
COL726 Assignment 5
16–30 April, 2021

Note: All answers should be accompanied by a rigorous justi�cation, unless the question
explicitly states that a justi�cation is not necessary.

1. (a) Show that the convex hull of the unit sphere {u ∈ Rn : ‖u‖ = 1} is the unit ball
{u ∈ Rn : ‖u‖ ≤ 1}.

(b) Show that the convex hull of the set {uuT : u ∈ Rn, ‖u‖2 = 1} is the set of all symmetric
positive semide�nite n × n matrices with unit trace (i.e. sum of diagonal entries = 1).

2. A function g : Rn → Rn is said to be monotone if (g(y) − g(x))T (y − x) ≥ 0 for all x, y ∈ Rn.
Show that a di�erentiable function f : Rn → R is convex if and only if its gradient ∇f is
monotone.

Note: Do not assume that f is twice di�erentiable.

3. Given k points p1, . . . , pk ∈ Rn, I want to �nd a line segment of length ≤ ` which passes
as close as possible to each of them. Let us denote the line segment as L(x1, x2), where
x1, x2 ∈ Rn are its endpoints.

(a) Show that the problem

minimize
k∑
i=1

dist(pi, L(x1, x2))

subject to ‖x1 − x2‖2 ≤ `,

where the optimization variables are x1, x2, is not a convex problem.

Note: Minimizing over multiple variables f (x, y, z, . . . ) is equivalent to minimizing
over a single vector f ([xT , yT , zT , · · · ]T ), and convexity is with respect to this vector.

(b) Show that the above problem is equivalent to

minimize
k∑
i=1
‖pi − θix1 − (1 − θi)x2‖2

subject to ‖x1 − x2‖2 ≤ `,

0 ≤ θi ≤ 1 ∀i = 1, . . . ,k,

where the optimization variables are x1, x2, θ1, . . . , θk . Further show that this problem
is convex in x1, x2 if we hold θ1, . . . , θk �xed, and in θ1, . . . , θk if we hold x1, x2 �xed.
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4. Suppose I wish to minimize f (x) subject to the constraint that h(x) = 0, where both f and h
are strictly convex. �is is not a convex problem. However, suppose I also know that the
function f has a unique global minimum at a point x∗u, and h(x∗u) > 0.

Show that I can �nd a globally optimal point for the original problem, x∗c , by solving the
convex problem of minimizing f (x) subject to h(x) ≤ 0.

5. Consider minimizing the quadratic objective f (x) = 1
2x

TPx + qTx + r , where P ∈ Rn×n is
positive de�nite, using steepest descent in the 1-norm with exact line search.

(a) If n = 2, show that a�er the �rst iteration, the error decreases at a constant rate every

two iterations; in particular, ‖x
(k+2) − x∗‖
‖x(k ) − x∗‖

=
p212

p11p22
for all k ≥ 1.

(b) Show that for any n, if P is diagonal then steepest descent in the 1-norm converges to
x∗ in only n iterations.

Hint: Is the steepest descent method a�ected if you perform the change of variable x = z+ b
for some constant b? What if b = −P−1q?

6. As mentioned in class, it is sometimes desirable to perform data using a norm other than the
2-norm. For example, let us consider minimizing ‖Ax−b‖p for some p > 1, or the equivalent
problem of minimizing f (x) = ‖Ax − b‖pp =

∑m
i=1 |a

T
i x − bi |

p , where ai ∈ Rn are rows of A.

(a) Derive an expression for the gradient ∇f (x), or its components.

Implement a Python function gd(A, b, p, x0) to �nd the optimal point x∗ using gradient

descent with backtracking line search. Terminate when ‖∇f (x
(k ))‖

‖∇f (x(0))‖
< 10−6.

(b) Implement either Newton’s method (as a function newton) or BFGS (bfgs) to solve the
same problem. Your function should use the same arguments and the same termination
criterion as gd.

You may use Numpy/Scipy’s built-in functions for solving linear systems. For this
assignment, you may perform a full O(n3) refactorization even in BFGS.

(c) Generate some test data by choosing a degree-5 polynomial, sampling its values at
many points, and adding some Gaussian noise to the values (using e.g. numpy.random).
Solve the minimization problem for p = 1.25, 2, 5 using the zero polynomial as the initial
guess. Plot the data, the original polynomial, and the three optimized polynomials on a

single plot (similar to B&V Figure 6.5). For each value of p, make a plot of ‖∇f (x
(k ))‖

‖∇f (x(0))‖
as

a function of iteration number k for both your algorithms.

As an additional exercise (not graded), you could try di�erent distributions of noise other
than Gaussian, and see if you can �nd some for which p = 1.25 or p = 5 do be�er than
least-squares for recovering the original polynomial.
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Collaboration policy: Refer to the policy on the course webpage.

If you collaborated with others to solve any question(s) of this assignment, give their names in
your submission. If you found part of a solution using some online resource, give its URL.

Submission: Submit a PDF of your answers for all questions to Gradescope. Submit the code
for �estion 6 to Moodle. Both submissions must be uploaded before the assignment deadline.

Code submissions should contain a single .py �le which contains all the necessary functions.
Functions are permi�ed but not required to produce any side-e�ects like printing out values or
drawing plots. Any results you are asked to show should go in the PDF.
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