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Announcements
Assignment 3 demos postponed to next week (Mon-Wed afternoons), 
sign up again on the same sheet 

Assignment 4 deadline extended to Monday, 22 April



Back to the deformable rod
• Positions: x(s) where s ∈ [0, L] 

• Mass of differential segment: dm = ρ ds 

• Relative length of segment: x(s+ds) − x(s) /ds = ∂x/∂s  

• Strain ε = ∂x/∂s  − 1

∥ ∥ ∥ ∥

∥ ∥



positions x(s)  →  strain ε  →  tension τ  →  force df 
→  PDE d2x/dt2 = ⋯  →  discretize 

Simpler approach: 

positions x(s)  →  strain ε  →  potential energy U  → discretize! 

U = ∫
L

0

1
2 kϵ2 ds



Discretize space: 

• Sample points s0, s1, …, sN with positions x0, x1, …, xN 

•  

•  

The elastic energy is a sum of several terms, each corresponding to a connection between 
adjacent particles i and i+1. 

…We’ve just reinvented mass-spring systems!

∂x
∂s

≈
xi+1 − xi

Δs

U = ∫
L

0

1
2 kϵ2 ds ≈

N−1

∑
i=0

1
2 k ( xi+1 − xi

Δs − 1)
2

Δs



Now we can derive the equations of motion as usual: 

• Net force on particle i =  =  

•  

 
What was the point? 

• Behaves consistently with resolution (changing number of particles N) 

• Generalizes naturally from 1D rods to 2D sheets and 3D volumes!

−
∂U
∂xi

−
N−1

∑
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∂
∂xi

(⋯)
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dt2
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∂U
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Elastic deformation
• Deformation is a map x(X) from the rest shape 

defined in a reference domain 

• Amount of stretch is described by its Jacobian: the deformation gradient F 

 

• Elastic energy is given by a (material-dependent) strain energy density function Ψ 

F = [ ∂x
∂X1

∂x
∂X2

⋯]

U = ∭ Ψ(F) dV



Choice of strain energy density Ψ(F) determines material behaviour, including volume 
preservation (Poisson’s ratio), anisotropy, and all other effects

Sm
ith et al. 2018

Kharevych et al. 2009

Sperl et al. 2020



The finite element method
• Discretize the reference domain using a mesh 

• On each element (triangles in 2D, tetrahedra in 3D) 
interpolate x(X) and compute F = dx/dX 

• Total energy  

• Then proceed as usual! 

 
(This is just the tip of the iceberg regarding FEM. But enough to make it work!)

U = ∑
element j

Ψ(Fj) Vj



Fluids
No rest shape, so no reference space X needed. 
No deformation map x(X), no time derivative v(X) = ẋ(X) 

Still need v as a function of x though: the velocity field 

Can discretize using particles or a grid:



Let’s just discretize space using a collection of particles 

• Velocity field v(x) → samples v1, v2, … at x1, x2, …  

• Also let the particles move with velocity vi 

 
What are the forces/constraints acting on the fluid? 

• Most important: density ρ(x) = const 

• The pressure p(x) is just the corresponding constraint force!



Pressure as a soft constraint
Becker & Teschner 2007https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi


Pressure as a harder constraint
Becker & Teschner 2007https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi


One way to discretize: 

• Density at a particle: ρi = number of nearby particles xj 

 

• Density constraint: ci(q) =  = 0 

• Constraint force: pi ∇w acting on all nearby particles 

This leads to purely particle-based fluid simulation (smoothed particle hydrodynamics, 
position-based fluids, …)

= ∑
j

w(∥xi − xj∥)

∑
j

w(∥xi − xj∥) − ρ0



Another idea: 

• Density ρ(x) = const  ⇒  velocity divergence ∇ · v(x) =  = 0 

• There should be no net inflow or outflow in any region

∂vx

∂x
+

∂vy

∂y
+ ⋯



Hybrid / particle-grid / particle-in-cell methods: 

• Keeping track of nearest neighbours is expensive, 
let’s compute forces on a grid instead 

• At each grid cell, set vij = average velocity of nearby particles 

• Compute divergence ∇ · v using finite differences 

• Constraint force = −∇p. Solve for pij over entire grid 
so that new velocity has zero divergence: ∇ · (v − ∇p) = 0 

• Interpolate pressure force −∇p to particles



Where to learn more
Simulation in general: 

• Witkin & Baraff, Physically Based Modeling (2001) 

• Bargteil & Shinar, An Introduction to Physics-Based Animation (2019) 

Elastic bodies: 

• Kim & Eberle, Dynamic Deformables (2022) 

Contact handling: 

• Andrews et al., Contact and Friction Simulation for Computer Graphics (2022) 

Fluids: 

• Bridson & Müller-Fischer, Fluid Simulation for Computer Animation (2007)

https://graphics.pixar.com/pbm2001/
https://cal.cs.umbc.edu/Courses/PhysicsBasedAnimation/
http://www.tkim.graphics/DYNAMIC_DEFORMABLES/
https://siggraphcontact.github.io/
https://www.cs.ubc.ca/~rbridson/fluidsimulation/

