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Abstract

Higher order MRF-MAP formulation has been shown to
improve solutions in many popular computer vision prob-
lems. Most of these approaches have considered hand tuned
clique potentials only. Over the last few years, while there
has been steady improvement in inference techniques mak-
ing it possible to perform tractable inference for clique sizes
even up to few hundreds, the learning techniques for such
clique potentials have been limited to clique size of merely
3 or 4. In this paper, we investigate learning of higher order
clique potentials up to clique size of 16. We use structural
support vector machine (SSVM), a large-margin learning
framework, to learn higher order potential functions from
data. It formulates the training problem as a quadratic pro-
gramming problem (QP) that requires solving MAP infer-
ence problems in the inner iteration. We introduce multiple
innovations in the formulation by introducing soft submod-
ularity constraints which keep QP constraints manageable
and at the same time makes MAP inference tractable. Un-
like contemporary approaches to solving the original prob-
lem using the cutting plane technique, we propose to solve
the problem using subgradient descent. This allows us to
scale for problems with clique size even up to 16. We give
indicative experiments to show the improvement gained in
real applications using learned potentials instead of hand
tuned ones.

1. Introduction

In recent years, researchers have increasingly focused
their attention on higher order MRF-MAP formulations for
their ability to encode interactions among a larger set of pix-
els [5, 12, 14–16, 23, 31]. However, in most of such works,
clique potentials are hand tuned using the expert domain
knowledge. This is due to the lack of efficient algorithms
for learning the potentials from data.

While most of the earlier work [20, 27] on learning
clique potentials in an MRF-MAP formulation has been
around pairwise potentials only, a few have also suggested
techniques for learning a restricted class of parameterized
higher order potential functions [3, 11, 22]. Other notable
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Figure 1: The focus of this paper is on learning higher order clique
potentials in an MRF-MAP formulation. While the current state of
the art has shown learning of such clique potentials upto size 4, we
seek to enhance the tractability of learning upto size 16. The figure
shows the improvement in denoising output for input image shown
in (a), using learned potentials of various sizes: (c) clique size = 2,
(d) clique size = 4,(e) clique size = 9, and (f) clique size = 16.

works have used approximation techniques to learn such po-
tentials [8, 17].

One of the principled ways to learn the parameters of a
probabilistic graphical model is by using the structural sup-
port vector machine (SSVM), a margin maximizing frame-
work. SSVM formulates the learning problem as a convex
quadratic programming (QP) problem under the regularized
risk minimization paradigm. The formulation minimizes an
objective function consisting of L2 norm of the parameters
and surrogated hinge loss function. The number of con-
straints in such a formulation are typically exponential in
the number of variables of the MRF.

Two popular approaches to solve the above QP are us-
ing the cutting plane algorithm [13] and subgradient descent
based algorithms [20, 21]. Cutting plane approach relies on
the fact that at the optimal solution of the QP, only a few
constraints are active. Therefore, in each iteration, a small
QP is solved, and a new most violated constraint is added.
Finding such a constraint is done by solving a separation
oracle to find a valid cutting plane, which is equivalent to



performing the MAP inference.
On the other hand, subgradient based methods [21] con-

vert the problem to an unconstrained optimization problem
by incorporating the constraints directly into the objective
function. In this scheme, the constraints do not need to
be represented explicitly and hence, an exponential number
of constraints can be easily dealt with. The transformation
comes at the cost of losing differentiability, and therefore
subgradients are used instead of gradients. Computing the
subgradient amounts to solving a MAP inference problem.

As seen above, efficiently solving MAP inference task
is crucial for parameter learning. However, MAP inference
in graphical models with arbitrary potential function is an
NP-hard problem in general. One of the ways to overcome
it is by restricting the clique potentials to be submodular
[9, 27, 32]. During parameter learning, submodularity is en-
forced by adding the corresponding hard linear constraints
in the optimization problem. However, adding these con-
straints to the formulation creates scalability issues, since
the number of submodularity constraints increases expo-
nentially with the clique size. Understandably, existing al-
gorithms for learning generic submodular potentials have
reported results only upto clique size of 4 and have signifi-
cant trouble scaling beyond a clique size of 9 [9].

Contributions: We present an algorithm to efficiently
learn submodular higher order clique potentials upto size
16. Unlike state of the art [11, 23] we do not restrict the
potentials in any other way. Our algorithm is based on
the subgradient formulation, which includes submodularity
constraints as soft constraints (with a very high penalty) in
the objective function. While the steps for computing sub-
gradient for the original max-margin constraints have been
known, we show that subgradient for submodularity con-
straints depends on the constraints that are violated at the
current weights. We suggest computing this subgradient by
a linear scan through the submodularity constraints. Note
that this does not require storing all the constraints in the
memory. With number of constraints growing exponentially
with clique size in the problem, this is crucial for tractabil-
ity, and an important novelty, of the proposed algorithm.
Our experiments on image denoising and object detection
problem indicate that using clique potentials learnt from our
algorithm can significantly outperform hand-tuned poten-
tials in the state of the art.

2. Related Work

Two prominent methods to learn the clique potentials in
an MRF-MAP problem are maximum likelihood and max-
margin learning. In maximum likelihood approach, par-
tition function needs to be computed which is intractable
for loopy graphical models. Max-margin learning approach
does not involve such computation and provides the flexi-

bility to use different performance metrics, which is more
suited for the task of MAP inference. We focus on the max-
margin learning approach in this paper.

Max-margin [29] based approaches are typically referred
to SSVM formulations because of their similarity to the
margin-based framework in a SVM problem, albeit in the
structured space. Associative Markov Networks [28] was
one of the first approaches using max-margin learning. It
solved the QP for a particular class of pairwise potentials
called associative potential for which the number of mar-
gin based constraints could be reduced from exponential to
polynomial.

Cutting plane based methods [13] instead solve a small
QP by iteratively adding the most violated constraint based
on the weights learned in the last iteration. The approach
works by exploiting the fact that only a small number of
constraints need to be present in the memory to obtain
the optimal solution [13]. For finding the most violated
constraint, one needs to perform loss-augmented inference.
Szummer et al. [27] used graph cut inference for the task to
learn a restricted form of submodular pairwise potentials.

In subgradient based methods [20, 21], the QP is solved
by converting the problem into an unconstrained optimiza-
tion one. Computing the sub-gradient again requires solv-
ing the MAP inference task. Luchi et al. [20] proposed
a method which approximates the subgradient by using a
working set of most violated constraints as opposed to the
last violated constraint. They also avoid expensive loss-
augmented inference by random sampling but lose the opti-
mality guarantees of SSVM. None of the above approaches
have tried to learn the potentials beyond standard pairwise
potentials.

Among the few works focusing on learning higher or-
der potentials, Rother et al. [23] learn sparse higher order
potentials from data. Sparsity helps in reducing the compu-
tation effort during learning and inference but limits the ex-
pressive power of the potential function significantly since
any configuration not seen during training is given an infi-
nite cost. Gould et al. [11] have suggested learning a class
of potentials called lower envelope potentials. Since it is
a severely restricted subset of general submodular poten-
tials, the applicability of such potentials can be somewhat
limited. Fix et al. [9] propose a method to learn general
higher order submodular potential functions by adding lin-
ear submodularity constraints in the QP. Each iteration of
cutting plane now solves a QP with all the violated con-
straints added in the previous iterations and extra submod-
ularity constraints. Fix et al. [9] also proposed a higher or-
der inference algorithm to find the most violated constraint.
This method does not scale beyond clique size 9 as the num-
ber of submodularity constraints increases exponentially in
clique size, making the QP solving extremely slow.

In this paper, we use max-margin framework SSVM for



learning potentials in a higher order MRF problem. Our
method brings the submodularity constraints in the objec-
tive function and solves the QP by subgradient descent
method. This helps us in scaling the learning algorithm up
to clique size 16 and to calculate the subgradient using the
recently proposed highly efficient higher order inference al-
gorithm SoS-MinNorm [25].

3. Background
We focus on the problem of learning parameters of a

Markov Random Field where X = {1, · · · , 255}N denotes
an input space and Y = {0, 1}N denotes a binary struc-
tured output space. N denotes the number of variables in
the problem. Let C denote the set of cliques in the problem
and Ψ = {ψc}c∈C the set of potential functions over these
cliques. The energy of a configuration, (x,y), in a MRF is
given as:

E(x,y; Ψ) =
∑
c∈C

ψc(xc,yc) (1)

Here, xc and yc denote a specific input and output configu-
ration over a clique c. In an alternate formulation, one can
use a feature function, fc(xc,yc), and an associated weight
vector wc, both of size 2|c|, and assume the energy expres-
sion of the form:

E(x,y;w) =
∑
c∈C

wc
T fc(xc,yc). (2)

Representing the wc’s and fc’s by single vectors w’s and
f ’s, the energy can be written as E(x,y;w) = wT f(x,y).
The MAP inference problem corresponds to finding the
minimum energy state y∗ given the input configuration x
such that

y∗ = arg min
y

E(x,y;w) (3)

3.1. Submodularity

MAP inference problem defined in Equation 3 is in-
tractable in general but can be solved in polynomial time if
the clique potentials are submodular. Since our output label
space is restricted to the set {0, 1}, the potentials ψc(x,y)
can be treated as functions defined over sets, with labels 0
and 1 indicating the exclusion and inclusion in the set re-
spectively. Submodularity over a set function is defined as:

Definition 3.1. A set function ψ : 2|S| → R defined on a set
S is submodular if for all X ⊆ S, a, b ∈ S and a, b /∈ X ,
ψ satisfies the following property: ψ(X ∪ {a})− ψ(X) ≥
ψ(X ∪ {a, b})− ψ(X ∪ {b})

Since we deal with binary valued fc’s, submodularity
of ψc(x,y) can be equivalently expressed in terms of the
corresponding weight vector wc as: wX∪{a} − wX ≥
wX∪{a}∪{b}−wX∪{b}. Here,X denotes a configuration of

clique c and wX denotes the component of w correspond-
ing to configuration X .

3.2. Structured SVMs

Structured Support Vector Machines (SSVMs) [13] gen-
eralize the standard Support Vector Machines (SVMs) for
the case of structured output spaces. Let {(xi,yi)}ni=1 de-
note a set of n training examples. The goal of parame-
ter learning in max-margin framework is to learn the pa-
rameters wc’s such that E(xi,yi) is smaller than E(xi,y)
∀y 6= yi (by a margin), for each example (xi,yi). The op-
timization problem defined by SSVMs can be written as a
Quadratic Program (QP) described as follows:

min
w,ξ

1

2
wTw + C

n∑
i=1

ξi (4)

∀i∀y ∈ Y : E(xi,y,w) ≥ E(xi,yi,w) + ∆(yi,y)− ξi
(5)

∀i, ξi ≥ 0 (6)

Here, 1
2w

Tw acts as a regularizer and ξi variables allow the
margin constraints (Equation 5) to be violated by paying a
penalty in the objective function.

Loss function ∆(yi,y) measures the distance of incor-
rect labeling y from the true labeling yi. Hamming distance
is a standard loss metric used in these formulations. We as-
sume that the loss function satisfy conditions ∆(y,y) = 0
and ∆(yi,y) ≥ 0 for y 6= yi.

Consider a constraint in above QP for ith training ex-
ample and for labeling y = yi. Since E(xi,y,w) =
E(xi,yi,w), the constraint becomes ∆(yi,yi) − ξi ≤ 0.
This implies ξi ≥ 0 because ∆(yi,yi) = 0. So the con-
straints ξi ≥ 0 are already enforced by our assumptions on
loss function, and hence can be gotten rid of.

There are exponential number of margin based con-
straints in the QP defined above. We can use a subgradient
based approach to solve the above optimization problem.

3.3. Subgradient based Optimization

Equation 4 can be equivalently written as an uncon-
strained optimization problem by absorbing the constraints
into the objective itself:

min
w

1

2
wTw

+

n∑
i=1

max
y∈Y

(∆(yi,y)− E(xi,y,w) + E(xi,yi,w)).

(7)

Note that we have gotten rid of ξi ≥ 0 constraints as ex-
plained earlier. The objective function in the above equa-
tion is convex. But it is no longer differentiable due to the



presence of the max function. A subgradient based opti-
mization [6] generalizes the gradient based optimization for
non-differentiable functions.

Definition 3.2. subgradient: A vector v is subgradient of
a convex function h : Rn → R at w if h(w′) ≥ h(w) +
vT (w′ −w), ∀w′ ∈ Rn.

Definition 3.3. ε approximate subgradient: A vector vε is ε
approximate subgradient of a convex function h : Rn → R
at w if h(w′) ≥ h(w) + vTε (w′ −w)− ε,∀w′ ∈ Rn.

Consider a function, h(w) = max
j=1,...,r

hj(w), where each

hj is convex. Let k be any index for which h(w) =
hk(w), i.e., k = arg max

j=1,...,r
hj(w). Using the property that

∇hk(w) is a subgradient for h(w) [6], and E(x,y;w) =
wT f(x,y), a valid subgradient g(w) for the optimization
problem in Equation 7 is given as:

g(w) = w + C

n∑
i=1

(f(xi,yi)− f(xi,y∗i)). (8)

Here y∗i = arg max
y∈Y

(∆(y,yi)− E(xi,y,w)) (9)

= arg min
y∈Y

(E(xi,y,w)−∆(y,yi)). (10)

We can get rid of the term E(xi,yi;w) while computing
the arg min since it does not depend on y ∈ Y . Hence,
yi∗ can be obtained by solving a modified inference prob-
lem known as loss augmented inference, where ∆(yi,y)
has been subtracted from the energy function. Assuming
∆(yi,y) decomposes over cliques in the graph 1, complex-
ity of this step is same as that of MAP inference on the
original problem.

The learning involves moving opposite to the subgradi-
ent in each step. The weight update equation is given as
w ← w − η ∗ g(w), where η is the learning rate and g(w)
represents the subgradient at w. Given a convex function
h(w), Bertsekas et al. [7] show that subgradient algorithm
is guaranteed to converge to the optimal value h(w∗) if
dynamic step-sizes are chosen at each time step such that∑∞
t=1 ηt = ∞, and

∑∞
t=1 η

2
t < ∞. Here, ηt denotes the

step-size at iteration t. In fact, a stronger result holds. In
each learning iteration, if we only have εt approximate sub-
gradient available at time step t, where limt→∞ εt = ε, and
we move along this direction, the algorithm is guaranteed to
have ε convergence i.e., it will converge to a value h(w′∗)
such that h(w′∗) ≤ h(w∗) + ε. This guarantee will be use-
ful for proving convergence of our learning algorithm when
our MAP inference can only return a value which is within
ε factor of the optimal.

1when ∆ is the Hamming distance, it decompose over cliques

4. Our Approach
The focus of our work is on learning higher order clique

potentials efficiently. We make the parameter tying assump-
tion, i.e., the cliques of the same size in the image share the
parameters wc’s with each other (see Section 3). The learn-
ing technique involves performing MAP inference in each
iteration. To make the optimal inference possible in poly-
nomial time we restrict our attention to learning submodular
clique potentials only.

4.1. Learning with Submodularity Constraints

To enforce submodularity on the learnt potentials, we
insert linear inequalities in terms of w, as suggested by
Definition (3.1), in the proposed quadratic program. For
a clique of size |c|, it can be shown that, there are 2|c|−3 ∗
(|c| ∗ (|c| − 1)) such linear inequalities needed to enforce
submodularity on the clique potential. This can be com-
pactly written in the matrix form as Aw ≥ 0, where
each row of matrix A corresponds to a submodularity con-
straint. Each row has two entries as 1, two as −1, and
the rest are 0. For example, for a clique of size 3, w
is an 8 dimensional vector with a value for each of the
labelings, such as {0, 0, 0}, {0, 0, 1}, · · · , {1, 1, 1}, of the
clique. A typical submodularity constraint is of the type:
w{1,0,0} − w{0,0,0} ≥ w{1,1,0} − w{0,1,0}. The row of
the A matrix corresponding to this equation is the vector
[−1, 0, 1, 0, 1, 0,−1, 0, 0].

With submodularity constraints, the updated quadratic
program of Equation 4 can be written as follows:

min
w,ξ

1

2
wTw + C

n∑
i=1

ξi (11)

∀i,∀y ∈ Y : E(xi,y,w) ≥ E(xi,yi,w) + ∆(yi,y)− ξi,
(12)

Aw ≥ 0, (13)

Fix et al. [9] have used the cutting plane technique to solve
the above QP. They iteratively solve a smaller set of QPs
refining the constraint set in each iteration by adding the
most violated margin constraint based on the current set of
weights. The form of these constraints are given by Equa-
tion 12). This is efficient since there exists a polynomial
time separation oracle (by solving an inference problem)
for adding such constraints, and only a small subset of con-
straints needs to be considered to solve the problem opti-
mally [30].

Note that in the approach given by Fix et al., all the sub-
modularity constraints (Equation 13) are added to the con-
straint set in advance. This limits the applicability of their
approach to smaller clique only when the number of sub-
modularity constraints are small. The authors have shown
results only up to cliques of size 4, and in our experiments,



their approach could not scale beyond a clique size of 9.
In principle, it is possible to apply a separate cutting

plane strategy on the submodularity constraints in the same
way as done for margin constraints. However, in our exper-
iments, we observe that a large number of such constraints
are violated and brought in the QP, rendering the technique
ineffective. Exploring this strategy further is the target of
our future work.

4.2. Switching to Soft Submodularity Constraints

In this paper we suggest an alternative approach to solve
the optimization problem by converting the hard submod-
ularity constraints into soft ones. We introduce slack vari-
ables βj and penalize violating such constraints in the ob-
jective function with high cost C2. The updated quadratic
program can be written as follows:

min
w,ξ

1

2
wTw + C1

n∑
i=1

ξi + C2

|A|∑
j=1

βj

∀i,∀y ∈ Y : E(xi,y,w) ≥ E(xi,yi,w) + ∆(yi,y)− ξi,
Aw ≥ −β;β ≥ 0 (14)

Here |A| is the number of rows in matrix A and is equal
to the total number of submodularity constraints. Note that,
converting to soft constraint implies that the returned poten-
tials may not always be submodular. This may have impli-
cations on the overall optimality of the solution. We defer
the details to the next section.

With the change to soft constraints, we can now con-
vert the problem to an unconstrained quadratic program, by
bringing all the constraints in the objective function.

min
w

ζ(w) = min
w

1

2
wTw

+ C1

n∑
i=1

max
y∈Y

(∆(yi,y)− E(xi,y,w) + E(xi,yi,w))

+ C2

|A|∑
j=1

max(0,−ajw) (15)

Here aj denotes the jth row vector of the matrix A. It
can be shown that a valid subgradient of ζ(w) is given as:

g = w + C1

n∑
i=1

(f(xi,yi)− f(xi,y∗i)) + C2

∑
j∈Vw

−aTj

In the equation above, second and third terms on right are
the contributions to the subgradient because of margin and
submodularity constraints respectively. y∗i is obtained by
solving the loss augmented inference problem and Vw is the
set of violated submodular constraints at current parameter

Algorithm 1 Learning higher order potentials
Input: S = (x1,y1), . . . , (xn,yn) // Training set
Input: η (Learning rate), T (Iterations), ∆ (Loss function)
Output: w // The learned parameter vector

1: w = 0;
2: for t ∈ {1, . . . , T} do;
3: g1 = 0;
4: for i ∈ {1, . . . , n} do;
5: y∗i = arg max

y∈Y
(∆(y,yi)− E(xi,y,w))

// perform loss augmented inference
6: end for
7: g1 =

∑
i f(xi,yi)− f(xi,y∗i);

// subgradient component due to margin constraints
8: g2 =

∑
j∈Vw

−aTi ;
// subgradient component due to submodularity constraints

9: w = w − η√
t
(w + C1g1 + C2g2);

// parameter update
10: end for
11: return w; // final weight vector

vector w and is given as: Vw = {j : ajw < 0}.
Unlike the earlier approach by Fix et al. [9], the proposed

formulation does not require storing the whole A matrix in
the memory. This is because the component of subgradi-
ent due to submodularity violation requires the set of vi-
olated submodularity constraints which can be computed
on the fly. This is a huge advantage, since, as the size of
the clique grows larger, the QP formulation as proposed in
Equation 11 becomes increasingly difficult to store in the
memory.

The complete details of our algorithm in the form of
pseudocode have been given in Algorithm 1. We perform
the loss augmented inference using the current set of param-
eters w in Line 5 which can be solved in polynomial time if
the corresponding potentials are submodular [24]. Subgra-
dient component corresponding to the margin constraints is
computed on Line 7 and component due to violated sub-
modularity constraints is computed in Line 8. Parameters
are updated in Line 9.

4.3. Convergence Guarantees

Algorithm 1 is guaranteed to converge to the optimal if
we can optimally solve the MAP inference task (Line 5).
By enforcing submodularity of potentials, this can be done
in polynomial time [4, 25]. But there is one caveat. Since
in our formulation submodularity is modeled as soft con-
straints, our potentials may not be exactly submodular,
implying that convergence guarantees may not hold. In
this case, we analyze our algorithm using the notion of ε-
convergence (see Section 3). Specifically, we show that if
MAP inference returns a value within εt/n of the optimal
(n being the number of examples, and t the iteration step),
then we can compute the εt approximate subgradient in iter-



ation t. This guarantees convergence of Algorithm 1 within
ε of the optimal subject to limt→∞ εt = ε, as discussed in
Section 3.3. First, we prove the following theorem:

Theorem 4.1. Define h(w) = max
j=1,...,r

hj(w), here each

hj is convex. Given a parameter vector w, let k denote
the index such that hk(w) is within ε of the maximum, i.e.,
hk(w) ≥ h(w)−ε. Then, vε = ∇whk(w) is ε approximate
subgradient of h(w).

Proof. As vε is the (sub)gradient of hk(w) at point w, we
have

∀w′, hk(w′) ≥ hk(w) + vTε (w′ −w) (16)

Now hk(w′) ≤ h(w′) by definition of h(w′) and hk(w) ≥
h(w) − ε by the given condition. Substituting these in the
above equation, we get:

∀w′, h(w′) ≥ h(w) + vTε (w′ −w)− ε (17)

This is exactly the definition of ε approximate subgradient
of h(w) at w. Hence, proved.

At Line 5 in Algorithm 1, we perform the task of infer-
ence n times, n being the number of examples in each it-
erations. Therefore, if MAP inference algorithm returns an
answer within εt/n of the optimal, the overall approxima-
tion factor with respect to the optimal is εt. This is because
the objective involves sum of the energy terms from each
example (see Equation 15). Note that we do not introduce
any approximation for the terms corresponding to submodu-
larity constraints. Finally, an εt approximation in the energy
term of the objective will result in εt approximate subgra-
dient using Theorem 4.1 in iteration t. If limt→∞ εt = ε
Algorithm 1 converges to an ε optimal solution. In our ex-
periments, we have observed that after a few iterations of
learning, there are very few violations in the submodularity
constraints (both in terms of the number and the magnitude)
indicating that the inference may already be close to the op-
timal.

Solving the proposed quadratic program requires per-
forming a MAP inference for each computation of sub-
gradient component due to margin constraints. If all the
potential functions are submodular, the energy function in
Equation 1 is a sum of submodular function which can be
solved efficiently. Recently Shanu et al. [25] have proposed
an algorithm SoS-MinNorm, an extension of famous Min
Norm Point algorithm [10] to solve the sum of submodular
minimization problem. It exploits the sum of submodular
structure present in the MRF-MAP inference problems to
efficiently optimize the objective for very large clique sizes
(going up to 1000). Though there have been other algo-
rithms [4, 15] to efficiently solve the MRF-MAP problem
with submodular clique potentials, they become quite slow
for clique sizes greater than 12. We have therefore used

Clique Size Average Pixel Loss

1×2 30.30%
2×2 21.30%
3×3 15.62%
4×4 8.67%

Table 1: Average pixel loss on 10 testing images with increasing
clique size. Image size is 120 × 120. We have used structured
noise of patch size 4× 4 and with flipping probability p = 0.7.

SoS-MinNorm to compute the subgradient in our algorithm.
In future, we would like to analyze the effect of approximate
submodularity of the potential functions on the ε optimality
of our inference algorithm.

5. Experiments
All the experiments have been conducted on a computer

with 3.4 GHz core i7 processor and 16 GB of RAM, run-
ning Ubuntu 16.04 operating system. We show results for
the task of image denoising and object detection. In our
notation, using a clique size of H ×W implies including
potentials over all the overlapping windows of size H ×W
with a stride of 1 in the image. We ran the proposed subgra-
dient algorithm for 200 iterations in all the experiments.

We have experimented with different MAP inference al-
gorithm like SoS-IBFS [9], Generic Cuts [5], Lazy Generic
Cuts [15] to solve the loss-augmented inference problem
and empirically conclude SoS-MinNorm [25] to scale best
with increasing clique size both in terms of memory and
time. We have used Sos-MinNorm in all the reported re-
sults. Our code is publicly available 2.

5.1. Image Denoising

For image denoising, we used binary image dataset [1]
containing images of different objects like butterfly, ele-
phant, crown, etc. We scale each image to a size of
120 × 120. For each object, we selected 20 images and
randomly divided them into training and testing set having
10 images in each.

Implementation Details: Our MRF G = (V, C) has the
following energy function:

E(x,y;w) =
∑
v∈V

ψv(xv,yv) +
∑
c∈C

ψc(yc) (18)

= wT
u f

u(x,y) + wT
h f

h(y).

Here C denotes set of all cliques of having size greater than
or equal to 2. ψv(xv,yv) and ψc(yc) are the unary costs at
pixel v and higher order clique potentials at clique c respec-
tively. fu(x,y) and fh(y) denotes the unary and higher

2http://www.cse.iitd.ac.in/˜khandelwal/
publication/WACV/



Clique Size Patch Size Average Pixel Loss

2×2 2×2 6.27%
2×2 3×3 12.50%
2×2 4×4 21.30%

3×3 2×2 6.01%
3×3 3×3 10.12%
3×3 4×4 15.62%

4×4 2×2 5.98%
4×4 3×3 10.05%
4×4 4×4 8.67%

Table 2: Average pixel loss on 10 testing images with varying
clique size of learned potential and patch size of structured noise.
Image size is 120 × 120 and flipping probability p = 0.7. We
observe that as the patch size of noise increases, we need higher
and higher order potentials to achieve a certain accuracy.

order feature vectors corresponding to unary and higher or-
der potentials. The parameters to be learned are wu and
wh. Note that our our higher order potentials do not depend
on the input values x. Therefore, the functions ψc(yc,wc)
and fh(y) do not involve variable xc (or x) as an argu-
ment. We have selected our feature vectors as, fu(x,y) =∑
v∈V f

u
v (xv,yv), and fh(y) =

∑
c∈C f

h
c (yc). Unary fea-

ture vector for a node v is defined as follows:

fuv (xv,yv) =
[
Iv(1− yv) (255− Iv)yv

]T
.

Here Iv is the pixel intensity at the pixel v. Higher order
clique feature fhc (yc) at clique c is an indicator vector of
size 2|c| with 1 at the position corresponding to labeling yc

and 0 otherwise.
In all our experiments, every pixel shares the same unary

parameter vector. wu has size 2 for denoising. Every higher
order clique has the same size and shares the same parame-
ter vector wh of size 2|c|. So we learn total 2 + 2|c| param-
eters in the denoising experiment. We have used hamming
distance as the loss function between the ground truth and
the predicted image.

Noise Model: The benefit of using higher order models
is more evident when there is a structured noise. A simple
mathematics would suggest that in case of salt and pepper
noise both pairwise and higher order models are expected
to perform similarly. We synthetically generate images cor-
rupted with structured noise. We select overlapping patches
of size k × k with stride 1 in the ground truth images and
flip all the pixel with probability p. We have experimented
with different values of p and patch size.

Quantitative Analysis: We analyze our algorithm empir-
ically in terms of how the objective function value decreases
over iterations. Figure 2 (left plot) shows the result. To
show the practical utility of the training objective formula-
tion, we also analyze if the improvement in objective func-
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Figure 2: Change of objective value (left) and average pixel loss
on the training data (right), during different iterations.

Original Noisy Ours Handcrafted

Figure 3: Comparison of the denoising output using clique poten-
tials learnt from the proposed approach vs using handcrafted count
based potential of size 3×3 clique potentials. We have used struc-
tured noise by choosing random patch of size 3× 3 and flip pixels
of the patch with probability p = 0.3. Image size is 120× 120.

tion corresponds to decrease in pixel loss. Figure 2 (right
plot) shows average training pixel loss variations during the
iterations of the algorithm. The plots indicate that, although
the objective value keeps decreasing over the iterations, the
pixel loss stabilizes very soon to a low value.

Table 1 compares the average pixel loss on 10 noisy but-
terfly images with increasing clique size using clique po-
tentials learnt from the proposed method. We see that by
increasing clique size from 1× 2 to 2× 2 reduces the pixel
loss from 30.3% to 8.67%. For these experiments, we have
created noisy input images by adding structured noise of
patch size 3 × 3 with a probability of flipping p = 0.7.
The table indicates the scalability of our algorithm as well
as serves to justify the use of larger cliques to improve the
quality of the solution.

We also do a quantitative analysis of learnt potentials of
different clique sizes. Table 2 shows the average pixel loss
as we vary both clique size and patch. We observe that as
the patch size of noise increases, we need higher and higher
order potentials to achieve a certain accuracy.

Visual Comparison: We also compared learned potential
with hand tuned potentials such as the count based potential
used in previous works [25, 26] for the task of binary object
segmentation. The cost of a labeling under count based po-
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Figure 4: Comparing object detection output using DeepLab Vs our approach using learnt clique potentials of size 3× 3.

tential is k ∗ (n− k) where n is the clique size and k is the
number of 1’s in the labeling. In our experiments, the count
based potential performed significantly poor compared to
the learnt potentials. Figure 3 shows the visual comparison.

5.2. Object Detection

In this section, we show results of using higher order
learnt potentials on the task of pixel level object detection.
For comparison, we have used state of the art deep neu-
ral network DeepLab [19]. Since the proposed algorithm
is for binary label problems only, we have selected images
containing a single object from the PASCAL VOC-2012
dataset. We observe that DeepLab works excellent on these
images. However, in a more realistic scenario, even if there
is a little noise in the image, the solution quickly degrades.
To get noisy images, we have added Gaussian noise with
zero mean and intensity dependent variance. We report our
comparison on such noisy images.

We have used publicly available implementation of
DeepLab [2] for comparison. The architecture of DeepLab
consists of a Deep Convolutional Neural Networks (DCNN)
followed by a densely connected pairwise CRF [18]. For
experimentation, we have used DeepLab model which uses
ResNet-101 architecture. Unary potential of densely con-
nected CRF are computed from the label assignment prob-
ability of the deep network and pairwise potential are a
weighted linear combination of two Gaussian kernel and
parameters of these kernels are computed from cross-
validation as described in [19]. We use following energy
function in our formulation:

E(x,y;w) = wT
u f

u(x,y) + wT
p f

p(y) + wT
h f

h(y).

fu(x,y), fp(y) and fh(y) denotes the unary, pairwise and
higher order feature vectors corresponding to unary, pair-
wise and higher order potentials. We use unary potentials as
described for image denoising problem, using probabilities

of DCNN instead of image intensities as the input. Pairwise
and higher order potential are learned using our proposed
algorithm. Figure 4 shows the visual comparison. Learned
higher order potential using our method produces much bet-
ter output in comparison to DeepLab both with and without
dense CRF.

6. Conclusion

In this paper, we have suggested a novel algorithm for
learning higher order clique potentials in an MRF-MAP for-
mulation. We incorporate the submodularity constraints in
the objective function and then solve resulting optimiza-
tion problem using the subgradient descent algorithm. Our
method is particularly appealing for learning large clique
potentials. To the best of our knowledge, ours is the first
work that can learn potentials up to clique size 16. Our ex-
periments indicate the improvement in image denoising and
object detection outputs using the learned potentials com-
pared to the hand tuned ones. The experiments also indi-
cate the benefit of using larger cliques over smaller ones.
Directions for future work include further scaling to larger
clique sizes by enforcing additional parameter tying within
each clique, extending our ideas to multi-label setting and
experimenting with other computer vision tasks.
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