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Abstract

Entity resolution is the problem of determining which
records in a database refer to the same entities, and is a
crucial and expensive step in the data mining process. In-
terest in it has grown rapidly in recent years, and many ap-
proaches have been proposed. However, they tend to ad-
dress only isolated aspects of the problem, and are often
ad hoc. This paper proposes a well-founded, integrated
solution to the entity resolution problem based on Markov
logic. Markov logic combines first-order logic and proba-
bilistic graphical models by attaching weights to first-order
formulas, and viewing them as templates for features of
Markov networks. We show how a number of previous ap-
proaches can be formulated and seamlessly combined in
Markov logic, and how the resulting learning and inference
problems can be solved efficiently. Experiments on two ci-
tation databases show the utility of this approach, and eval-
uate the contribution of the different components.

1 Introduction

Data cleaning and preparation is the first stage in the data
mining process, and in most cases it is by far the most ex-
pensive. Data from relevant sources must be collected, in-
tegrated, scrubbed and pre-processed in a variety of ways
before accurate models can be mined from it. When data
from multiple databases is merged into a single database,
many duplicate records often result. These are records that,
while not syntactically identical, represent the same real-
world entity. Correctly merging these records and the infor-
mation they represent is an essential step in producing data
of sufficient quality for mining. This problem is known by
the name of entity resolution, record linkage, object identifi-
cation, de-duplication, merge/purge, data association, iden-
tity uncertainty, reference reconciliation, and others. In re-
cent years it has received growing attention in the data min-
ing community, with a related workshop at KDD-2003 [27]
and a related task as part of the 2003 KDD Cup [16].

The entity resolution problem was first identified by
Newcombe et al. [31], and given a statistical formulation
by Fellegi and Sunter [14]. Most current approaches are
variants of the Fellegi-Sunter model, in which entity resolu-
tion is viewed as a classification problem: given a vector of
similarity scores between the attributes of two entities, clas-
sify it as “Match” or “Non-match.” A separate match deci-
sion is made for each candidate pair, followed by transitive
closure to eliminate inconsistencies. Typically, a logistic re-
gression model is used [1]. One line of research has focused
on scaling entity resolution to large databases by avoiding
the quadratic number of comparisons between all pairs of
entities (e.g., [20, 30, 26, 7]). Another has focused on the
use of active learning techniques to minimize the need for
labeled data (e.g., [44, 38, 4]). Several authors have de-
vised, compared and learned similarity measures for use in
entity resolution (e.g., [6, 45, 3]). A number of alternate
formulations have also been proposed (e.g., [5]). Entity res-
olution has been applied in a wide variety of domains (e.g.,
[33, 10]) and to different types of data, including text (e.g.,
[25]) and images (e.g., [21]). Winkler [46] surveys research
in traditional record linkage.

Most recently, several authors have pointed out that
match decisions should not be made independently for each
candidate pair. While the Fellegi-Sunter model treats all
pairs of candidate matches as i.i.d. (independent and iden-
tically distributed), this is clearly not the case, since each
entity appears in multiple candidate matches. While this in-
terdependency complicates learning and inference, it also
offers the opportunity to improve entity resolution, by tak-
ing into account information that was previously ignored.
For example, Singla and Domingos [42], Dong et al. [12]
and Culotta and McCallum [9] allow the resolution of en-
tities of one type to be helped by resolution of entities of
related types (e.g., if two papers are the same, their authors
are the same, which in turn is evidence that other pairs of
papers by the same authors should be matched, etc.). Mc-
Callum and Wellner [28] incorporate the transitive closure
step into the statistical model. Pasula et al. [34] incorporate
parsing of entities from citation lists into a citation matching



model. Bhattacharya and Getoor [2] use coauthorship rela-
tions to help match authors in citation databases. Milch et al
[29] propose a language for reasoning about entity resolu-
tion. Shen et al. [40] exploit various types of constraints to
improve matching accuracy. Davis et al. [10] use inductive
logic programming techniques to discover relational rules
for entity resolution, which they then combine using a naive
Bayes classifier.

In this paper we propose a simple and mathematically
sound formulation of the entity resolution problem that in-
corporates these non-i.i.d. approaches, and can be viewed
as a generalization of the Fellegi-Sunter model. It takes ad-
vantage of the recent progress in statistical relational learn-
ing (a.k.a. multi-relational data mining), which provides
rich representations and efficient inference and learning al-
gorithms for non-i.i.d. data [15, 13]. In particular, we use
Markov logic, which combines first-order logic and Markov
random fields [36], with weighted satisfiability testing for
efficient inference and a voted perceptron algorithm for dis-
criminative learning [41]. Our formulation makes it practi-
cal to combine many different components into a compre-
hensive solution to the entity resolution problem. We illus-
trate this in this paper by combining a few salient ones, and
applying the resulting system to a large citation database.

We begin by briefly reviewing the necessary background
on Markov networks, first-order logic and Markov logic.
We then describe our proposed approach to entity resolu-
tion, report on our experiments, and outline directions for
future work.

2 Markov Networks

A Markov network (also known as Markov random field)
is a model for the joint distribution of a set of variables
X = (X1,X2, . . . , Xn) ∈ X [35]. It is composed of an
undirected graph G and a set of potential functions φk. The
graph has a node for each variable, and the model has a po-
tential function for each clique in the graph. A potential
function is a non-negative real-valued function of the state
of the corresponding clique. The joint distribution repre-
sented by a Markov network is given by

P (X =x) =
1
Z

∏
k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of
the variables that appear in that clique). Z, known as the
partition function, is given by Z =

∑
x∈X

∏
k φk(x{k}).

Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an ex-
ponentiated weighted sum of features of the state, leading
to

P (X =x) =
1
Z

exp


∑

j

wjfj(x)


 (2)

A feature may be any real-valued function of the state. This
paper will focus on binary features, fj(x) ∈ {0, 1}. In
the most direct translation from the potential-function form
(Equation 1), there is one feature corresponding to each
possible state x{k} of each clique, with its weight being
log φk(x{k}). This representation is exponential in the size
of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the
state of the clique), allowing for a more compact represen-
tation than the potential-function form, particularly when
large cliques are present. Markov logic takes advantage of
this.

Maximum a posteriori (MAP) inference in Markov net-
works involves finding the most likely state of a set of query
(output) variables given the state of a set of evidence (in-
put) variables, and is NP-hard [37]. Conditional inference
involves computing the distribution of the query variables
given the evidence, and is #P-complete [37]. The most
widely used approximate solution to this problem is Markov
chain Monte Carlo (MCMC) [18], and in particular Gibbs
sampling, which proceeds by sampling each non-evidence
variable in turn given its Markov blanket (i.e., its neighbors
in the graph), and counting the fraction of samples that each
variable is in each state.

Maximum-likelihood or MAP estimates of Markov net-
work weights cannot be computed in closed form, but,
because the log-likelihood is a concave function of the
weights, they can be found efficiently using standard
gradient-based or quasi-Newton optimization methods [32].
Another alternative is iterative scaling [11]. Features can
also be learned from data, for example by greedily con-
structing conjunctions of atomic features [11].

3 First-Order Logic

A first-order knowledge base (KB) is a set of sentences
or formulas in first-order logic [17]. Formulas are con-
structed using four types of symbols: constants, variables,
functions, and predicates. Constant symbols represent ob-
jects in the domain of interest (e.g., people: Anna, Bob,
Chris, etc.). Variable symbols range over the objects in
the domain. Function symbols (e.g., MotherOf) repre-
sent mappings from tuples of objects to objects. Predicate
symbols represent relations among objects in the domain
(e.g., Friends) or attributes of objects (e.g., Smokes). A
term is any expression representing an object in the do-
main. It can be a constant, a variable, or a function ap-
plied to a tuple of terms. For example, Anna, x, and
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GreatestCommonDivisor(x, y) are terms. An atomic for-
mula or atom is a predicate symbol applied to a tuple of
terms (e.g., Friends(x, MotherOf(Anna))). A ground
term is a term containing no variables. A ground atom
or ground predicate is an atomic formula all of whose ar-
guments are ground terms. Formulas are recursively con-
structed from atomic formulas using logical connectives
and quantifiers. A positive literal is an atomic formula;
a negative literal is a negated atomic formula. A KB in
clausal form is a conjunction of clauses, a clause being a
disjunction of literals. Every KB can be converted to clausal
form. A possible world or Herbrand interpretation assigns
a truth value to each possible ground atom. In finite do-
mains, first-order KBs can be propositionalized by replac-
ing each universally (existentially) quantified formula with
a conjunction (disjunction) of all its groundings.

A central (and NP-complete) problem in logic is that of
determining if a KB (usually in clausal form) is satisfiable,
i.e., if there is an assignment of truth values to ground atoms
that makes the KB true. One approach to this problem is
stochastic local search, exemplified by the WalkSAT solver
[39]. Beginning with a random truth assignment, Walk-
SAT repeatedly flips the truth value of either (a) an atom
that maximizes the number of satisfied clauses, or (b) a ran-
dom atom in an unsatisfied clause. WalkSAT is highly effi-
cient, and is able to solve hard instances of satisfiability with
hundreds of thousands of variables in minutes. Many first-
order problems (e.g., planning, software verification) can be
solved efficiently by propositionalizing them and applying a
satisfiability solver. The weighted satisfiability problem is a
variant of satisfiability where each clause has an associated
weight, and the goal is to maximize the sum of the weights
of satisfied clauses. MaxWalkSAT is a direct extension of
WalkSAT to this problem [22].

4 Markov Logic

A first-order KB can be seen as a set of hard constraints
on the set of possible worlds: if a world violates even one
formula, it has zero probability. The basic idea in Markov
logic is to soften these constraints: when a world violates
one formula in the KB it is less probable, but not impossible.
The fewer formulas a world violates, the more probable it
is. Each formula has an associated weight that reflects how
strong a constraint it is: the higher the weight, the greater
the difference in log probability between a world that sat-
isfies the formula and one that does not, other things being
equal.

Definition 1 [36] A Markov logic network (MLN) L is a
set of pairs (Fi, wi), where Fi is a formula in first-order
logic and wi is a real number. Together with a finite set
of constants C = {c1, c2, . . . , c|C|}, it defines a Markov
network ML,C (Equations 1 and 2) as follows:

1. ML,C contains one binary node for each possible
grounding of each predicate appearing in L. The value
of the node is 1 if the ground predicate is true, and 0
otherwise.

2. ML,C contains one feature for each possible ground-
ing of each formula Fi in L. The value of this feature
is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff
the corresponding ground predicates appear together in at
least one grounding of one formula in L. An MLN can
be viewed as a template for constructing Markov networks.
From Definition 1 and Equations 1 and 2, the probability
distribution over possible worlds x specified by the ground
Markov network ML,C is given by

P (X =x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
(3)

where F is the number formulas in the MLN and ni(x)
is the number of true groundings of Fi in x. As formula
weights increase, an MLN increasingly resembles a purely
logical KB, becoming equivalent to one in the limit of all
infinite weights.

In this paper we will focus on MLNs whose formulas
are function-free clauses and assume domain closure, en-
suring that the Markov networks generated are finite [36].
In this case, the groundings of a formula are formed sim-
ply by replacing its variables with constants in all pos-
sible ways. For example, if C = {Anna, Bob}, the
formula ∀x Smokes(x) ⇒ Cancer(x) in the MLN L
yields the features Smokes(Anna) ⇒ Cancer(Anna) and
Smokes(Bob) ⇒ Cancer(Bob) in the ground Markov
network ML,C (or ¬Smokes(Anna) ∨ Cancer(Anna) and
¬Smokes(Bob)∨ Cancer(Bob) in clausal form). See Rich-
ardson and Domingos (2006, Table 2) for details.

MAP inference in Markov logic can be carried out effi-
ciently using a weighted satisfiability solver like MaxWalk-
SAT [22]. This is because the exponent in Equation 3 is the
sum of the weights of the satisfied ground clauses, and thus
P (X = x) can be maximized by maximizing this sum. To
condition on evidence, we first replace the truth values of
the evidence atoms into Equation 3 and simplify (false lit-
erals disappear, and true literals cause the clauses they ap-
pear in to disappear). Conditional probabilities can be com-
puted by Gibbs sampling over the minimal ground network
needed to answer the query; see Richardson and Domingos
[36] for details.

Given a set of formulas, their weights can be learned
either generatively (maximizing the joint likelihood of all
predicates) or discriminatively (maximizing the conditional
likelihood of the query predicates given the evidence ones).
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In this paper we use discriminative learning, as proposed
by Singla and Domingos [41]. The training data is a rela-
tional database (i.e., a set of positive ground literals with
the closed world assumption, by which all atoms not in
the database are assumed false).1 Let x be the vector of
truth values of the evidence atoms, and y the truth values
of the query atoms. For simplicity, we assume that all non-
evidence atoms are query atoms, which is appropriate for
the application in this paper. We learn weights by gradi-
ent descent (or, more precisely, ascent) on the conditional
log-likelihood of y given x. From Equation 3, the partial
derivative of the conditional log-likelihood with respect to
the weight of the ith clause is

∂

∂wi
log Pw(y|x) = ni(x, y) − Ew[ni(x, y)] (4)

where ni(x, y) is the number of true groundings of the
ith clause in the data, and Ew[ni(x, y)] is the clause’s ex-
pected number of true groundings, averaged over all pos-
sible worlds, weighted by their probabilities according to
the current weights. Thus a clause’s weight should increase
when its actual count is greater than its predicted one, and
decrease when it is lower. Although computing the ex-
pected counts Ew[ni(x, y)] is intractable, they can be ap-
proximated by the counts ni(x, y∗

w) in the MAP state y∗
w(x)

(i.e., the most likely state of y given x). This is a good ap-
proximation if most of the probability mass of Pw(y|x) is
concentrated around y∗

w(x), and is the essence of the voted
perceptron algorithm [8], which initializes all weights to
zero, performs T steps of gradient descent, and returns the
weights averaged over all iterations (wi =

∑T
t=1 wi,t/T ).

While it was originally developed for the special case of
hidden Markov models, and used the Viterbi algorithm to
find the MAP state, Singla and Domingos [41] generalized
it to MLNs by replacing Viterbi with MaxWalkSAT.

It is also possible to learn the structure of MLNs using
inductive logic programming techniques [23]. Learning can
start from an empty network, or from an initial knowledge
base.

Markov logic affords us the expressiveness of first-order
logic while avoiding its brittleness, and makes it easy to in-
corporate partial, imperfect, and even contradictory knowl-
edge into the data mining process. MaxWalkSAT inference
and voted perceptron learning are efficient enough to be
practical for domains of realistic size. These algorithms are
publicly available in the Alchemy system, which we use in
our experiments [24].

1If the closed world assumption is not made, the truth values of some
atoms are unknown, and weights can be learned using a form of the EM
algorithm.

5 Entity Resolution

5.1 Equality in Markov Logic

Most systems for inference in first-order logic make the
unique names assumption: different constants refer to dif-
ferent objects in the domain. This assumption can be re-
moved by introducing the equality predicate (Equals(x, y)
or x = y for short) and its axioms [17]:

Reflexivity: ∀x x = x.

Symmetry: ∀x, y x = y ⇒ y = x.

Transitivity: ∀x, y, z x = y ∧ y = z ⇒ x = z.

Predicate equivalence: For each binary predicate R:
∀x1, x2, y1, y2 x1 = x2 ∧ y1 = y2 ⇒ (R(x1, y1) ⇔
R(x2, y2)). Similar axioms are required for predicates
of other arities and for functions, but binary predicates
suffice for this paper.

Adding the formulas above with infinite weight to an
MLN allows it to handle non-unique names. We can also
add the reverse of the last one with finite weight:

Reverse predicate equivalence: For each binary predicate
R: ∀x1, x2, y1, y2 R(x1, y1) ∧ R(x2, y2) ⇒ (x1 =
x2 ⇔ y1 = y2), and similarly for other arities and
functions.

The meaning of this formula is most easily understood
by noting that it is equivalent to the two clauses:

∀x1, x2, y1, y2 R(x1, y1) ∧ R(x2, y2) ∧ x1 = x2

⇒ y1 = y2

∀x1, x2, y1, y2 R(x1, y1) ∧ R(x2, y2) ∧ y1 = y2

⇒ x1 = x2

As statements in first-order logic, these clauses are false,
because different groundings of the same predicate do not
generally represent the same tuples of objects. However,
when added to an MLN with a finite weight, they cap-
ture an important statistical regularity: if two objects are
in the same relation to the same object, this is evidence
that they may be the same object. Some relations provide
stronger evidence than others, and this is captured by as-
signing (or learning) different weights to the formula for
different R. For example, when de-duplicating citations,
two papers having the same title is stronger evidence that
they are the same paper than them having the same author,
which in turn is stronger evidence than them having the
same venue. However, even the latter is quite useful: two
papers appearing in the same venue are much more likely to
be the same than two papers about which nothing is known.
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Remarkably, the equality axioms and reverse predicate
equivalence are all that is needed to perform entity resolu-
tion in Markov logic. As we will see, despite its simplicity,
this formulation incorporates the essential features of some
of the most sophisticated entity resolution approaches to
date, including the “collective inference” approaches of Mc-
Callum and Wellner [28] and Singla and Domingos [42]. A
number of other approaches can be incorporated by adding
the corresponding formulas. (We emphasize that our goal
is not to reproduce every detail of these approaches, but
rather to capture their essential features in a simple, con-
sistent form.) Further, entity resolution and data mining can
be seamlessly combined, and aid each other, by performing
structure learning on top of the entity resolution MLN.

5.2 Problem Formulation

We now describe our proposed approach in de-
tail. For simplicity, we assume that the database to
be deduplicated contains only binary relations. This
entails no loss of generality, because an n-ary rela-
tion can always be re-expressed as n binary relations.
For example, if a citation database contains ground
atoms of the form Paper(title, author, venue),
they can be replaced by atoms of the form
HasTitle(paper, title), HasAuthor(paper, author)
and HasVenue(paper, venue). Each real-world entity
(e.g., each paper, author or venue) is represented by one or
more strings appearing as arguments of ground atoms in
the database. For example, different atoms could contain
the strings ICDM-2006, Sixth ICDM and IEEE ICDM’06,
all of which represent the same conference. We assume
that the predicates in the database (representing relations in
the real world) are typed; for example, the first argument
of the predicate HasAuthor(paper, author) is of type
Paper, and the second is of type Author. The goal of
entity resolution is, for each pair of constants of the same
type (x1, x2), to determine whether they represent the same
entity: is x1 = x2? Thus the query predicate for inference
is equality; the evidence predicates are the (binarized)
relations in the database, and other relations that can be
deterministically derived from the database (see below).
The model we use for entity resolution is in the form of an
MLN, with formulas and weights that may be hand-coded
and/or learned. The most likely truth assignment to
the query atoms given the evidence is computed using
MaxWalkSAT. Conditional probabilities of query atoms
given the evidence are calculated using Gibbs sampling.

The model includes a unit clause for each query pred-
icate. (A unit clause is a clause containing only one lit-
eral.) The weight of a unit clause captures (roughly speak-
ing) the marginal distribution of the corresponding predi-
cate, leaving non-unit clauses to capture the dependencies

between predicates. Since most groundings of most pred-
icates are usually false (e.g., most pairs of author strings
do not represent the same author), it is clearest to use
unit clauses consisting of negative literals, with positive
weights. Since predicate arguments are typed, there is a
unit clause for equality between entities of each type (e.g.,
paper1 = paper2, author1 = author2, etc.). From
a discriminative point of view, the weight of a unit clause
represents the threshold above which evidence must accu-
mulate for a candidate pair of the corresponding type to be
declared a match.

5.3 Field Comparison

We assume that each field in a database to be dedu-
plicated is a string composed of one or more words
(or, more generally, tokens), and define the predicate
HasWord(field, word) which is true iff field contains
word. Applied to this predicate, reverse predicate equiva-
lence states that

∀x1, x2, y1, y2 HasWord(x1, y1) ∧ HasWord(x2, y2)
∧ y1 = y2 ⇒ x1 = x2

or, in other words, fields that have a word in common are
more likely to be the same. When inserted into Equation 3,
and assuming for the moment no other clauses, this clause
produces a logistic regression for the field match predicate
x1 = x2 as a function of the number of words n the two
fields have in common: P (x1 = x2 | n) = 1/(1 + e−wn),
where w is the weight of the formula. Effectively, then,
reverse predicate equivalence applied to HasWord() imple-
ments a simple similarity measure between fields. This
measure can be made adaptive, in the style of Bilenko and
Mooney [3], by learning a different weight for each ground-
ing of reverse predicate equivalence with a different word.
(Groundings where y1 �= y2 are always satisfied, and there-
fore their weights cancel out in the numerator and denomi-
nator of Equation 3, and are irrelevant. Reflexivity ensures
the proper treatment of groundings where y1 = y2.)

It can also be useful to add the “negative” version of re-
verse predicate equivalence:

∀x1, x2, y1, y2 ¬HasWord(x1, y1) ∧ HasWord(x2, y2)
∧ y1 = y2 ⇒ x1 �= x2

∀x1, x2, y1, y2 HasWord(x1, y1) ∧ ¬HasWord(x2, y2)
∧ y1 = y2 ⇒ x1 �= x2

∀x1, x2, y1, y2 ¬HasWord(x1, y1) ∧ ¬HasWord(x2, y2)
∧ y1 = y2 ⇒ x1 = x2

Like other word-based similarity measures, this ap-
proach has the disadvantage that it treats misspellings, vari-
ant spellings and abbreviations of a word as completely
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different words. Since these are often a significant is-
sue in entity resolution, it would be desirable to account
for them. One way to do this efficiently is to compare
word strings by the engrams they contain [19]. This
can be done in our framework by defining the predicate
HasEngram(word, engram), which is true iff engram is a
substring of word. (This predicate can be computed on
the fly from its arguments, or pre-computed for all rele-
vant word-engram pairs and given as evidence.) Applying
reverse predicate equivalence to this predicate results in a
logistic regression model for the equality of two words as
a function of the number of engrams they have in common.
Combined with the logistic regression for field equality, this
produces a two-level similarity measure, comparing fields
as sets of words, which are in turn compared as strings. Co-
hen et al. [6] found such hybrid measures to outperform
pure word-based and pure string-based ones for entity reso-
lution. The maximum length of engrams to consider is a pa-
rameter of the problem. Linear-interpolation smoothing is
obtained by defining different predicates for engrams of dif-
ferent length, with the corresponding weights for the corre-
sponding versions of reverse predicate equivalence. (These
can also be learned, using weight priors to avoid overfit-
ting.) It is also possible to incorporate string edit distances
like Levenshtein and Needleman-Wunsch [3] into an MLN.
This involves stating formulas analogous to the recurrence
relations used to compute these distances, with (negative)
weights corresponding to the costs of insertion, deletion,
etc. Pursuing this approach is an item for future work.

5.4 The Fellegi-Sunter Model

The Fellegi-Sunter model uses naive Bayes to predict
whether two records are the same, with field comparisons
as the predictors [14]. If the predictors are the field match
predicates, Fellegi-Sunter is a special case of reverse predi-
cate equality, with R as the relation between a field and the
record it appears in (e.g., HasAuthor(paper, author)). If
the predictors are field similarities, measured by the num-
ber of words present in both, either and none of the fields,
Fellegi-Sunter is implemented by clauses of the form

∀x1, x2, y1, y2 HasWord(x1, y1) ∧ HasWord(x2, y2)
∧ y1 = y2 ∧ R(z1, x1) ∧ R(z2, x2) ⇒ z1 = z2

∀x1, x2, y1, y2 ¬HasWord(x1, y1) ∧ HasWord(x2, y2)
∧ y1 = y2 ∧ R(z1, x1) ∧ R(z2, x2) ⇒ z1 �= z2

∀x1, x2, y1, y2 HasWord(x1, y1) ∧ ¬HasWord(x2, y2)
∧ y1 = y2 ∧ R(z1, x1) ∧ R(z2, x2) ⇒ z1 �= z2

∀x1, x2, y1, y2 ¬HasWord(x1, y1) ∧ ¬HasWord(x2, y2)
∧ y1 = y2 ∧ R(z1, x1) ∧ R(z2, x2) ⇒ z1 = z2

∀z1, z2 z1 �= z2

for each field-record relation R. The last rule corresponds
to the class priors implemented as a unit clause.

5.5 Relational Models

The combination of Fellegi-Sunter with transitivity pro-
duces McCallum and Wellner’s [28] conditional random
field (CRF) model, with field matches or field similarities as
the features. (A logistic regression model is a CRF where all
the query variables are independent; transitive closure ren-
ders them dependent. Discriminatively-trained MLNs can
be viewed as relational extensions of CRFs.)

Reverse predicate equivalence applied to the relations in
the database yields the CRF model of Singla and Domingos
[42], with the field similarity measure described above in-
stead of TF-IDF. It is also very similar to the CRF model of
Culotta and McCallum [9]. The model of Dong et al. [12] is
also of this type, but more ad hoc. All of these models have
the property that they allow entities of multiple types to be
resolved simultaneously, with inference about one pair of
entities triggering inferences about related pairs of entities
(e.g., if two papers are the same, their authors are the same;
and vice-versa, albeit with lower weight).

We can also use coauthorship relations for entity resolu-
tion, in the vein of Bhattacharya and Getoor [2], by defining
the Coauthor(x1, x2) predicate using the formula

∀x, y1, y2 HasAuthor(x, y1) ∧ HasAuthor(x, y2)
⇒ Coauthor(y1, y2)

with infinite weight, and applying reverse predicate equiva-
lence to it. (We can also explicitly state that coauthorship is
reflexive and symmetric, but this is not necessary.) Notice
that this approach increases the likelihood that two authors
are the same even if they are coauthors of a third author
on different papers. While this is still potentially useful, a
presumably stronger regularity is captured by the clause

∀x1, x2, y1, y2, y3, y4 HasAuthor(x1, y1)
∧ HasAuthor(x2, y2) ∧ HasAuthor(x1, y3)
∧ HasAuthor(x2, y4) ∧ x1 = x2 ∧ y1 = y2 ⇒ y3 = y4.

This formula is related to reverse predicate equivalence, but
(with suitably high weight) represents the non-linear in-
crease in evidence that can occur when both the papers and
the coauthors are the same.

So far, we have seen that an MLN with a small number
of hand-coded formulas representing properties of equal-
ity is sufficient to perform state-of-the-art entity resolution.
However, one of the key features of the entity resolution
problem is that a wide variety of knowledge, much of it
domain-dependent, can (and needs to) be brought to bear
on matching decisions. This knowledge can be incorporated
into our approach by expressing it in first-order logic. For
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example, the constraints listed by Shen et al. [40] can all be
incorporated into an MLN in this way. Weighted satisfiabil-
ity then performs the role of relaxation labeling in Shen at
al. It is also possible to incorporate formulas learned inde-
pendently using ILP techniques, as in Davis et al. [10], or
to refine the hand-coded formulas and construct additional
ones using MLN structure learning [23].

5.6 Scalability

In practice, even for fairly small databases there will be
a large number of equality atoms to infer (e.g., 1000 con-
stants of one type yield a million equality atoms). However,
the vast majority of these will usually be false (i.e., non-
matches). Scalability is typically achieved by performing
inference only over plausible candidate pairs, identified us-
ing a cheap similarity measure (e.g., TF-IDF computed us-
ing a reverse index from words to fields). This approach can
easily be incorporated into our framework simply by adding
all the non-plausible matches to the evidence as false atoms.
Most clauses involving these atoms will always be satisfied,
and thus there is no need to ground them. We select plau-
sible candidates using McCallum et al.’s canopy approach
[26], with TF-IDF cosine as the similarity measure, but any
other approach could be used. While some of the appar-
ent non-matches might be incorrect, this is a necessary and
very reasonable approximation. Notice that reverse predi-
cate equivalence might be able to correct some of these er-
rors, by indirectly inferring that two very different strings in
fact represent the same object. We have developed a version
of MaxWalkSAT and MCMC that lazily grounds predicates
and clauses, effectively allowing predicates that are initially
assumed false to be revisited, without incurring the compu-
tational cost of completely grounding the network [43]. In-
corporating this into our entity resolution system is an item
for future work.

6 Experiments

6.1 Datasets

We used two publicly available citation databases in our
experiments: Cora and BibServ.

6.1.1 Cora

The hand-labeled Cora dataset is provided by McCallum2

and has previously been used by Bilenko and Mooney [3]
and others. This dataset is a collection of 1295 different ci-
tations to computer science research papers from the Cora
Computer Science Research Paper Engine. The original

2www.cs.umass.edu/∼mccallum/data/cora-refs.tar.gz

dataset contains only unsegmented citation strings. Bilenko
and Mooney [3] segmented each citation into fields (au-
thor, venue, title, publisher, year, etc.) using an informa-
tion extraction system. We used this processed version of
Cora. We further cleaned it up by correcting some labels.
This cleaned version contains references to 132 different re-
search papers. We used only the three most informative
fields: first author, title and venue (with venue including
conferences, journals, workshops, etc.). We compared the
performance of the algorithms for the task of de-duplicating
citations, authors and venues. For training and testing pur-
poses, we hand-labeled the field pairs. The labeled data
contains references to 50 authors and 103 venues. After
forming canopies, the total number of match decisions was
61,177.

6.1.2 BibServ

BibServ.org is a publicly available repository of about half
a million pre-segmented citations. It is the result of merg-
ing citation databases donated by its users, CiteSeer, and
DBLP. We experimented on a subset of 10,000 records ex-
tracted randomly from the user-donated subset of BibServ,
which contains 21,805 citations. As in Cora, we used the
first author, title and venue fields. In order to focus only
on hard decisions, we discarded all the canopies of size less
than 10. This left us with a total of 15,954 decisions. Since
we lacked labeled data for BibServ, we used the parameters
learned on Cora (with appropriate modifications) to perform
inference on BibServ. Word stemming was used to identify
the variations of the same underlying root word both in Cora
and BibServ.

6.2 Models

We compared the following models in our experiments.

NB. This is the naive Bayes model as described in Sec-
tion 5.4. We use a different feature for every word.

MLN(B). This is the basic MLN model closest to naive
Bayes. It has the four reverse predicate equiva-
lence rules connecting each word to the corresponding
field/record match predicate. With per-word weights,
this yields thousands of weights. For speed, these
are derived from the naive Bayes parameters. The
model also has a unit clause, ¬SameEntity(e1, e2),
for each entity type being matched. The weights of
these rules are learned discriminatively using the algo-
rithm of Singla and Domingos [41]. When the weights
of single predicate rules are set using the class priors
in naive Bayes, the two models are equivalent. All the
following models are obtained by adding specific rules
to the basic MLN model and learning these rules dis-
criminatively.

7



MLN(B+C). This is obtained by adding reverse predicate
equivalence rules for the various fields to MLN(B).
This achieves the flow of information through shared
attribute values as proposed by Singla and Domin-
gos [42].

MLN(B+T). This is obtained by adding transitive clo-
sure rules to MLN(B). It incorporates transitivity into
the model itself as proposed by McCallum and Well-
ner [28].

MLN(B+C+T). This model has both reverse predicate
equivalence and transitive closure rules and i.e. it
has the enhancements proposed by both Singla and
Domingos [42] and McCallum and Wellner [28].

MLN(B+C+T+S). This model is obtained by adding rules
learned using the structure learning algorithm of Kok
and Domingos [23] to MLN(B+C+T). An example of a
rule added by structure learning is: if two papers have
the same title and the same venue, then they are the
same paper.

MLN(B+N+C+T). This model has a two-level learn-
ing/inference step. The first step involves learning a
model to predict if two word mentions are the same
based on the n-grams they have in common (we used
n=3). This step incorporates word-level transitivity
and reverse predicate equivalence rules. The second
step involves learning an MLN(B+C+T) model on the
words inferred by the first stage.3 This model imple-
ments a hybrid similarity measure as proposed by Co-
hen et al. [6].

MLN(G+C+T). This model is similar to MLN(B+C+T)
except that it does not have per-word reverse predicate
equivalence rules. Rather, it has four global rules, each
with the same weight for all words, and these weights
are learned discriminatively, like the rest.4

6.3 Methodology

In the Cora domain, we performed five-fold cross valida-
tion. In the BibServ domain, because of the absence of la-
beled data, the naive Bayes model could not be learned. The
weights of the inverse predicate equivalence rules for each
word were fixed in proportion to the IDF of the word. This
was used as a baseline for all the enhanced models. The
weights of other rules were determined from the weights
learned on Cora for the corresponding model.

3This model was learned on raw words without any stemming, to see if
the n-gram step could potentially achieve the effects of stemming.

4The rule ¬HasWord() ∧ ¬HasWord() ⇒ SameField() has essen-
tially no predictive power; we set its weight to 0.

For each model, we measured the conditional log-
likelihood (CLL) and area under the precision-recall curve
(AUC) for the match predicates. The advantage of the CLL
is that it directly measures the quality of the probability es-
timates produced. The advantage of the AUC is that it is in-
sensitive to the large number of true negatives (i.e., ground
atoms that are false and predicted to be false). The CLL of
a set of predicates is the average over all their groundings of
the ground atom’s log-probability given the evidence. The
precision-recall curve for match predicates is computed by
varying the threshold CLL above which a ground atom is
predicted to be true. We computed the standard deviations
of the AUCs using the method of Richardson and Domin-
gos [36].

6.4 Results

6.4.1 Cora

Table 1 shows the CLL and AUC for the various models on
the Cora dataset. For the case of AUC in venues, there is
monotonic increase in the performance as we add various
collective inference features to the model, with the best-
performing model being MLN(B+C+T). This trend shows
how adding each feature in turn enhances the performance,
giving the largest improvement when all the features are
added to the model. For the case of CLL in venues, the
performance tends to fluctuate as we add various collec-
tive inference features, but the best-performing model is
still MLN(B+C+T). For the case of citations, the results are
similar, although the improvements as we add features are
not as consistent as in case of AUC in venues. For AUC
in authors, we have similar results, although the perfor-
mance gain is much smaller compared to venues and cita-
tions. There is more fluctuation in the case of CLL but the
collective models are still the best.

MLN(B+C+T+S) helps improve the performance of
MLN(B+C+T) on citations and authors (both CLL and
AUC) but does not help on venues.

MLN(B+N+C+T) improves performance on authors but
not on citations and venues. This shows that while stem-
ming can be a good way of identifying word duplicates in
most cases, the engram model is quite helpful when deal-
ing with fields such as authors, where initials are used for
the complete word and can not be discovered by stemming
alone.

MLN(G+C+T) (the model with global word rules) per-
forms well for citations but less so for authors and venues.
In general, per-word rule models seem to be particularly
helpful when there are few words from which to infer the
relationship between two entities.
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Table 1. Experimental results on the Cora database.

Citation Author Venue
System CLL AUC CLL AUC CLL AUC
NB −0.637±0.010 0.913±0.000 −0.133±0.021 0.986±0.000 −0.747±0.017 0.738±0.002
MLN(B) −0.643±0.010 0.915±0.000 −0.131±0.022 0.987±0.000 −0.760±0.017 0.736±0.002
MLN(B+C) −0.809±0.012 0.891±0.000 −0.386±0.064 0.968±0.000 −1.163±0.034 0.741±0.001
MLN(B+T) −0.369±0.003 0.949±0.000 −0.213±0.036 0.994±0.000 −1.036±0.029 0.745±0.002
MLN(B+C+T) −0.597±0.007 0.964±0.000 −0.171±0.043 0.984±0.000 −0.704±0.023 0.828±0.002
MLN(B+C+T+S) −0.503±0.006 0.988±0.000 −0.100±0.033 0.992±0.000 −0.874±0.027 0.807±0.002
MLN(B+N+C+T) −0.879±0.008 0.952±0.000 −0.096±0.032 0.992±0.000 −0.781±0.023 0.817±0.002
MLN(G+C+T) −0.394±0.004 0.973±0.000 −0.263±0.053 0.980±0.000 −1.196±0.031 0.743±0.002

6.4.2 BibServ

Since we did not have labeled data for BibServ, we hand-
labeled 300 pairs each for citations and venues, randomly
selected from the set where the MAP prediction for at least
one of the algorithms was different from the others. For au-
thors, we labeled all the potential match decisions, as there
were only 240 of them. The results reported below are over
these hand-labeled pairs.

Table 2 shows the CLL and AUCs for the various algo-
rithms on the BibServ dataset. As in the case of Cora, for ci-
tations and authors, the best-performing models are the ones
involving collective inference features. MLN(B+N+C+T)
gives the best performance for both CLL and AUC in au-
thors, for the reasons cited before. It is also the best-
performing model for AUC in citations, closely followed
by other collective models. MLN(B+C) gives the best per-
formance for CLL in citations.

Whereas MLN(G+C+T) performs quite poorly on cita-
tions and authors, it in fact gives the best performance on
CLL in venues. On AUC in venues, MLN(G+C+T) and
MLN(B) are the two best performers. Overall, even though
BibServ and Cora have quite different characteristics, ap-
plying the parameters learned on Cora to BibServ still gives
good results. Collective inference is clearly useful, except
for AUC on venues, where the results are inconclusive.

7 Future Work

Directions for future work include:

• Using the EM algorithm applied to MLNs to learn
weights for entity resolution without labeled data.

• Allowing context-dependent match decisions (e.g., J.
Smith may represent two different authors of IJCAI
papers, but always the same author of SIGMOD pa-
pers).

• Specializing reverse predicate equivalence for one-to-
one and one-to-many predicates (e.g., a paper has only
one venue, but multiple authors).

• Explicitly representing entities (and not just references
to them) by using the predicates Represents(x1, y)
and Represents(x2, y) instead of x1 = x2. (This is
more complex, but has a number of advantages [29].)

• Integrating further components and aspects of the en-
tity resolution problem.

• Applying our approach to other entity resolution do-
mains besides citation matching.

• Extending our approach to schema and ontology
matching, by allowing predicate variables (second-
order logic) and applying the equality axioms and re-
verse predicate equivalence to them.

• Extending our approach to other types of data be-
sides relational databases (e.g., tree-structured data
like XML, using Child(x, y) predicates, and text data,
by incorporating parsing rules into the MLN).

• Generalizing across database sizes by learning weights
that depend on the number of groundings.

• Combining entity resolution and data mining in one
learning and inference process, by performing MLN
structure learning over the data at any level of resolu-
tion.

8 Conclusion

This paper proposes a unifying framework for entity res-
olution. We show how a small number of axioms in Markov
logic capture the essential features of many different ap-
proaches to this problem, in particular non-i.i.d. ones, as
well as the original Fellegi-Sunter model. Experiments on
two citation databases evaluate the contributions of these
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Table 2. Experimental results on the BibServ database.

Citation Author Venue
System CLL AUC CLL AUC CLL AUC
MLN(B) −0.008±0.003 0.997±0.001 −0.586±0.114 0.910±0.013 −0.806±0.121 0.908±0.011
MLN(B+C) −0.001±0.000 0.999±0.000 −0.544±0.113 0.887±0.007 −1.166±0.151 0.876±0.012
MLN(B+T) −0.006±0.003 0.993±0.003 −0.600±0.116 0.909±0.013 −0.827±0.123 0.898±0.010
MLN(B+C+T) −0.006±0.004 0.998±0.000 −0.473±0.105 0.928±0.009 −1.146±0.149 0.876±0.012
MLN(B+C+T+S) −0.006±0.004 0.970±0.020 −0.486±0.107 0.926±0.010 −1.133±0.148 0.876±0.012
MLN(B+N+C+T) −0.018±0.005 1.000±0.000 −0.363±0.091 0.940±0.008 −0.936±0.133 0.897±0.012
MLN(G+C+T) −0.735±0.101 0.491±0.000 −4.679±0.256 0.432±0.001 −0.716±0.112 0.906±0.012

approaches, and illustrate how Markov logic enables us to
easily build a sophisticated entity resolution system.
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