Table 4.4: Precision, Recall and F1 scores obtained after using different frames for differ-
ent baselines. Pruning the frame improves the precision of necessary prerequisites

Representation Scheme Precision Recall F1-Score
RefD 0.25 0.36 0.25
OWN_KB 0.74 0.60 0.62
OWN_TEXT 0.21 0.15 0.14
OWN_COMBINEDCONCAT 0.42 0.37 0.35
OWN_COMBINEDSUM 0.35 0.34 0.30

Table 4.5: Precision, Recall and F1 scores obtained after identifying the most
similar sibling using OWN_KB, OWN_TEXT, OWN_COMBINEDCONCAT and
OWN_COMBINEDSUM and adding its prerequisites. The prerequisites of siblings from
knowledge graph taxonomy are roughly the same and improve recall by a significant
margin

4.5.1.6 Results

Precision, Recall and F1 Scores. Table 4.4 compares the precision, recall and
F1 scores of different baselines after improving the frames. OWN_KB obtains the
best precision of 77%. RefD, OWN_COMBINEDCONCAT, OWN_COMBINEDSUM and
OWN_TEXT obtain 25%, 48%, 39% and 25% precision respectively. Clearly, this is
due to using better frames generated by our technique on TeKnowbase. The recall of
OWN_KB is 31% and lower than that of RefD but it still performs better in terms
of F1-score while the recall obtained by OWN_TEXT, OWN_COMBINEDCONCAT and
OWN_COMBINEDSUM are even worse.
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Our technique to identify the sibling/most similar concept and add its prerequisites im-
proved the recall of prerequisite retrieval. We used this idea with different baselines as
well—OWN_KB, OWN_COMBINEDCONCAT, OWN_TEXT and
OWN_COMBINEDSUM. Table 4.5 shows the precision and recall values after this func-
tion improves the recall for each of the techniques. The precision of OWN_KB before
adding was 77% but the recall was low—only 31%. The recall improved to 60%, al-
most by a factor of 2 at the cost of bringing the precision down by only 4% and im-
proving the F1-score from 0.41 to 0.62. Hence, it performs the best. However, the
improvement is not very significant for OWN_TEXT, OWN_COMBINEDCONCAT or
OWN_COMBINEDSUM. The reason is poor quality of frames retrieved by them that
returned non-relevant prerequisites. The recall of OWN_COMBINEDCONCAT improved
from 24% to 37% at the cost of bringing precision down from 48% to 42% and the F1-
score increased from 0.30 to 0.35. The performance of OWN_COMBINEDSUM is worse
than OWN_COMBINEDCONCAT for precision but better in terms of recall. The F1-score
retrieved by OWN_COMBINEDCONCAT is better than
OWN_COMBINEDSUM. OWN_TEXT performs the worst. Its recall increased by a
small margin—from 12% to 15% at the cost of 4% reduction in precision—25% to 21%,
with a meagre increase in F1-score. The reason for it performing poorly is using con-
cepts that occur near to each other in text in the frame, as justified using example of
convolutional_neural_network in Section 4.4.1. The poor performance of OWN_TEXT

led to the sub-par performance of OWN_COMBINEDCONCAT and OWN_COMBINEDSUM

since they are constructed from OWN_TEXT embeddings. Overall, OWN_KB performs
better than each of the other techniques due to the better quality of frames.

User Evaluation. Table 4.6 lists the accuracies—Acc1 and Acc2 obtained from user
evaluation. The accuracies were calculated as described in Section 4.5.1.5. Again, the
prerequisite graph generated using OWN_KB obtains the highest accuracy of 84% for
edges and 68% for edge sequences of length 2. OWN_COMBINEDCONCAT obtains an
accuracy of 62% for the edges which is not bad but performs poorly for edge sequences
of length 2 (44%). OWN_COMBINEDSUM performs similarly and obtains 61% accuracy
for edges and 39% for edge sequences of length 2. However, they perform better than
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Representation Scheme Acc1 Acc2
RefD 0.39 0.17
OWN_KB 0.84 0.68
OWN_TEXT 0.45 0.25
OWN_COMBINEDCONCAT 0.62 0.44
OWN_COMBINEDSUM 0.61 0.39

Table 4.6: Results from user evaluation

RefD. This is evident because we earlier found that OWN_COMBINEDCONCAT and
OWN_COMBINEDSUM obtained better precision than RefD. The prerequisite graph
generated using OWN_TEXT performs the worst with 45% and 25% accuracies for edges
and edge sequences of length 2. Overall, OWN_KB is the winner.

Discussion. Figure 4.10 (a) shows the prerequisite graph generated for convolutional_neu-
ral_network using the baseline OWN_TEXT. It uses vector representations for entities
in TeKnowbase obtained using Word2Vec algorithm. It obtained the vector represen-
tations for the entities using the text of the Wikipedia pages for training. Table 4.7
shows the frame that we obtained for convolutional_neural_network by clustering the
original frame using OWN_KB as well as OWN_TEXT. The frame that was gener-
ated for convolutional_neural_network using OWN_TEXT contained a number of con-
cepts which should not be present in the frame of convolutional_neural_network. How-
ever, the frame generated by OWN_KB returned relevant concepts in the frame. The
most similar entity for convolutional_neural_network identified using text embeddings
was gesture_recognition. gesture_recognition is a concept relevant for the applica-
tion aspect for convolutional_neural_network, but it was returned as the most similar
concept because they appear together in text multiple times. On the other hand, the
most similar concept returned by OWN_KB was time_delay_network. The prerequisite
graph for time_delay_network returned concepts such as feedforward_neural_network and
decision_boundary which were not returned in the prerequisite graph for convolutional_ne-
ural_network. This led to improvement in recall of retrieved prerequisites.
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Figure 4.10: Prerequisite graph obtained for OWN_TEXT and OWN_KB (a)
prerequisite graph obtained for convolutional_neural_network using OWN_TEXT.
The most similar concept returned using our techniques and word embed-
dings for convolutional_neural_network was gesture_recognition and its the pre-
requisite graph is also shown in the figure. (b) Prerequisite graph ob-
tained for convolutional_neural_network using our technique and embeddings gen-
erated from TeKnowbase. The figure also shows the prerequisite graph for
time_delay_neural_network, which was identified as the most similar concept to
convolutional_neural_network.
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Baseline Frame generated for convolutional_neural_network

OWN_KB deep_belief_network, artificial_neural_network,
rectifier_(neural_networks), multilayer_perceptron,
backpropagation, deep_learning, convolutional_neural_network,
sigmoid_function, neocognitron, recurrent_neural_network,
long_short-term_memory, time_delay_neural_network

OWN_TEXT c_sharp, apache_spark, per-comparison_error_rate,
deep_belief_network, hyperparameter_optimization,
long_short-term_memory, reti, facial_recognition_system,
neocognitron, c, stride_of_an_array, nonlinear_filter,
recommender_system, medical_image_computing, dlib, q-learning,
gnu_go

Table 4.7: The frames generated for convolutional_neural_networks by our technique
OWN_KB and the baseline OWN_TEXT

Hence, we saw that using embeddings from our technical knowledge base resulted in both
improved precision and recall. The improvement in precision was due to better frames.
By choosing the entities with similar neighborhoods in TeKnowbase to be added to the
frame, we retrieved the necessary prerequisites. The recall improved because we were
able to identify the most similar concept to the query and use its prerequisites. We
also saw that knowledge graph embeddings performed better than text or text and KB
concatenated embeddings in obtaining better precision and recall.
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4.5.2 Experiments for Faceted Prerequisites

4.5.2.1 Setup

We experimented with the Wikipedia and the Open Research Corpus datasets. We in-
dexed the Open Research Corpus4 on Galago5 and used it to retrieve top-1000 results for
each query. We evaluated the top-5 facets for each query and in each facet, the top 3
items for each query.

4.5.2.2 Benchmark Queries

We chose 30 queries from the set of topics released by [116] (listed in Table 4.8), which
is a set of concepts annotated with their prerequisites. We used these annotations to
measure the precision of prerequisites retrieved by our technique as well as the baselines.
We additionally conducted user studies to evaluate the precision of concepts that were
retrieved but not already in that dataset. We restricted ourselves to queries that have
a Wikipedia page because the prerequisite function RefD uses Wikipedia to compute
reference distance between concepts.

4.5.2.3 Baselines

As already stated in Section 4.1, we can solve the two sub-problems separately using
existing state-of-the-art techniques, as in the baselines mentioned below:

1. QDMKB + RefD. QDMKB [94] is a state-of-the-art facet retrieval technique for
extracting facets from knowledge bases and search results. It improves upon the results
of its predecessor, QDMiner [56], and other state-of-the-art techniques QF-I and QF-J

4http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/
5https://sourceforge.net/p/lemur/wiki/Galago/

http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/
https://sourceforge.net/p/lemur/wiki/Galago/
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Sr no. Query
1 artificial neural network
2 backpropagation
3 collaborative filtering
4 computer vision
5 conditional random field
6 context -sensitive grammar
7 cross entropy
8 dimensionality reduction
9 generative adversarial networks
10 genetic algorithm
11 gradient descent
12 hidden markov model
13 latent dirichlet allocation
14 linear regression
15 logistic regression
16 optical character recognition
17 pagerank
18 probabilistic context-free grammar
19 question answering
20 recursive neural network
21 regular expression
22 reinforcement learning
23 sentiment analysis
24 shallow parsing
25 singular value decomposition
26 spectral clustering
27 speech recognition
28 statistical machine translation
29 word-sense disambiguation
30 word2vec

Table 4.8: Benchmark queries
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[102]. It uses a knowledge base for returning facets. QDMKB groups together entities into
facets on the basis of their being connected via a sequence of nodes and edges. RefD is a
state-of-the-art prerequisite function already described in Section 4.4.1. We implemented
QDMKB and extracted facets for a query on TeKnowbase. Then, for each facet, we
retained only those entities that were returned as prerequisites for the query according
to RefD.

2. RefD + TKB. We can also retrieve facets for prerequisites of a query by cluster-
ing them into groups. We used TeKnowbase links to cluster the candidate prerequisites
into meaningful groups. We obtained the candidates for the query from its top-ranked
search results by tagging entities in the phrases extracted from those results. We then
constructed an induced sub-graph from those entities on TeKnowbase and applied the
star clustering algorithm [17]. This same procedure was used to automatically determine
aspects by clustering the entities using TeKnowbase links using the star clustering algo-
rithm. Each cluster was scored according to the following equation. The clusters were
then ranked according to score(C) (Equation 4.24).

score(C) =
∑
ci∈C

RefD(ci, q), RefD(ci, q) > thresh (4.24)

3. PreFace. This is our technique that extracts facets by clustering them and then
ranks by representing them as language models. They are ranked according to a proba-
bilistic framework described by Algorithm 7.

4.5.2.4 Evaluation Scheme

There are two components to evaluate—1) quality of facets 2) quality of prerequisites.
Owing to the lack of a standard dataset for evaluation, we used human evaluators (com-
puter science researchers) to evaluate the generated facets. The top 5 facets with 3 items
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each were shown to two evaluators (computer science researchers) who evaluated them
for their quality.

Evaluation of Facet Quality. To evaluate the quality of facets retrieved, we conducted
the following experiments. Each facet was evaluated for the quality of clustering and
ranking of facets. We used semantic similarity to measure the quality of clusters retrieved
by each technique and DCG (Discounted Cumulative Gain) to measure the ranking of
facets. The methodology to evaluate both the qualities is described as follows:

1. Ranking of facets. To evaluate the ranking quality, each user was shown a rep-
resentative concept from each facet and asked if that concept was relevant to the
query. To further assist the user, the 3 most similar concepts to the representative
concept were also shown to get an idea about the facet. Based on this, the user
had to decide if this facet was relevant. Some instructions that were provided to
the users are shown in Table 4.9. For Preface, the entity that was most frequently
occurring in the facet was shown as the representative. For RefD + TKB, the
representative was the star center of each cluster generated by the star clustering
algorithm. For QDMKB + RefD, we chose the item in the facet that obtained
the highest score for RefD. The relevance scores could be 0: not relevant at all, 1:
somewhat relevant, and 2: highly relevant. We then used these scores to compute
DCG values to judge the ranking quality.

2. Clustering Quality. We have to evaluate the quality of facets generated by our
technique as well as the baselines. Our facets were generated by clustering phrases
extracted from top-k documents where each phrase was represented using features
from TeKnowbase. The competitors are i) a state-of-the-art facet extraction al-
gorithm QDMKB on TeKnowbase combined with the prerequisite function RefD
and ii) facets extracted by clustering entities using star clustering algorithm on
TeKnowbase. To judge the clustering quality, we asked the user to score the simi-
larity between other entities in the facet to the representative of the facet. The score
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Relevance
score

Criteria

0 Representative concept is a field of study or is too broad
a concept to be a facet topic

1 Representative concept is ambiguous, but the facet as a
set of concepts is coherent

2 Representative concept is very related to the query and
to the other concepts in the facet

Table 4.9: Criteria for different relevance judgements for ranking quality

could be 2: very similar, 1: somewhat similar, and 0: not similar at all. To illustrate,
quadratic_convex_function and general_smooth_nonlinear_function_approximator

are similar to each other because both are functions, whereas algorithm and integer

are not similar to each other. For PreFace, we showed the top-3 most similar ele-
ments to the representative in the cluster. For RefD+ TKB, we showed the top-3
entities that were added to the clusters after their star centers were chosen. For
QDMKB + RefD, the top 3 entities returned according to their prerequisite scores
were shown. We computed the score for each pair and normalized the similarity
score so that it lies between 0 and 1.

Evaluation of Prerequisites. Apart from evaluating the quality of facets, we also have
to evaluate the prerequisites retrieved by our technique. We used the set of prerequisite
concept pairs released by [116] as the ground truth. Since the definition of our prerequi-
sites is broader than in earlier work, we performed a user study to judge the relevance of
prerequisites not present in the dataset. Each prerequisite was annotated by 2 evaluators
(computer science researchers) with scores of 0 or 1. A score of 1 was assigned if the
prerequisite was judged to be necessary or supplementing the understanding of the query.
The same set of concepts that were shown to the user for evaluating the quality of facets
were shown to be evaluated as prerequisites for all the baselines.
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Techniques DCG
@5

Cluster
similarity

PreFace 5.80 0.95
QDMKB +
RefD

4.26 0.80

RefD + TKB 5.56 0.77
(a)

Techniques Precision
PreFace 0.76

QDMKB + RefD 0.636
RefD + TKB 0.68

(b)

Table 4.10: Tables showing results for a) DCG and cluster similarity values for facet
ranking and facet quality, respectively, for all 3 techniques b) Precision of prerequisites
retrieved by PreFace and competing techniques.

4.5.2.5 Results and Discussion

Facet Quality. Table 4.10 (a) shows the values for facet quality for all 3 techniques.
Our technique outperforms the baselines in retrieving better quality of clusters and their
ranking.

1. Clustering Quality. The average cluster similarity for our technique was 0.98,
which is very high and the highest among other techniques. This was possible
because of the bag-of-words and entities representation of items using TeKnow-
base. QDMKB + RefD obtains a cluster similarity score of 0.8. The reason for
it performing worse than PreFace is that not all properties return a coherent
set of facets. As already pointed out in Section 5.1.3.1, the facets generated by
QDMKB + TKB on TeKnowbase are poor in quality, because the sequence of
edges that they use as properties may not lead to similar entities, and they also
miss out on a number of prerequisites of the query. The property represented by
the sequence of edges implementation_inverse, gpgpu, application_inverse from
convolutional_neural_network leads to medical_imaging and fast_fourier_transform,
which are returned in the same facet, when actually, they are not relevant for the
same aspect for convolutional_neural_network. medical_imaging is an applica-
tion of convolutional_neural_network, while fast_fourier_transform is a technique
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used by convolutional_neural_network. This is clearly not a good clustering be-
cause the entities are not semantically similar to each other with respect to the
query. RefD + TKB obtains a cluster similarity score of 0.77. The reason for the
lower similarity value is that the semantics of relations are not considered while
clustering the entities. For instance, the 3rd facet retrieved by RefD + TKB con-
sists of programming_language, computer_science, data_mining. This set is not a
highly coherent set of concepts but has appeared in a single cluster because they
are connected to each other in TeKnowbase via the triple 〈programming_language,
issoftware_notations_and_tools(relatedTo), computer_science〉. As a result, they
were assigned to the same cluster by RefD + TKB.

2. Ranking quality. The ranking quality of the facets is measured using DCG.
Our technique outperforms the baselines in the ranking of facets. QDMKB +
RefD performs worse because it fails to retrieve at least 5 facets for all the queries.
RefD + TKB performs better than QDMKB + RefD but worse than PreFace.
The reason for this is for most of the queries, some of the facets retrieved at the
top positions have a field of study as the representative element, such as suggesting
a facet about statistics or mathematics is not a good idea. Overall, PreFace
generates good quality facets as compared to its competitors.

Quality of Prerequisites. Table 4.10 (b) shows the precision of retrieved prerequisites.
PreFace outperforms both the baselines by obtaining a precision of 0.76 across all queries.
RefD + TKB comes second in retrieving prerequisites to our technique because it uses
RefD to construct facets. It obtains a precision of 0.68. QDMKB + RefD performs the
worst because it returns few prerequisites in each facet and the facet is also not relevant to
the query. Table 4.11 shows the prerequisites retrieved for convolutional_neural_network
for PreFace, RefD + TKB and QDMKB + RefD. QDMKB + RefD retrieved prerequi-
sites like control_system or integrated_circuit because they were items in its facets but
are not prerequisites. PreFace retrieves correct prerequisites like image, algorithm and
optimization in facets that are coherent. This shows that our retrieval system is able to
return better prerequisites than other techniques.
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Table 4.11: Facets containing prerequisites retrieved for convolutional_neural_network
by PreFace, QDMKB + RefD, and RefD+TKB for top 3 facets

PreFace QDMKB + RefD RefD + TKB

algorithm,
genetic_algorithm,
backpropagation,
gradient_descent

artificial_neural_network,
genetic_algorithm,
support_vector_machine

algorithm,
genetic_algorithm,
evolutionary_algorithm,
logic

function,
transfer_function,
activation_function,
linear_function

artificial_intelligence,
parsing

statistics, feature,
mathematics,
regression_analysis

computer_security,
parallel_computer,
security_systems,
security_applications

machine_learning,
rgb_images

programming_language,
computer_science,
data_mining

4.6 Conclusion

In this chapter, we have developed PreFace, a system to automatically generate a pre-
requisite graph and faceted prerequisites for a concept of interest. To the best of our
knowledge, ours is the first system that solves this problem. PreFace extracts and ranks
facets by using a language model representation for the facets and balancing the trade-off
between its relevance and diversity. The probabilities are estimated using a domain-
specific knowledge base in Computer Science and a large corpus of research papers. Our
evaluation of the results over a benchmark set of queries shows that PreFace retrieves
better facets and prerequisites than existing state-of-the-art techniques.
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Chapter 5

PreFace++: Faceted Retrieval of
Prerequisites and Technical Data

We have developed PreFace++ [194], a prototype and an extension of PreFace [193]. Like
PreFace, it takes a technical entity as a query and generates a prerequisite graph for the
query, consisting of its necessary prerequisites. It also identifies interesting facets for the
query and recommends prerequisites for them. The additional functionality included in
PreFace++ is the retrieval of research papers and technical posts for the different facets
identified by PreFace. It makes use of TeKnowbase, the Open Research Corpus1 and the
StackOverflow dataset 2 for the same.

5.1 System Architecture

The architecture of PreFace++ is shown in Figure 5.1. It consists of 4 main parts.

1https://allenai.org/data/s2orc
2https://archive.org/download/stackexchange
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Figure 5.1: Architecture of PreFace++. Apart from returning a prerequisite graph and
faceted prerequisites, it also returns research papers and technical posts from StackOver-
flow relevent to the query and the facets.

5.1.1 TeKnowbase.

TeKnowbase [191] forms the backbone of our system. The construction and evaluation
of TeKnowbase have been described in Chapter 2.

5.1.2 Prerequisite Graph Generation

PreFace++ takes a query, which can be any technical entity in Computer Science as input
and returns a prerequisite graph. The nodes in the graph are necessary prerequisites and
the edges indicate a prerequisite relationship. To construct this graph, we follow the
following steps:

1. We constructed a tree by traversing the concepts mentioned in the first paragraph
of the Wikipedia page of the query for two hops.
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2. However, not all the concepts mentioned in the first paragraphs are prerequisites. To
remove such concepts and only retain necessary prerequisites, we first used RefD
[119]. A drawback of only using RefD is that it returns prerequisites for differ-
ent facets together along with the necessary prerequisites. So, we have to remove
concepts belonging to different facets.

3. To remove concepts belonging to different facets from the prerequisite graph, we
used the idea of similar neighborhoods. We have observed that prerequisites rele-
vant for different facets of the query share different neighborhoods in TeKnowbase.
We captured the idea of neighborhoods using knowledge graph embeddings gener-
ated using Node2Vec [75] on TeKnowbase. Node2Vec assigns vector representations
closer to each other to concepts that share similar neighborhoods. So, concepts that
are prerequisites for different facets get vector representations farther away from the
query’s. So, we retained only those concepts in the prerequisite graph whose sim-
ilarity exceeds a given threshold from the queried concept. The cosine similarity
between the vector representations of the concepts was used as a measure of the
similarity between the concepts. Only those concepts that satisfy the following
equations are retained:

cosine_sim(V (q), V (e)) > thresh,RefD(q, e) > θ (5.1)

where thresh is the similarity threshold between the concepts, θ is the threshold
used by RefD, and V (e) is the vector representation of concept e obtained by
training Node2Vec algorithm on TeKnowbase. The similarity between the concepts
is measured using the cosine similarity between their vector representations.

5.1.3 Facet Generation and Ranking

This component determines interesting facets and prerequisites for the query. The details
of this procedure have been described in Chapter 4. To make the technique work faster,
we used an alternative approach to generate candidate facets.
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5.1.3.1 Candidate Facet Generation

The candidate facets were generated by clustering the keyphrases relevant for the query.
These key phrases were extracted from the top-k relevant documents for the query in
the Open Research Corpus dataset. Additionally, we extracted more keyphrases from
posts where the query has been tagged in 14 topics from the StackOverflow dataset. We
used the tool RAKE to extract these keyphrases. The procedure to generate candidate
facets in Chapter 4 and [193] uses hierarchical clustering with complete linkage, which
is a time-consuming operation. So, we used a faster approach for generating candidate
facets from the phrases. We describe the steps of this approach as follows:

1. First, we tagged entities from TeKnowbase in keyphrases relevant for the query.

2. Then, we represented the keyphrases using a bag of words and entities and expanded
this set by adding entities situated at a 1-hop distance from already tagged entities
in TeKnowbase to capture better context.

3. Then, for each entity that was tagged, we chose a set of similar phrases based on the
Jaccard similarity of the entity with the phrase until a given similarity threshold
was crossed.

4. So, we were finally left with a set of clusters of phrases which were returned as
candidate facets.

5.1.3.2 Retrieval

The facets extracted from the previous step and the query were then represented as
language models (LMs) [153], which assume that the query and documents are samples
of underlying probabilistic processes. To estimate the LM of the query, we used RefD
and our earlier proposed technique on aspect based retrieval (Chapter 3, [190]) using
TeKnowbase. The details about the estimation of these LMs is given in Chapter 4 and
[193].
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5.1.3.3 Ranking of Facets.

Then, the facets were ranked balancing the trade-off between their relevance to the query
and diversity among each other. KL divergence was used as a measure of dissimilarity
between the LMs of the facets and the query, described in detail in [193].

5.1.4 Retrieval of Research Papers and Technical Posts

This component returns the following:

1. Sentences containing the Query and the Facet Terms. To better under-
stand the relationship between the query and the facet terms, PreFace++ returns
sentences from the corpus where they occur together in a sentence.

2. Relevant Research Papers and Technical Posts. Not all the prerequisites
identified for the facets co-occur with the query in a sentence. So, PreFace++
allows the user to explore research papers from Open Research Corpus and technical
posts from StackOverflow relevant for the query and the facet. Given the terms in
the query qt and the terms in the facet ft, we formulate a query qnew = qt ft and
retrieve the research papers abstracts according to the query likelihood model [153]
implemented in Galago. The technical posts from StackOverflow are retrieved by
querying for qnew in StackOverflow.

5.2 System Implementation

5.2.1 Front End

We used PHP and Javascript to develop the front end and the D3 library to render the
prerequisite graph. The user interface provides auto-completion for the query as the user
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Figure 5.2: (a) Auto-completion options for the partially completed string
artificial_neur, (b) Prerequisite graph returned for artificial_neural_network. The
nodes in this graph are the necessary prerequisites. An edge from node a to b indicates
that b is a prerequisite of a, (c) Two facets (software and cancer) with their prerequisites
extracted for artificial_neural_network. The sentences where the facet terms and the
query co-occur are also shown.
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enters the terms in the search box. These are generated by querying for the entered
string in the back-end database (MySQL) of entities using AJAX. Figure 5.2 shows the
auto-completion options obtained for the string artificial_neur, the prerequisite graph,
and 4 facets retrieved for artificial_neural_network.

5.2.2 Back End

We used Apache Tomcat and Java Servelets to set up our server. The top-1000 documents
relevant for the query were retrieved from Open Research Corpus indexed on Galago. We
created indexes on StackOverflow data to retrieve posts relevant to the query. Next, we
extracted keyphrases from these posts and documents using a Java implementation of
RAKE3. We stored pre-extracted key-phrases and LMs for a set of around 8000 entities.
The key phrases and the LMs for the remaining entities were extracted on the fly and
results were stored to be reused later. Then, the facets were generated using the technique
described in Section 5.1.3.1, represented as language models, and smoothed using additive
smoothing techniques. We parallelized the computation of KL divergence of the candidate
set of facets to obtain faster results.

5.3 Conclusion

PreFace++ is a prototype of our proposed system PreFace, which assists a user in learning
a new topic in the domain of Computer Science. PreFace++ takes a concept as input
and returns a prerequisite graph for the concept along with interesting facets towards
its understanding. It also allows the user to explore research papers and technical posts
related to the query and the identified facets. In the future, we would like to extend
this system to automatically generate personalized lecture notes for a query of interest.
These will be generated by summarizing the prerequisite graph as well as the facets for

3https://github.com/Linguistic/rake
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the query.



Chapter 6

Conclusion

In this thesis, we have developed a system to help a user consume a large amount of
technical content on the web in a systematic way. Our system assists a user in starting to
learn about a technical topic by recommending prerequisites for its basic understanding,
and research papers for advanced understanding. The key component of the system
is TeKnowbase, which is a knowledge base in the domain of Computer Science. The
entities in TeKnowbase were extracted from Wikipedia, domain-specific websites such
as Webopedia and TechTarget, and indexes of online textbooks. The relationships were
determined using heuristics as well as inferencing from structured as well as unstructured
sources. TeKnowbase was evaluated to contain highly accurate triples and has a higher
number of domain-specific relationships in Computer Science when compared with well-
known knowledge bases such as Freebase or DBPedia. TeKnowbase is freely available.

Using TeKnowbase, we developed PreFace, which generates a prerequisite graph and
identifies interesting faceted prerequisites for the query. The facets are generated using
TeKnowbase and a large corpus of research papers, and they are ranked using a novel
retrieval model, which is estimated from TeKnowbase. The ranking of facets is achieved by
balancing the trade-off between the relevance as well as the diversity of the retrieved facets.
User evaluation of the pre-requisites as well as the facets show that PreFace outperforms
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state-of-the-art pre-requisite retrieval and well as facet generation techniques.

The final component of our work, ASK, allows the user to specify an aspect along with the
query to retrieve research papers for advanced understanding of the topic. Our retrieval
model which was estimated from TeKnowbase returns better results than state-of-the-
art pseudo-relevance feedback, diversification, or neural models. Apart from that, the
suggestions generated by our model for the query and the aspect have been evaluated to
be better than the suggestions generated using state-of-the-art techniques for the query.

6.1 Future Work Directions

We plan to explore the problems of question answering and automatic summarization
in the technical domain. Knowledge graphs are an integral component of such systems.
While a number of techniques have been proposed in the open domain, they will not work
when used in a technical domain. This is because the open domain knowledge bases do
not provide coverage in terms of entities and relations in the technical domain, so we
have to use domain-specific knowledge bases like TeKnowbase. The proposed techniques
when used on TeKnowbase may not always work since TeKnowbase is sparse, and these
techniques are designed with the assumption that the KGs they use are not. Solving
these problems in the technical domain will involve inferencing to acquire more triples
from structured as well as unstructured sources.

6.1.1 Question Answering in the Technical Domain

To support interactive learning, we plan to include a question answering module that
automatically provides answers to natural language questions posed by the user in the
technical domain. A preliminary analysis of the questions asked about concepts from
Computer Science on Google categorizes them into the following types
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• Factual Questions: These questions either seek an entity/entities as the answer,
for example, What algorithm does Tensorflow use?, questions that ask for defi-
nitions or reasons, such as What is adversarial loss, Why is GAN hard to train,
questions that seek to know the difference between a pair of entities, for example,
What is the difference between CNN and RNN?,

• Yes/No Questions: For example, Are GANs unsupervised?,

• How-to Questions: Such as, How is GAN trained?.

Such questions involve querying the KB as well as consulting textual sources. Answering
such questions requires identifying the relationships mentioned in the question text and
mapping them to relations in the knowledge base [10, 215], which may not appear in the
exact same surface form. For example, instead of relation uses or problems solved, the
knowledge base may consist of application relation. Even after identifying the surface
form, the answer may not be available directly in the KB and we may need to use
knowledge graph inferencing using embeddings [89]. However, it is not necessary that
such embedding techniques will help us because they perform inferencing at the 1-hop
level and we will need to perform inferencing over multiple hops in the KB and also
involve textual sources since it is sparse.

Additionally, the system will consist of an intelligent evaluation module that will auto-
matically generate questions to test the user’s knowledge on the subject, evaluate it, and
choose the next best question to ask the user depending on her answer to the question.
These questions will be generated based on a learning plan for the subject, and the plans
will be generated by identifying the prerequisite relationships between the concepts in the
learning plan.
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6.1.2 Automatic Generation of Lecture Notes

Apart from identifying the prerequisites, it would also be useful if the user is provided
with descriptions of the prerequisites in the order identified by the prerequisite graph.
In other words, this component will automatically generate lecture notes for the query
entered by the user. This can be achieved by extracting definitions of the concepts and
concatenating them in the order identified by the graph. However, this approach does
not work due to the following reasons:

• The definitions for topics in Computer Science are not limited to textual definitions,
but also include mathematical definitions, diagrams, examples, or code segments.
For example, a description for b-tree should consist of a diagram, big-o_notation
can be best described using a mathematical formula, and a semaphore can be un-
derstood if its pseudocode is also provided. Also, it is not necessary that all these
concepts should be accompanied by all of these parts. So, automatically identifying
these components for each topic is challenging. One possible way is to use Wikipedia
or freely available lecture notes from sources such as Coursera and develop heuristics
to extract them. We can search for section headings containing “pseudocode" or
“examples" and retrieve the entire section. While efforts have been made to extract
aspect-based summaries from document structure [66], all of these deal with textual
components, while in our case the components are not purely textual.

• Once we have this information, we have to summarize the prerequisite graph, where
the nodes are topics in Computer Science, and the edges are prerequisite relation-
ships. It is important that the order provided by the graph be followed, as well as
the relationships between the two adjacent nodes in the graph, should be described
as well. Efforts have been made for the summarization of 2-length entity chains in
knowledge graphs [40], but summarization of a graph containing more than 2 nodes
has not been explored. One way to solve this problem is to generate a candidate
list of two-length summaries for pairs of prerequisites in the graph and choose the
best summary for the graph using optimization techniques.
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Appendix A

Agglomerative and Star Clustering

A.1 Agglomerative Clustering

Agglomerative clustering is a type of hierarchical clustering technique that builds a hier-
archy of clusters over a set of items. Each item starts as one cluster and pairs of clusters
are merged at each iteration, due to which it is also known as bottom-up clustering.
Agglomerative clustering consists of the following steps:

1. Compute the distance matrix for items in the set.

2. Consider each item as a cluster.

3. Merge the two closest clusters. Update the distance matrix with the new cluster.

4. Repeat Step 3 until all items have been merged into a single cluster.

Step 3 merges two closest clusters at each iteration. Given two clusters X, Y , and the
distance metric between two items, d(x, y), the distance between two clusters can be
calculated in multiple ways. We have used two ways to compute the distance between
the clusters in this thesis.
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Figure A.1: Pairwise distances between item in S

A B C D E F
A - 1 5 2 3 4
B 1 - 4 2 3 5
C 5 4 - 1 3 2
D 2 2 1 - 2 4
E 3 3 3 2 - 6
F 4 5 2 4 6 -

1. Single Linkage Clustering. This clustering technique considers the distance be-
tween two clusters as the distance between their most similar items.

D(X, Y ) = min
x∈X,y∈Y

d(x, y) (A.1)

2. Complete Linkage Clustering. This clustering technique considers the distance
between two clusters as the distance between their most dissimilar items.

D(X, Y ) = max
x∈X,y∈Y

d(x, y) (A.2)

Agglomerative clustering algorithm can be visualized with the help of dendrograms. A
dendrogram is a tree-like structure where the nodes represent the clusters and the edges
represent the merges. Each level of the tree represents one iteration of the algorithm. Fig-
ure A.2 shows a dendrogram for the hierarchical clustering of a set S = A,B,C,D,E, F .
The pairwise distances between the items are shown in Table A.1.

A.1.1 Calinski-Harabasz Index(CH-Index)

To determine the optimum clustering, Calinski-Harabasz index (or CH-index) is used.
Given N items and a clustering consisting of K clusters, the Calinski-Harabasz index at
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 A B C D E F

 A,B  C,D

A,B,E

C,D,F

A,B,C,D.E,F

Figure A.2: Dendrogram for complete-linkage clustering algorithm applied on S

K is computed as follows:

CH(K) =
(N −K) ∗ interc(K)

(K − 1) ∗ intrac(K)
(A.3)

where intrac(K) is the intra-cluster distance of the clustering under consideration. It
is the average of the within-cluster distance between the items in each cluster. This
is expected to be low for a good clustering. interc(K) is the average of the distances
between the clusters. This should be high for a good clustering. The CH-index is directly
proportional to the inter-cluster distance and inversely proportional to the intra-cluster
distance. The clustering that obtains the highest value for CH-index is the best clustering.
The inter and intra cluster distances are computed as follows:
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intrac(K) =
1

2

K∑
k=1

∑
xi∈Xk

∑
xj∈Xk

d(xi, xj) (A.4)

interc(K) =
1

2

K∑
k=1

∑
xi∈Xk

∑
xj /∈Xk

d(xi, xj) (A.5)

A.2 Star Clustering

The Star Clustering algorithm was proposed to organize the information associated with a
retrieval system. It is used to cluster a set of documents by representing them as nodes of
a graph. Given a set of documents D, a similarity graph G is constructed by considering
each d ∈ D as a node in G and using the similarity score between the documents as
the strength of edges between them. Star Clustering is a well-known graph clustering
algorithm. It was initially proposed to cluster a set of documents into meaningful clusters
on the basis of their similarity. Given a similarity threshold σ and a graph G generated
as described above, the following steps are performed by the star clustering algorithm.

1. Let Gσ = (V,Eσ) where Eσ = {e ∈ E : w(e) ≥ σ}

2. Let each vertex in Gsigma initially be unmarked.

3. Calculate the degree of each vertex v ∈ V .

4. Let the highest degree unmarked vertex be a star center and construct a cluster
consisting of the star center and all its neighbor vertices. Mark each node in the
newly constructed cluster.

5. Repeat Step 4 until all nodes are marked.

6. Represent each cluster by the document corresponding to its associated star center.
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The complexity of the algorithm is O(V + E), which is linear in the size of the number
of nodes and edges. Star clustering does not need the number of clusters as input and
automatically determines the clustering based on the similarity threshold σ.



188 Agglomerative and Star Clustering



Appendix B

QDMiner and QDMKB Approach
Towards Facet Extraction

QDMiner [56] and QDMKB [94] are techniques proposed to extract facets for a query.
These techniques aim to extract different sets of facets for different queries, as opposed
to showing a static list of facets. QDMiner uses the search results to generate the set of
facets, while QDMKB uses search results as well as knowledge bases to construct the set
of facets. These two techniques are described as follows:

B.1 QDMiner

QDMiner uses the top-K documents retrieved for a query to extract query facets. It relies
on listing as an important way to structure relevant or coordinate items in documents to
mine query facets. The assumptions made by QDMiner are as follows:

• Important information is organized in the form of lists, which may appear in the
documents i) explicitly formatted as lists, ii) in sentences separated by commas, or
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iii) in tables.

• The lists that are important to the query will occur frequently in the search results
returned at the top positions, while the unimportant ones appear infrequently.

Figure B.1: Architecture of QDMiner

Figure B.1 shows the architecture of QDMiner. It takes a query as input and then retrieves
the top-K documents, denoted by the set R. These documents are then fed to the system
that has the following components, briefly described as follows:

• List and Context extraction: Lists and their context are extracted from the
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HTML code or sentences appearing in each document in R. One such example of
list extracted is “men’s watches, women’s watches, luxury watches, ...”.

• List weighting: The extracted lists are weighted based on their frequency. This
is used to identify the important lists, which occur frequently in the documents.

• List clustering: To combine similar lists extracted from different documents,
they are clustered into facets.

• Facet weighting: The clustered facets are re-ranked based on the frequency of
the individual items in the facet.

B.1.1 List and Context Extraction

The lists are extracted from the documents based on three different types of patterns—i)
free-text patterns, ii) repeat region patterns and iii) HTML tag patterns. Each list is
assigned a container node, which is the lowest common ancestor of the items contained
in that list. The previous and next sibling of the container node is extracted as well.

B.1.1.1 Free Text Patterns

It involves looking for patterns in each sentence of the document. Following patterns were
looked for in the sentences:

1. Pattern 1. item, item* (and | or) {other} item, which is used to retrieve
lists of watches from a sentence as follows: We shop for gorgeous watches from Seiko,
Bulova, Lucien, Piccard, Citizen, Cartier or Invicta. This extracts a list consisting of
items {Seiko, Bulova, Lucien, Piccard, Citizen, Cartier, Invicta}. The container
node in this case is the sentence containing the extracted list.
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2. Pattern 2. {îtem (:|-) .+$+}. It looks for information present in continuous
lines that are comprised of two parts separated by a dash or a colon. An example of a
sentence is as follows: ...are highly important for the following reasons:
Consistency—every fact table is filtered consistently res...
Integration—queries are able to drill different processes ...
Reduced development time to market—the common facets are available without recreating
the wheel over again. This extracts a list consisting of the following items: {Consistency,
Integration, Reduced development time to market}. The container node in this
case is the paragraph containing the items.

B.1.1.2 HTML Tag Patterns

This looks for common HTML tags such asUL,OL, SELECT andTABLE and extracts
items accordingly, as shown in Figure B.2.

B.1.1.3 Repeat Region Patterns

This extracts information that is present in repeated regions in the text, extracted with
the help of HTML DOM trees. In this case, a repeat region is a region that includes at
least two adjacent or nonadjacent blocks, e.g. M blocks, with similar DOM and visual
structures. Then, the leaf HTML nodes within each block are extracted and grouped
by their tag names and display styles. Figure B.3 shows examples of a repeat region
describing restaurants.

B.1.1.4 Post Processing

Each of these extracted lists is post-processed to remove useless symbol characters, such
as ‘[’ and ‘]’, and converting uppercase letters to lowercase. Then, long items, which
contain more than 20 terms are removed. Lastly, all lists that contain less than two



QDMiner and QDMKB Approach Towards Facet Extraction 193

Figure B.2: Examples of HTML tags and the items they contain

unique items or more than 200 unique items are removed.

B.1.2 List Weighting

To remove lists that contain useless items, each list is scored based on the following
components:

1. Document Matching Weight. Each list l is assigned the following score:

SDOC =
∑
d∈R

(smd .s
r
d) (B.1)
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Figure B.3: Examples of repeat regions and the information contained in them

where smd is the percentage of items in l present in d, and srd measures the importance of
d, and is set to 1√

rankd
. This scores lists whose items appear frequently in the top-ranked

documents.

2. Average Invert Document Frequency (IDF) of Items. To discount the score
of lists that contain very common items that appear in almost every list, the following
formula is used:

SIDF =
1

|l|
∑
e∈l

idfe (B.2)

where idfe = log N−Ne−0.5
Ne+0.5

, where Ne is the total number of documents that contain item
e in the corpus and N is the total number of documents.
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The final importance of the list is given by the following formula:

Sl = SDOC .SIDF (B.3)

The lists are sorted in descending order based on this score. The next step involves
clustering these lists into facets.

B.1.3 List Clustering

Two lists consisting of a large number of overlapping items can be clustered together
into a single facet. The distance between the lists has to be specified for the clustering
algorithm. The distance between the lists is calculated as follows:

dl(l1, l2) = 1− l1 ∩ l2
min{|l1|, |l2|}

(B.4)

Here, |l1 ∩ l2| is the number of common items between l1 and l2. The distance between
two clusters of lists is computed as follows:

dc(c1, c2) = max
l1∈c1,l2∈c2

dl(l1, l2) (B.5)

A modified version of the Quality Threshold (QT) Clustering algorithm [95] is used to
cluster the lists. QT ensures quality by finding large clusters whose diameters do not
exceed a user-defined diameter threshold. It does not need the number of clusters as
input. The original algorithm assigns equal importance to all the lists, however, in this
scenario, each list has a score. It is necessary that lists that have a higher score should
be clustered first. So, WQT (Quality Threshold with Weighted data points) is proposed
that can handle this situation. It works as follows:

1. Provide the maximum diameter and minimum weight for the clusters. Denote them
by Dmax and Wmin, respectively.
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2. The next step involves building candidate clusters. Choose the list with the highest
score and build a cluster by iteratively adding other lists until the diameter of the
cluster surpasses the Dmax.

3. Add this cluster to the set of candidate clusters if the total weight of the cluster is
not less than Wmin, and remove the lists already added to this cluster from being
added to subsequent clusters.

4. Repeat steps 1–3 with the reduced set of lists.

The weight of a cluster is then computed based on the number of websites from which its
lists are extracted. If Sites(c) is the set of websites that contain the lists in a cluster c,
then wc = |Sites(c)|, where wc is an indicator of the weight of the cluster.

B.1.4 Facet Ranking

Each generated facet has to be assigned a score based on its importance as well as the
importance of the lists contained in the facet. Following formula is used to score each
facet:

Sc =
∑
G∈C

SG =
∑
G∈C

max
l∈G

Sl (B.6)

where C is the set of independent groups of lists G present in a facet C. SG is the weight
of a group of lists G a facet, and sl is the weight of a list l within a group G. Sc is
calculated using the techniques described as follows: The lists present in each facet are
divided into multiple groups and then the weight is assigned to each group of lists. One
way to divide them into groups is to check for unique websites that mention those lists.
So, by assigning C = Sites(c), we can calculate the weight of a cluster using Equation
B.6.

This technique assumes that the content of each website is different from other websites.
This is rare because websites often convey the same piece of information in different
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words. So, similarity or the distance between the lists have to be recomputed based on
the content of the websites they are found in. The text of the websites is used to generate
a context for each list. So, the text of the website is encoded into a 64-bit fingerprint,
and given two lists l1 and l2, the hamming distance dist(l1, l2), between the fingerprints
of their context is used to calculate the distance.

DUPL(l1, l2) = 1− dist(l1, l2)

LS
(B.7)

where LS is the length of the fingerprint. Given this distance between the two lists, the
weighted QT algorithm introduced in the previous section is used to cluster these lists so
that duplicates fall into a single cluster.

B.1.5 Item Ranking

The step involves computing the importance of items in a facet. An item is more im-
portant if there are multiple highly ranked documents that mention that item. So, the
weight of an item in a facet, Se|c as follows:

Se|c =
∑

s∈mathcalC

w(c, e,C ) =
∑
G∈C

1√
avgrankc,e,G

(B.8)

where w(c, e,C ) is the weight of the list in group of lists G, avgrankc,e,G is the average
rank of item e within all lists extracted from group G. It is computed as follows:

avgrankc,e,G =
1

|L(c, e,G)|
∑

l∈L(c,e,F )

ranke|l (B.9)

where L(c, e,G) is the set of all lists in c and G ⊂ C. The items within a facet are then
ranked according to their weights. An item is called qualified if:

Se|c > 1 and Se|c >
C (c)

10
(B.10)
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The items which are qualified are shown in each facet.

B.2 QDMKB

Approaches such as QDMiner use search results to extract facets. These techniques work
when the search results are rich in HTML lists or tables because the initial set of lists are
extracted from such elements of the HTML document. In the absence of such meta-data,
knowledge bases can be used to extract query facets. QDMKB extracts facets from a large
knowledge graph, such as Freebase. Figure B.4 shows the architecture of the system. It
has 4 main components described briefly as follows:

• Facet generation: This is the first step of facet extraction that retrieves a set of
relevant entities E(q) given a query q. Freebase Search API is used for this purpose.
After that, the direct properties, as well as the second-hop properties of entities in
E(q), are retrieved. All these properties are facet candidates.

• Facet expansion: Each facet generated by QDMiner is expanded using the
properties in Freebase.

• Facet grouping: The generated facets are clustered into final facets so that
similar facets are combined.

• Facet weighting: The facets are scored based on the frequency of the items
appearing in the search results.

B.2.1 Facet Generation

Freebase Search API is used to retrieve relevant entities for the query string qs entered
by the user. Top-5 entities are retrieved and the similarity of each of those entities and
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Figure B.4: QDMKB architecture

the query is computed as follows:

Sim(e, qs) = max
a∈alias(e)

|a ∩ qs|
|a ∪ qs|

(B.11)

where alias(e) is an alias of the entity e taken from Freebase, |a ∩ qs| is the number of
common terms between qs and a and |a∪qs| is the total number of unique terms in union
of terms in qs and a. All entities whose similarity with the query string is less than a
threshold are removed from E(q).

After that, related properties of each entity e in E(q) are retrieved. There are two
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types of properties—i) direct properties, denoted by P1(e), and ii) properties of proper-
ties, denoted by P2e. Direct properties consist of the target entities connected to e via
some relation/property in Freebase. Direct properties also include the direct properties
of e’s parent in the knowledge graph’s taxonomy. For example, entity Steven Spiel-
berg belongs to types Film Producer (/film/producer), Film Director (/film/director),
TV Producer (/tv/tv_producer). Type Film Director includes properties such as Films
Directed (/film/director/film) which has targets entities like Schindler’s List, Saving Pri-
vate Ryan, and War Horse. Type TV Producer contains properties such as TV Programs
Produced (/tv/tv_producer/programs_produced) which includes target entities like An-
imaniacs, Band of Brothers, and Halo. These properties and their target entities are
called direct properties which could be retrieved by Freebase Topic API. Apart from di-
rect properties, properties of properties can be retrieved. For Steven Spielberg, properties
of his directed films belong to its second-hop properties.

Given a direct property p entity e, let V (e, p) be the set of target entities connected to e
via p. P1(e) is the set of triples of form < e, p, V (e, p) >. Let et ∈ V (e, p) be one such
target entity let p′ be the direct property of et. Then, the second hop properties of the
entities P2(e) is constructed by finding out how diverse the entities are connected to these
second-hop properties. This is required because sometimes, the target entities connected
to peer target entities are duplicated. Following is an example quoted from the paper “for
example, Saving Private Ryan and War Horse are two target entities belonging to the
property Films Directed of entity Steven Spielberg. Property Genres (/film/film/genre)
of Saving Private Ryan has target entities including War Film, Action Film, and Drama,
whereas the corresponding property of War Horse includes War Film and Drama. In this
case, we tend to merge all Genres of different films to form one second-hop property, i.e.
All Genres of Directed Films of Steven Spielberg. That is to say, if properties p′ of each
entity et in V (e, p) share many common target entities, we tend to treat all these p′ as a
whole. From the viewpoint of source entity Steven Spielberg, the property All Genres of
Directed Films makes more sense than many separate properties such as Genres of His
Saving Private Ryan and Genres of His War Horse. On the contrary, if properties p′

vary from each other, such as Actors of different films directed by Steven Spielberg, each
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of them will be treated as a separate second-hop property”. The second hop properties
have to be diverse enough, and the following formula computes the same:

Diversity(e, p, p′) =
| ∪et∈V (e,p) V (et, p

′)|∑
et∈V (e,p) |V (et, p′)|

(B.12)

Separate second hop properties are constructed if the Diversity score is greater than 0.5.
These second hop properties belong to P2(e). Finally, both P1(e) and P2(e) are merged
with each other. If P (e) = P1(e) ∪ P2(e), then

P (q) = ∪e∈E(q)P (e) (B.13)

The triples for which V (e, p) <= 1 are removed.

B.2.2 Facet Expansion

This component expands the set of facets already generated by QDMiner using Freebase.
A facet f ∈ F (q) can be expanded using properties or types of the entities in the knowledge
base.

B.2.2.1 Property-based Facet Expansion

The first step is to identify the properties that a set of facets, F (q) could most likely
belong to. These properties can then be used to expand this F (q). The following formula
ranks the properties from the knowledge base most likely to cover the items in F (q):

score(e, f, p) = idf(p).sim(e, f, p) (B.14)
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where idf(p) is the inverted entity frequency for the property. idf(p) is computed as
follows:

idf(p) = log
|E|

|V (e, p)|
(B.15)

where E is the total number of entities in Freebase. sim(e, f, p) is the similarity between
the facet and the property.

sim(e, f, p) =

∑
Ii∈f I(|E(Ii) ∩ V (e, p)| > 0)

|f |
(B.16)

All properties which obtain a score less than toverlap are removed. The remaining are
considered for expansion. If no properties are left after applying the threshold or the
returned set is empty, then the technique described in the next section is applied.

B.2.2.2 Facet Expansion Based on Types

The key idea used in this technique is to identify the most suitable type for the item in
the facet and then apply constraints to improve the precision of items expanded using
that type. At first, all the identified types of items are weighted.

1. Type Weighting. For each entity e ∈ E(q), let T (e) be the set of its types. The
following equation calculates the weight of a type t for facet f :

score(f, t) = idf(t).weight(f, t) (B.17)

weight(f, t) =
1

|f |
∑
Ii∈f

∑
e∈E(Ii)

∑
te∈T (e)

I(t, te)√
R(Ii, e)

√
R(f, Ii)

(B.18)

where I(t, te) = 1 if t equals to te, which means e belongs to type t. R(Ii, e) is the rank of
entity e within the retrieved entities for facet item Ii. R(Ti, e) is the rank of facet item Ii

within the initial facet. The higher a facet item and an entity are ranked, the higher the
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weights of corresponding types of the entity are. idf(t) is the inverted entity frequency
of type t, which is log E

Et
, where |Et| is the number of entities belonging to type t. We

remove those entities whose weights falls below a threshold toverlap, and then score the
remaining ones using Equation B.18

2. Query Dependent Constraint. All the types generated in the previous technique
are not correct. To improve the precision of the types, an MQL query was constructed
to retrieve entities that belong to the extracted types and have common properties with
the target entities. To generate the property and the target entity that will be a part of
the MQL query, the following approach is deployed.

All 1st hop properties of each facet item Ti ∈ f are retrieved from Freebase using the
technique described in Section B.2.1. All the properties and their values are then trans-
formed into a list of pairs < p, et >, comprising of the property p and target entity et.
RThen, only those pairs are retained where the target entity e has at least one alias that
is contained by the query q. Then, each of the pair is weighted according to the following
equation:

weight(f, p, et) =
1

|f |
∑
Ti∈f

∑
e∈E(Ii)

HasPair(e, p, et)√
R(Ii, e)

√
R(f, Ii)

(B.19)

HasPair(e, p, et) = 1, if e is connected to et via property p. A threshold is applied to
remove low weighted pairs and the highest ranked pair is chosen to apply constraints in
the MQL query.

B.2.2.3 Facet Grouping

QT algorithm [107] with complete linkage is used to cluster the generated as well as facets
expanded using Freebase so that facets containing similar items get clustered into single
ones. The diameter of the largest cluster needs to be specified instead of the number of
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clusters, which is calculated as follows:

Dia(C) = max
f1∈C,f2∈C

Dis(f1, f2) (B.20)

Dis(f1, f2) is calculated as follows:

Dis(f1, f2) =
|f1 ∩ f2|

max |f1|, |f2|
(B.21)

B.2.2.4 Facet Weighting

Each facet is weighted so that it can be ranked. They are weighted in a manner similar
to the one used for weighting the lists in QDMiner, as described in Section B.1.2. The
facets are finally ranked in decreasing order of weight and shown to the user.
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