COL781: Computer Graphics

36. Solids and Eluids

Announcements

Assignment 3 demos postponed to next week (Mon-Wed afternoons), sign up again on the same sheet

Assignment 4 deadline extended to Monday, 22 April

Back to the deformable rod

- Positions: $\mathbf{x}(s)$ where $s \in [0, L]$
- Mass of differential segment: $dm = \rho ds$
- Relative length of segment: $\|\mathbf{x}(s+ds) \mathbf{x}(s)\|/ds = \|\partial \mathbf{x}/\partial s\|$
- Strain $\varepsilon = ||\partial \mathbf{x}/\partial s|| 1$

Simpler approach:

U =

positions $\mathbf{x}(s) \rightarrow \text{strain } \varepsilon \rightarrow \text{tension } \tau \rightarrow \text{force } d\mathbf{f}$ \rightarrow PDE d²**x**/dt² = ··· \rightarrow discretize

positions $\mathbf{x}(s) \rightarrow \text{strain } \varepsilon \rightarrow \text{potential energy } U \rightarrow \text{discretize}!$

$$\int_0^L \frac{1}{2} k\epsilon^2 \,\mathrm{d}s$$

Discretize space:

• Sample points s_0, s_1, \ldots, s_N with positions $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_N$

•
$$\frac{\partial \mathbf{x}}{\partial s} \approx \frac{\mathbf{x}_{i+1} - \mathbf{x}_i}{\Delta s}$$

• $U = \int_0^L \frac{1}{2} k \epsilon^2 \, \mathrm{d}s \approx \sum_{i=0}^{N-1} \frac{1}{2} k \left(\left\| \frac{\mathbf{x}_{i+1} - \mathbf{x}_i}{\Delta s} \right\| \right) - \frac{1}{2} k \left(\left\| \frac{\mathbf{x}_{i+1} - \mathbf{x}_i}{\Delta s} \right\| \right) \right)$

The elastic energy is a sum of several terms, each corresponding to a connection between adjacent particles *i* and *i*+1.

....We've just reinvented mass-spring systems!

-1)² Δs

Now we can derive the equations of motion as usual:

• Net force on particle
$$i = -\frac{\partial U}{\partial \mathbf{x}_i} = -\sum_{j=0}^{N-1} \frac{\partial}{\partial \mathbf{x}_j}$$

• $\frac{\mathrm{d}^2 \mathbf{x}_i}{\mathrm{d}t^2} = -m_i^{-1} \frac{\partial U}{\partial \mathbf{x}_i}$

What was the point?

- Behaves consistently with resolution (changing number of particles N)
- Generalizes naturally from 1D rods to 2D sheets and 3D volumes!

Elastic deformation

- Deformation is a map $\mathbf{x}(\mathbf{X})$ from the rest shape defined in a reference domain
- Amount of stretch is described by its Jacobian: the deformation gradient F

• Elastic energy is given by a (material-dependent) strain energy density function Ψ

U =

$$\iiint \Psi(\mathbf{F}) \,\mathrm{d}V$$

Choice of strain energy density $\Psi(\mathbf{F})$ determines material behaviour, including volume preservation (Poisson's ratio), anisotropy, and all other effects

The finite element method

- Discretize the reference domain using a mesh
- On each element (triangles in 2D, tetrahedra in 3D) interpolate $\mathbf{x}(\mathbf{X})$ and compute $\mathbf{F} = d\mathbf{x}/d\mathbf{X}$

Total energy
$$U = \sum_{\text{element } j} \Psi(\mathbf{F}_j) V_j$$

• Then proceed as usual!

(This is just the tip of the iceberg regarding FEM. But enough to make it work!)

No rest shape, so no reference space **X** needed. No deformation map $\mathbf{x}(\mathbf{X})$, no time derivative $\mathbf{v}(\mathbf{X}) = \dot{\mathbf{x}}(\mathbf{X})$

Still need **v** as a function of **x** though: the velocity field

Can discretize using particles or a grid:

Let's just discretize space using a collection of particles

- Velocity field $\mathbf{v}(\mathbf{x}) \rightarrow \text{samples } \mathbf{v}_1, \mathbf{v}_2, \dots \text{ at } \mathbf{x}_1, \mathbf{x}_2, \dots$
- Also let the particles move with velocity \mathbf{v}_i

What are the forces/constraints acting on the fluid?

- Most important: density $\rho(\mathbf{x}) = \text{const}$
- The pressure $p(\mathbf{x})$ is just the corresponding constraint force!

Pressure as a soft constraint

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Becker & eschner 2007

Pressure as a harder constraint

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

One way to discretize:

- Density at a particle: ρ_i = number of nearby particles \mathbf{x}_i $= \sum_{i} w(\|\mathbf{x}_{i} - \mathbf{x}_{j}\|)$
- Density constraint: $c_i(\mathbf{q}) = \sum_i w(||\mathbf{x}_i \mathbf{x}_j|)$
- Constraint force: $p_i \nabla w$ acting on all nearby particles

This leads to purely particle-based fluid simulation (smoothed particle hydrodynamics, position-based fluids, ...)

$$\|) - \rho_0 = 0$$

Another idea:

• Density $\rho(\mathbf{x}) = \text{const} \Rightarrow \text{velocity diverge}$

• There should be no net inflow or outflow in any region

ence
$$\nabla \cdot \mathbf{v}(\mathbf{x}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \dots = 0$$

Hybrid / particle-grid / particle-in-cell methods:

- Keeping track of nearest neighbours is expensive, let's compute forces on a grid instead
- At each grid cell, set \mathbf{v}_{ii} = average velocity of nearby particles
- Compute divergence $\nabla \cdot \mathbf{v}$ using finite differences
- Constraint force = $-\nabla p$. Solve for p_{ij} over entire grid so that new velocity has zero divergence: $\nabla \cdot (\mathbf{v} - \nabla p) = 0$
- Interpolate pressure force $-\nabla p$ to particles

Where to learn more

Simulation in general:

- Witkin & Baraff, <u>Physically Based Modeling</u> (2001)
- Bargteil & Shinar, <u>An Introduction to Physics-Based Animation</u> (2019)

Elastic bodies:

• Kim & Eberle, *Dynamic Deformables* (2022)

Contact handling:

Andrews et al., <u>Contact and Friction Simulation for Computer Graphics</u> (2022)

Fluids:

• Bridson & Müller-Fischer, *Fluid Simulation for Computer Animation* (2007)