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1 This document is intended to be tutorial in nature. No prior knowledge of image processing concepts is 
assumed. Interested readers should follow the references for advanced material on DCT. 
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1. Introduction 

Transform coding constitutes an integral component of contemporary image/video processing 

applications. Transform coding relies on the premise that pixels in an image exhibit a certain 

level of correlation with their neighboring pixels. Similarly in a video transmission system, 

adjacent pixels in consecutive frames2 show very high correlation. Consequently, these 

correlations can be exploited to predict the value of a pixel from its respective neighbors. A 

transformation is, therefore, defined to map this spatial (correlated) data into transformed 

(uncorrelated) coefficients. Clearly, the transformation should utilize the fact that the information 

content of an individual pixel is relatively small i.e., to a large extent visual contribution of a 

pixel can be predicted using its neighbors.  

A typical image/video transmission system is outlined in Figure 1. The objective of the source 

encoder is to exploit the redundancies in image data to provide compression. In other words, the 

source encoder reduces the entropy, which in our case means decrease in the average number of 

bits required to represent the image. On the contrary, the channel encoder adds redundancy to the 

output of the source encoder in order to enhance the reliability of the transmission. Clearly, both 

these high-level blocks have contradictory objectives and their interplay is an active research 

area ([1], [2], [3], [4], [5], [6], [7], [8]). However, discussion on joint source channel coding is 

out of the scope of this document and this document mainly focuses on the transformation block 

in the source encoder. Nevertheless, pertinent details about other blocks will be provided as 

required. 

 

                                                 

2 Frames usually consist of a representation of the original data to be transmitted, together with other bits which may 
be used for error detection and control [9]. In simplistic terms, frames can be referred to as consecutive images in a 
video transmission. 
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Figure 1. Components of a typical image/video transmission system [10]. 

As mentioned previously, each sub-block in the source encoder exploits some redundancy in the 

image data in order to achieve better compression. The transformation sub-block decorrelates the 

image data thereby reducing (and in some cases eliminating) interpixel redundancy3 [11]. The 

two images shown in Figure 2 (a) and (b) have similar histograms (see Figure 2 (c) and (d)). 

Figure 2 (f) and (g) show the normalized autocorrelation among pixels in one line of the 

respective images. Figure 2 (f) shows that the neighboring pixels of Figure 2 (b) periodically 

exhibit very high autocorrelation. This is easily explained by the periodic repetition of the 

vertical white bars in Figure 2(b). This example will be will be employed in the following 

sections to illustrate the decorrelation properties of transform coding. Here, it is noteworthy that 

transformation is a lossless operation, therefore, the inverse transformation renders a perfect 

reconstruction of the original image. 

                                                 

3 The term interpixel redundancy encompasses a broad class of redundancies, namely spatial redundancy, geometric 
redundancy and interframe redundancy [10]. However throughout this document (with the exception of Section 3.2), 
interpixel redundancy and spatial redundancy are used synonymously. 
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Figure 2. (a) First image, (b) second image, (c) histogram of first image, (d) histogram of 
second image, (e) normalized autocorrelation of one line of first image, (f) normalized 

autocorrelation of one line of second image. 

The quantizer sub-block utilizes the fact that the human eye is unable to perceive some visual 

information in an image. Such information is deemed redundant and can be discarded without 

introducing noticeable visual artifacts. Such redundancy is referred to as psychovisual 

redundancy [10]. This idea can be extended to low bitrate receivers which, due to their stringent 

bandwidth requirements, might sacrifice visual quality in order to achieve bandwidth efficiency. 
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This concept is the basis for rate distortion theory, that is, receivers might tolerate some visual 

distortion in exchange for bandwidth conservation.  

Lastly, the entropy encoder employs its knowledge of the transformation and quantization 

processes to reduce the number of bits required to represent each symbol at the quantizer output. 

Further discussion on the quantizer and entropy encoding sub-blocks is out of the scope of this 

document. 

In the last decade, Discrete Cosine Transform (DCT) has emerged as the de-facto image 

transformation in most visual systems. DCT has been widely deployed by modern video coding 

standards, for example, MPEG, JVT etc. This document introduces the DCT, elaborates its 

important attributes and analyzes its performance using information theoretic measures. 

2. The Discrete Cosine Transform 

Like other transforms, the Discrete Cosine Transform (DCT) attempts to decorrelate the image 

data. After decorrelation each transform coefficient can be encoded independently without losing 

compression efficiency. This section describes the DCT and some of its important properties. 

2.1. The One-Dimensional DCT 

The most common DCT definition of a 1-D sequence of length N is 

( ) ( ) ( )∑
−

=
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⎡ +=
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for 0,1,2, , 1u N= −… . Similarly, the inverse transformation is defined as 
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for 0,1,2, , 1x N= −… . In both equations (1) and (2) α(u) is defined as 
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It is clear from (1) that for 0u = , ( ) ( )∑
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uC . Thus, the first transform coefficient is 

the average value of the sample sequence. In literature, this value is referred to as the DC 

Coefficient. All other transform coefficients are called the AC Coefficients4. 

To fix ideas, ignore the ( )f x  and ( )uα  component in (1). The plot of ∑
−

=
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8N =  and varying values of u  is shown in Figure 3. In accordance with our previous 

observation, the first the top-left waveform ( 0u = ) renders a constant (DC) value, whereas, all 

other waveforms ( 1,2, ,7u = … ) give waveforms at progressively increasing frequencies [13]. 

These waveforms are called the cosine basis function. Note that these basis functions are 

orthogonal. Hence, multiplication of any waveform in Figure 3 with another waveform followed 

by a summation over all sample points yields a zero (scalar) value, whereas multiplication of any 

waveform in Figure 3 with itself followed by a summation yields a constant (scalar) value. 

Orthogonal waveforms are independent, that is, none of the basis functions can be represented as 

a combination of other basis functions [14]. 

                                                 

4 These names come from the historical use of DCT for analyzing electric circuits with direct- and alternating-
currents. 
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Figure 3. One dimensional cosine basis function (N=8). 

If the input sequence has more than N  sample points then it can be divided into sub-sequences 

of length N  and DCT can be applied to these chunks independently. Here, a very important 

point to note is that in each such computation the values of the basis function points will not 

change. Only the values of ( )f x  will change in each sub-sequence. This is a very important 

property, since it shows that the basis functions can be pre-computed offline and then multiplied 

with the sub-sequences. This reduces the number of mathematical operations (i.e., 

multiplications and additions) thereby rendering computation efficiency. 

2.2. The Two-Dimensional DCT 

The objective of this document is to study the efficacy of DCT on images. This necessitates the 

extension of ideas presented in the last section to a two-dimensional space. The 2-D DCT is a 

direct extension of the 1-D case and is given by 
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for , 0,1,2, , 1u v N= −…  and ( )uα  and ( )vα  are defined in (3). The inverse transform is 

defined as 
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for , 0,1,2, , 1x y N= −… . The 2-D basis functions can be generated by multiplying the 

horizontally oriented 1-D basis functions (shown in Figure 3) with vertically oriented set of the 

same functions [13]. The basis functions for 8N =  are shown in. Again, it can be noted that the 

basis functions exhibit a progressive increase in frequency both in the vertical and horizontal 

direction. The top left basis function of results from multiplication of the DC component in 

Figure 3 with its transpose. Hence, this function assumes a constant value and is referred to as 

the DC coefficient.  

 
Figure 4. Two dimensional DCT basis functions (N = 8). Neutral gray represents zero, 

white represents positive amplitudes, and black represents negative amplitude [13]. 
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2.3. Properties of DCT 

Discussions in the preceding sections have developed a mathematical foundation for DCT. 

However, the intuitive insight into its image processing application has not been presented. This 

section outlines (with examples) some properties of the DCT which are of particular value to 

image processing applications. 

2.3.1. Decorrelation 

As discussed previously, the principle advantage of image transformation is the removal of 

redundancy between neighboring pixels. This leads to uncorrelated transform coefficients which 

can be encoded independently. Let us consider our example from Figure 2 to outline the 

decorrelation characteristics of the 2-D DCT. The normalized autocorrelation of the images 

before and after DCT is shown in Figure 5. Clearly, the amplitude of the autocorrelation after the 

DCT operation is very small at all lags. Hence, it can be inferred that DCT exhibits excellent 

decorrelation properties. 
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Figure 5. (a) Normalized autocorrelation of uncorrelated image before and after DCT; (b) 
Normalized autocorrelation of correlated image before and after DCT. 
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2.3.2. Energy Compaction 

Efficacy of a transformation scheme can be directly gauged by its ability to pack input data into 

as few coefficients as possible. This allows the quantizer to discard coefficients with relatively 

small amplitudes without introducing visual distortion in the reconstructed image. DCT exhibits 

excellent energy compaction for highly correlated images.  

Let us again consider the two example images of Figure 2(a) and (b). In addition to their 

respective correlation properties discussed in preceding sections, the uncorrelated image has 

more sharp intensity variations than the correlated image. Therefore, the former has more high 

frequency content than the latter. Figure 6 shows the DCT of both the images. Clearly, the 

uncorrelated image has its energy spread out, whereas the energy of the correlated image is 

packed into the low frequency region (i.e., top left region). 

  
(a) 

  
(b) 

Figure 6. (a) Uncorrelated image and its DCT; (b) Correlated image and its DCT. 
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Other examples of the energy compaction property of DCT with respect to some standard images 

are provided in Figure 7. 

  
(a) 

  
(b) 

  
(c) 
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(d) 

  
(e) 

  
(f) 

Figure 7. (a) Saturn and its DCT; (b) Child and its DCT; (c) Circuit and its DCT; (d) Trees 
and its DCT; (e) Baboon and its DCT; (f) a sine wave and its DCT. 

A closer look at Figure 7 reveals that it comprises of four broad image classes. Figure 7 (a) and 

(b) contain large areas of slowly varying intensities. These images can be classified as low 

frequency images with low spatial details. A DCT operation on these images provides very good 

energy compaction in the low frequency region of the transformed image. Figure 7(c) contains a 

number of edges (i.e., sharp intensity variations) and therefore can be classified as a high 

frequency image with low spatial content. However, the image data exhibits high correlation 
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which is exploited by the DCT algorithm to provide good energy compaction. Figure 7 (d) and 

(e) are images with progressively high frequency and spatial content. Consequently, the 

transform coefficients are spread over low and high frequencies. Figure 7(e) shows periodicity 

therefore the DCT contains impulses with amplitudes proportional to the weight of a particular 

frequency in the original waveform. The other (relatively insignificant) harmonics of the sine 

wave can also be observed by closer examination of its DCT image.  

Hence, from the preceding discussion it can be inferred that DCT renders excellent energy 

compaction for correlated images. Studies have shown that the energy compaction performance 

of DCT approaches optimality as image correlation approaches one i.e., DCT provides (almost) 

optimal decorrelation for such images [15]. 

2.3.3. Separability  

The DCT transform equation (4) can be expressed as, 
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for , 0,1,2, , 1u v N= −… . 

This property, known as separability, has the principle advantage that C(u, v) can be computed in 

two steps by successive 1-D operations on rows and columns of an image. This idea is 

graphically illustrated in Figure 8. The arguments presented can be identically applied for the 

inverse DCT computation (5).  

Figure 8. Computation of 2-D DCT using separability property. 
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2.3.4. Symmetry 

Another look at the row and column operations in Equation 6 reveals that these operations are 

functionally identical. Such a transformation is called a symmetric transformation. A separable 

and symmetric transform can be expressed in the form [10] 

AfAT = , (7) 

where A  is an N N×  symmetric transformation matrix with entries ( ),a i j  given by 

( ) ( )∑
−

=
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⎤
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⎡ +=

1

0
2

)12(
cos,

N

j
N

ij
jjia

πα , 

and f  is the N N×  image matrix. 

This is an extremely useful property since it implies that the transformation matrix5 can be pre-

computed offline and then applied to the image thereby providing orders of magnitude 

improvement in computation efficiency. 

2.3.5. Orthogonality 

In order to extend ideas presented in the preceding section, let us denote the inverse 

transformation of (7) as 

11 −−= TAAf . 

As discussed previously, DCT basis functions are orthogonal (See Section 2.1). Thus, the inverse 

transformation matrix of A is equal to its transpose i.e. A-1= AT. Therefore, and in addition to its 

                                                 

5 In image processing jargon this matrix is referred to as the transformation kernel. In our scenario it comprises of 
the basis functions of Figure 4. 



ECE 802 – 602:  Information Theory and Coding  
Seminar 1 – The Discrete Cosine Transform: Theory and Application 

14 
 

decorrelation characteristics, this property renders some reduction in the pre-computation 

complexity. 

2.4. A Faster DCT 

The properties discussed in the last three sub-sections have laid the foundation for a faster DCT 

computation algorithm. Generalized and architecture-specific fast DCT algorithms have been 

studied extensively ([17], [18], [19], [20], [21], [22], [23], [24], [25],[26], [27], [28], [29], [30], 

[31]). However, and in accordance with the readers’ engineering background, we only discuss 

one algorithm that utilizes the Fast Fourier Transform (FFT) to compute the DCT and its inverse 

[16]. This algorithm is presented for the 1-D DCT nevertheless it can be extended to the 2-D 

case. Here, it is important to note that DCT is not the real part of the Discrete Fourier Transform 

(DFT). This can be easily verified by inspecting the DCT and DFT transformation matrices.  

The 1-D sequence ( )f x  in (1) can be expressed as a sum of an even and an odd sequence 

( ) ( ) ( )xfxfxf oe +=
~

, 
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The summation term in (1) can be split to obtain 
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For the inverse transformation, we can calculate ( ) )2(2
~

xfxf =  and the odd points can be 

calculated by noting that ( ) ( )[ ]xNfxf −−=+ 1212
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2.5. DCT versus DFT/KLT 

At this point it is important to mention the superiority of DCT over other image transforms. 

More specifically, we compare DCT with two linear transforms: 1) The Karhunen-Loeve 

Transform (KLT); 2) Discrete Fourier Transform (DFT). 

The KLT is a linear transform where the basis functions are taken from the statistical properties 

of the image data, and can thus be adaptive. It is optimal in the sense of energy compaction, i.e., 

it places as much energy as possible in as few coefficients as possible. However, the KLT 

transformation kernel is generally not separable, and thus the full matrix multiplication must be 

performed. In other words, KLT is data dependent and, therefore, without a fast (FFT-like) pre-

computation transform. Derivation of the respective basis for each image sub-block requires 

unreasonable computational resources. Although, some fast KLT algorithms have been 

suggested ([32], [33]), nevertheless the overall complexity of KLT is significantly higher than 

the respective DCT and DFT algorithms. 
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In accordance with the readers’ background, familiarity with Discrete Fourier Transform (DFT) 

has been assumed throughout this document. The DFT transformtion kernel is linear, separable 

and symmetric. Hence, like DCT, it has fixed basis images and fast implementations are 

possible. It also exhibits good decorrelation and energy compaction characterictics. However, the 

DFT is a complex transform and therefore stipulates that both image magnitude and phase 

information be encoded. In addition, studies have shown that DCT provides better energy 

compaction than DFT for most natural images. Furthermore, the implicit periodicity of DFT 

gives rise to boundary discontinuties that result in significant high-frequency content. After 

quantization, Gibbs Phenomeneon causes the boundary points to take on erraneous values [11]. 

3. DCT Performance Evaluation: An Information 

Theoretic Approach 

In this section we investigate the performance of DCT using information theory measures. 

3.1. Entropy Reduction 

The decorrelation characteristics of DCT should render a decrease in the entropy (or self-

information) of an image. This will, in turn, decrease the number of bits required to represent the 

image. Entropy is defined as 

( ) ( )( )i

N

i
i xpxpXH log)(

1
∑

=

−= , 

where ( )ip x  is the value of the probability mass function (pmf) at iX x= . Throughout the 

following discussion, the pmf refers to the normalized histogram of an image. 

The first column of Table 1 gives the entropy of the images listed in Figure 7. All following 

columns tabulate the entropies of the respective DCT images with a certain number of 
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coefficients retained. More specifically, DCT (M%) means that after the DCT operation only the 

first M percent of the total coefficients are retained. Consider for instance a 352x288 image, 

DCT (25%) retains only 25% (352x288x0.25=25560) of the total (102240) coefficients. 

It should be emphasized again that this decrease in entropy represents a reduction in the average 

number of bits required for a particular image. The second column of Table 1 clearly shows that 

the DCT operation reduces the entropy of all images. The reduction in entropy becomes more 

profound as we decrease the number of retained coefficients (see Table 1 columns 3, 4, and 5). 

This very interesting result implies that discarding some high frequency details can yield 

significant dividend in reducing the overall entropy. It is noteworthy that the inherent lossless 

nature of the transform encoder dictates that the coefficient discarding operation be implemented 

in the quantizer. 

Image Entropy 
original image 

Entropy  
DCT (75%) 

Entropy 
DCT (50%) 

Entropy  
DCT (25%) 

Saturn 4.1140 1.9144 0.7504 0.2181 
Child 5.7599 1.7073 0.7348 0.2139 
Circuit 6.9439 1.4961 0.6906 0.2120 
Trees 5.7006 1.1445 0.6181 0.2081 
Baboon 7.3461 0.9944 0.5859 0.2058 
Sine 3.125 1.2096 0.6674 0.2125 

Table 1. Entropy of images and their DCT. 

A closer look at the Table 1 reveals that the entropy reduction for the Baboon image is very 

drastic. The entropy of the original image ascertains that it has a lot of high frequency 

component and spatial detail. Therefore, coding it in the spatial domain is very inefficient since 

the gray levels are somewhat uniformly distributed across the image. However, the DCT 

decorrelates the image data thereby stretching the histogram. This discussion also applies to the 

other high frequency images, namely Circuit and Trees. The decrease in entropy is easily 

explained by observing the histograms of the original and the DCT encoded images in Figure 9. 

As a consequence of the decorrelation property, the original image data is transformed in a way 

that the histogram is stretched and the amplitude of most transformed outcomes is very small. 
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Figure 9. (a) Histogram of Saturn and its DCT; (b) Histogram of Child and its DCT; (c) 
Histogram of Circuit and its DCT; (d) Histogram of Trees and its DCT; (e) Histogram of 

Baboon and its DCT; (f) Histogram of a sine wave and its DCT. 
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The preceding discussion ignores one fundamental question: How much visual distortion in the 

image is introduced by the (somewhat crude) quantization procedure described above? Figure 10 

to Figure 15 show the images reconstructed by performing the inverse DCT operation on the 

quantized coefficients. Clearly, DCT(25%) introduces blurring effect in all images since only 

one-fourth of the total number of coefficients are utilized for reconstruction. However, 

DCT(50%) provides almost identical reconstruction in all images except Figure 13 (Trees) and 

Figure 15 (Sine). The results of Figure 13 (Trees) can be explained by the fact that the image has 

a lot of uncorrelated high-frequency details. Therefore, discarding high frequency DCT 

coefficients results in quality degradation. Figure 15 (Sine) is easily explained by examination of 

its DCT given in Figure 7(f). Removal of high-frequency coefficients results in removal of 

certain frequencies that were originally present in the sine wave. After losing certain frequencies 

it is not possible to achieve perfect reconstruction.  

Nevertheless, DCT(75%) provides excellent reconstruction for all images except the sine wave. 

This is a very interesting result since it suggests that based on the (heterogeneous) bandwidth 

requirements of receivers, DCT coefficients can be discarded by the quantizer while rendering 

acceptable quality. 
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(a) (b) 

  
(c) (d) 

Figure 10. Inverse DCT of Saturn; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%); (d) 
DCT(25%). 
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(a) (b) 

  
(c) (d) 

Figure 11. Inverse DCT of Child; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%);  

(d) DCT(25%). 
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(a) (b) 

  
(c) (d) 

Figure 12. Inverse DCT of Circuit; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%);  

(d) DCT(25%). 
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(a) (b) 

  
(c) (d) 

Figure 13. Inverse DCT of Trees; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%);  

(d) DCT(25%). 
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(a) (b) 

  
(c) (d) 

Figure 14. Inverse DCT of Baboon; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%);  

(d) DCT(25%). 
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(a) (b) 

  
(c) (d) 

Figure 15. Inverse DCT of sine wave; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%);  

(d) DCT(25%). 

3.2. Mutual-Information 

A video transmission comprises of a sequence of images (referred to as frames) that are 

transmitted in a specified order. Generally, the change of information between consecutive video 

frames is quite low. Hence, pixel values in one frame can be used to predict the adjacent pixels 

of the next frame. This phenomenon is referred to temporal correlation. Such temporal 

redundancy can be removed to provide better compression. However, it should be obvious that if 

the two respective frames represent a scene change then the mutual information is reduced. This 

is clearly shown in Figure 16. The first two frames exhibit high temporal correlation. However, 

frame-2 and frame-3 represent a change in scene, therefore the information overlap between 

these frames is relatively smaller. 
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Frame-1 Frame-2 Frame-3 

Figure 16. Three consecutive frame of a video sequence. 

We utilize the Mutual Information Measure to quantify the temporal correlation between frames 

of a video sequence. Mutual information of two video frames can, therefore, be characterized as 

the amount of redundancy (correlation) between the two frames. Mutual Information is given by 

( ) ( ) ( )
( ) ( )
,

; , log
x y

p x y
I X Y p x y

p x p y

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑∑ , 

where ( ),p x y  is the joint probability mass function (pmf) of random variables X  and Y  (i.e., 

frame-X  and frame-Y  in our case), ( )p x  and ( )p y  represent the marginal pmf of X  and Y  

respectively. 

Let us consider the mutual information of the video frames shown in Figure 16. Let ( ),p x y  be 

defined by coupling the values of adjacent pixels in any two consecutive frames. The allowed 

range of values for ( ),p x y  is (0, 0), (0, 1), (0, 2), ……, (255, 255). Hence, the total number of 

outcomes is (255)2. In addition, let ( )p x  and ( )p y  be the normalized histograms of frame-X  

and frame-Y  respectively. The mutual information is as follows: 

Mutual Information between frame-1 and frame-2:  

Mutual Information between frame-2 and frame-3: 

1.9336 

0.2785 
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Since, there exists high temporal correlation between the first two frames, therefore, their mutual 

information is quite high. However, frame-2 and frame-3 represent a change in video scene, 

hence, the mutual information of the two images is relatively smaller. 

These results outline a very interesting phenomenon, and that is, frames in a video sequence 

exhibit high temporal correlation. Such temporal redundancies can be exploited by the source 

encoder to improve coding efficiency. In other words, adjacent pixels from past and future video 

frames can be used to predict the pixel values in a particular frame. This temporal correlation is 

employed by most contemporary video processing systems. Further discussion on this topic is 

out of the scope of this document. 

4. Conclusions and Future Directions 

The results presented in this document show that the DCT exploits interpixel redundancies to 

render excellent decorrelation for most natural images. Thus, all (uncorrelated) transform 

coefficients can be encoded independently without compromising coding efficiency. In addition, 

the DCT packs energy in the low frequency regions. Therefore, some of the high frequency 

content can be discarded without significant quality degradation. Such a (course) quantization 

scheme causes further reduction in the entropy (or average number of bits per pixel). Lastly, it is 

concluded that successive frames in a video transmission exhibit high temporal correlation 

(mutual information). This correlation can be employed to improve coding efficiency.  

The aforementioned attributes of the DCT have led to its widespread deployment in virtually 

every image/video processing standard of the last decade, for example, JPEG (classical), MPEG-

1, MPEG-2, MPEG-4, MPEG-4 FGS, H.261, H.263 and JVT (H.26L). Nevertheless, the DCT 

still offers new research directions that are being explored in the current and upcoming 

image/video coding standards ([35], [36], [37], [38], [39], [40]). 
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