Constitutive models

Constitutive model: determines P in terms of deformation
- Elastic material: P depends only on current F

- Hyperelastic material: work is independent of path
= strain energy density function V(F)

P=dWV/dF
P = dW/dF;

analogous to f=-VU



Constitutive models

Different choices of WY = different models of elastic materials

. No deformation: W(I) =0
- Rotation independence: W(R F) = W(F)

= Decompose F=RS. ¥ dependsonlyon S, min whenS =1



Corotated linear elasticity

Quadraticin S:
WF)=u ||[S-T|]2+A/2tr2 (S-1)

= P(F)=2 U R(S-I)+ARtr(S-1I)

u,A: Lamé parameters
- U: resistance to stretching, shearing

. A: resistance to volume change (because tr (S—1I) = det F - 1)

Related to Young’s modulus, Poisson’s ratio



Material parameters

Conversion from Young’s modulus k, Poisson’s ratio v:
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[Smith et al. 2018]



Other constitutive models

St. Venant-Kirchhoff (with E="2 (FTF - I)):

W(F) =y ||E[|2+A/2 tr2E

- StVK
- Easier to compute: no need

- corotated
for polar decomposition

linear

- W, P polynomialinF

- Poor behaviour in compression




Other constitutive models

Neo-Hookean (with C=FTF, Ic =tr C, J=det F):
W(F)=u/2 (Ic-3) - ulog J+A/2 (log J)2

- Correctly models volume change
using J=det F

StVK

corotated

. Good for nearly incompressible linear

materials (e.g. rubber, flesh)

- Undefined under collapse,
inversion (J<0)

neo-Hookean

- Stable neo-Hookean [Smith et al. 2018]



Anisotropy

All these materials are isotropic: independent of direction of
stretching

Y(F) =¥ (FQ)

= WYF)=WUZVT)=YPY(Z): Wonly depends on principal strains

Equivalently, only depends on invariants of C=FTF

Examples of anisotropic materials: ~oor
woven fabrics, composites

[Kharevych et al. 2009] _=_



From theory to simulation

State @(X), @ (X)
-> Deformation gradient F(X) = d¢p/dX

> Stress P(F) = dW¥/dF

> Force density p ¢ = div P + fext
(everything in terms of material space!)

- How to discretize (X)?
- How to compute F?

- How to compute div P?



Meshes

Divide space into elements (usually triangles, AK
tetrahedra), put samples at vertices (a.k.a nodes) 4"“ A
A >
- Reconstruction: linear / polynomial within ) sfé/ " i)/%
each element \ \’{’ >
AR
- Differentiation: naively, gradient only defined \SL\/L\-K’)

in element interior
- Elements should be “well-shaped”: close to regular

Software to generate mesh for given shape: Triangle, TetGen



Meshes for elasticity

Create triangulated mesh in material space
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+ Each vertex stores fixed X;, varying x;
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Reconstruct ¢p(X) by piecewise linear interpolation. (Other
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- Each element stores

shapes e.g. quads, higher-order interpolation also possible)



Shape functions

Interpolation can be expressed as linear combination of shape
functions:

f(x) =fL Ni(x) + > No(x) + -+ + f No(x)

where Ni(x;) =1, Ni(xj) =0forj#zi




Shape functions

In particular,
P (X) = x1 N1(X) + X2 No(X) + -
F(X) = x1 dN1/dX + x2 dNo/dX + -

Piecewise linear interpolation = F, P constant on each element

But what is div P?
Zero in element interior, undefined on element boundaries



The finite element method

FEM in graphics: Sifakis and Barbic,
Part 1, Ch 4: “Discretization”

FEM theory: Bathe, Finite Element
Procedures (especially Ch 3.3, 4.2)




