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Announcements

Assignment 3 demos postponed to next week (Mon-Wed afternoons),
sign up again on the same sheet

Assignment 4 deadline extended to Monday, 22 April



Back to the deformable rod

® Positions: X(s) where s € [0, L]

® Mass of differential segment: dm = p ds
® Relative length of segment: ||x(s+ds) — x(s)||/ds = ||ox/3s]||

. e = ||ox/3s|| — 1



positions X(s) — straine — tensionT — force df
— PDE d2x/dt2 = -+ — discretize

Simpler approach:

positions X(s) — strain € — potential energy U — discretize!

L
U = J %kezds
0



Discretize space:

® Sample points sg, s1, ..., Sy with positions Xg, X1, ..., Xy
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The elastic energy is a sum of several terms, each corresponding to a connection between
adjacent particles i and i+1.



Now we can derive the equations of motion as usual:

U Qoo
o Netforce on particle i = = = —Z—()

° = —nm, —
OX;

What was the point?

® Behaves consistently with resolution (changing number of particles N)

® Generalizes naturally from 1D rods to 2D sheets and 3D volumes!



Elastic deformation

® Deformation is a map x(X) from the rest shape
defined in a retference domain

® Amount of stretch is described by its Jacobian: the
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® Elastic energy is given by a (material-dependent)

= || waav




Choice of strain energy density W(F) determines material behaviour, including volume
preservation (Poisson’s ratio), anisotropy, and all other eftects
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The finite element method =

. ¥ L
| . . | . 1
[ = - N A
/ | . 4 AN S, ! ,'l 5
.\. | . ) |"'.' > { 1 . b\ : ‘ " A
. \l _-‘..’ ’l || "5.. *
". . 1. ....c —— .+ |
} Il I" . | '1( h. . e {
| \ \.\?‘.' " ' .r" ‘ -'%-‘_. ‘
=T > B
| "

® Discretize the reference domain using a mesh P>

® On each (triangles in 2D, tetrahedra in 3D) NEVAVAYS T
interpolate x(X) and compute F = dx/dX P VAV
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element

® Then proceed as usual!

(This is just the tip of the iceberg regarding FEM. But enough to make it work!)




Fluids

No rest shape, so no reference space X needed.
No deformation map x(X), no time derivative v(X) = x(X)

Still need v as a function of x though: the velocity field

Can discretize using particles or a grid:




Let’s just discretize space using a collection of particles
® Velocity field v(x) = samples vy, vy, ... at X1, X2, ...

® Also let the particles move with velocity v;

What are the forces/constraints acting on the fluid?
® Most important: density p(x) = const

® The pressure p(x) is just the corresponding constraint force!



https://cg.informatik.uni-fre

urg.de/movies/2007_SCA_SPH.avi
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https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Pressure as a harder constraint

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi
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https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

One way to discretize:

® Density at a particle: p;j = number of nearby particles x;
= ) w(llx; — x|)
J
o Density constraint: c(q) = Z w(l[x; = X||) —py =0
J

® Constraint force: p; Vw acting on all nearby particles

This leads to purely (smoothed particle hydrodynamics,
position-based fluids, ...)



Another idea:

av

X

e Density p(x) = const = velocity divergence V- v(x) =

® There should be no net inflow or outflow in any region

ox

av



/ / methods:

® Keeping track of nearest neighbours is expensive,
let’'s compute forces on a grid instead

® At each grid cell, set vjj = average velocity of nearby particles
® Compute divergence V- v using finite differences

® Constraint force = —Vp. Solve for pji over entire grid
so that new velocity has zero divergence: V- (v - Vp) =0

® |nterpolate pressure force —Vp to particles



Where to learn more

Simulation in general:

e \Witkin & Baraft, Physically Based Modeling (2001)

® Bargteil & Shinar, An Introduction to Physics-Based Animation (2019)

Elastic bodies:

® Kim & Eberle, Dynamic Deformables (2022)

Contact handling:

® Andrews et al., Contact and Friction Simulation for Computer Graphics (2022)

Fluids:

® Bridson & Muller-Fischer, Fluid Simulation for Computer Animation (2007)



https://graphics.pixar.com/pbm2001/
https://cal.cs.umbc.edu/Courses/PhysicsBasedAnimation/
http://www.tkim.graphics/DYNAMIC_DEFORMABLES/
https://siggraphcontact.github.io/
https://www.cs.ubc.ca/~rbridson/fluidsimulation/

