
36. Solids and
 Fluids

COL781: Computer Graphics

Fe
i e

t a
l.

20
19

Announcements
Assignment 3 demos postponed to next week (Mon-Wed afternoons),
sign up again on the same sheet

Assignment 4 deadline extended to Monday, 22 April

Back to the deformable rod
• Positions: x(s) where s ∈ [0, L]

• Mass of differential segment: dm = ρ ds

• Relative length of segment: x(s+ds) − x(s) /ds = ∂x/∂s

• Strain ε = ∂x/∂s − 1

∥ ∥ ∥ ∥

∥ ∥

positions x(s) → strain ε → tension τ → force df
→ PDE d2x/dt2 = ⋯ → discretize

Simpler approach:

positions x(s) → strain ε → potential energy U → discretize!

U = ∫
L

0

1
2 kϵ2 ds

Discretize space:

• Sample points s0, s1, …, sN with positions x0, x1, …, xN

•

•

The elastic energy is a sum of several terms, each corresponding to a connection between
adjacent particles i and i+1.

…We’ve just reinvented mass-spring systems!

∂x
∂s

≈
xi+1 − xi

Δs

U = ∫
L

0

1
2 kϵ2 ds ≈

N−1

∑
i=0

1
2 k (xi+1 − xi

Δs − 1)
2

Δs

Now we can derive the equations of motion as usual:

• Net force on particle i = =

•

What was the point?

• Behaves consistently with resolution (changing number of particles N)

• Generalizes naturally from 1D rods to 2D sheets and 3D volumes!

−
∂U
∂xi

−
N−1

∑
j=0

∂
∂xi

(⋯)
d2xi

dt2
= − m−1

i
∂U
∂xi

Elastic deformation
• Deformation is a map x(X) from the rest shape

defined in a reference domain

• Amount of stretch is described by its Jacobian: the deformation gradient F

• Elastic energy is given by a (material-dependent) strain energy density function Ψ

F = [∂x
∂X1

∂x
∂X2

⋯]

U = ∭ Ψ(F) dV

Choice of strain energy density Ψ(F) determines material behaviour, including volume
preservation (Poisson’s ratio), anisotropy, and all other effects

Sm
ith et al. 2018

Kharevych et al. 2009

Sperl et al. 2020

The finite element method
• Discretize the reference domain using a mesh

• On each element (triangles in 2D, tetrahedra in 3D)
interpolate x(X) and compute F = dx/dX

• Total energy

• Then proceed as usual!

(This is just the tip of the iceberg regarding FEM. But enough to make it work!)

U = ∑
element j

Ψ(Fj) Vj

Fluids
No rest shape, so no reference space X needed.
No deformation map x(X), no time derivative v(X) = ẋ(X)

Still need v as a function of x though: the velocity field

Can discretize using particles or a grid:

Let’s just discretize space using a collection of particles

• Velocity field v(x) → samples v1, v2, … at x1, x2, …

• Also let the particles move with velocity vi

What are the forces/constraints acting on the fluid?

• Most important: density ρ(x) = const

• The pressure p(x) is just the corresponding constraint force!

Pressure as a soft constraint
Becker & Teschner 2007https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Pressure as a harder constraint
Becker & Teschner 2007https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

One way to discretize:

• Density at a particle: ρi = number of nearby particles xj

• Density constraint: ci(q) = = 0

• Constraint force: pi ∇w acting on all nearby particles

This leads to purely particle-based fluid simulation (smoothed particle hydrodynamics,
position-based fluids, …)

= ∑
j

w(∥xi − xj∥)

∑
j

w(∥xi − xj∥) − ρ0

Another idea:

• Density ρ(x) = const ⇒ velocity divergence ∇ · v(x) = = 0

• There should be no net inflow or outflow in any region

∂vx

∂x
+

∂vy

∂y
+ ⋯

Hybrid / particle-grid / particle-in-cell methods:

• Keeping track of nearest neighbours is expensive,
let’s compute forces on a grid instead

• At each grid cell, set vij = average velocity of nearby particles

• Compute divergence ∇ · v using finite differences

• Constraint force = −∇p. Solve for pij over entire grid
so that new velocity has zero divergence: ∇ · (v − ∇p) = 0

• Interpolate pressure force −∇p to particles

Where to learn more
Simulation in general:

• Witkin & Baraff, Physically Based Modeling (2001)

• Bargteil & Shinar, An Introduction to Physics-Based Animation (2019)

Elastic bodies:

• Kim & Eberle, Dynamic Deformables (2022)

Contact handling:

• Andrews et al., Contact and Friction Simulation for Computer Graphics (2022)

Fluids:

• Bridson & Müller-Fischer, Fluid Simulation for Computer Animation (2007)

https://graphics.pixar.com/pbm2001/
https://cal.cs.umbc.edu/Courses/PhysicsBasedAnimation/
http://www.tkim.graphics/DYNAMIC_DEFORMABLES/
https://siggraphcontact.github.io/
https://www.cs.ubc.ca/~rbridson/fluidsimulation/

