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So far, we know how to simulate discrete systems of particles and rigid bodies. 

But lots of things in real life are not discrete:

q(t) = (x, y, z, qw, qx, qy, qz) h(t) : ℝ2 → ℝ
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https://www.youtube.com/watch?v=RRPP73QM_4k

https://www.youtube.com/watch?v=RRPP73QM_4k
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https://www.youtube.com/watch?v=jVxYuPeqOPI

https://www.youtube.com/watch?v=jVxYuPeqOPI
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https://research.nvidia.com/publication/
2008-07_low-viscosity-flow-simulations-animation

https://research.nvidia.com/publication/2008-07_low-viscosity-flow-simulations-animation
https://research.nvidia.com/publication/2008-07_low-viscosity-flow-simulations-animation
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https://www.youtube.com/watch?v=TH5g8TuKIkk

https://www.youtube.com/watch?v=TH5g8TuKIkk


Elasticity

Ki
m

 e
t a

l. 
20

19

https://vimeo.com/333798247

https://vimeo.com/333798247
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https://www.youtube.com/watch?v=YvvoSu8NK3A

https://www.youtube.com/watch?v=YvvoSu8NK3A
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https://www.youtube.com/watch?v=lNri-x2nK7o

https://www.youtube.com/watch?v=lNri-x2nK7o
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https://vimeo.com/160322962

https://vimeo.com/160322962


Mass-spring chain → continuum rod
• Positions: (…, xi, …) where i ∈ {1, 2, …, n} 

• Mass of particle: mi 

• Stretch of spring: xi+1 − xi /ℓ0 

• Force on particle: fi − fi−1 

 
Equations of motion: ODE 

d2xi/dt2 = mi−1 f(xi, xi−1, xi+1, …)

∥ ∥

• Positions: x(s) where s ∈ [0, L] 

• Mass of differential segment: dm = ρ ds 

• Stretch of segment: x(s+ds) − x(s) /ds 
= ∂x/∂s  

• Differential force on segment: 
f(s+ds) − f(s) = (∂f/∂s) ds 

 
Equations of motion: partial differential eq. 

∂2x/∂t2 = ρ−1 f(x, ∂x/∂s, ∂2x/∂s2, …)

∥ ∥
∥ ∥



 

Our goal in this course: 

• Not to fully understand the physics (except enough to gain intuition) 

• Not to fully understand the mathematics (except enough to gain intuition) 

• Understand how to compute numerical solutions to such equations! 

We’ll start with some simpler examples…

∂2x
∂t2

= ρ−1 f (x,
∂x
∂s

,
∂2x
∂s2

, …)



The wave equation

 

Similar to a harmonic oscillator d2u/dt2 = −ku: 
leads to oscillations 

Right-hand side d2u/dx2 is curvature of graph u(x) 

• Restoring force tries to straighten curves, 
flatten extrema

∂2u
∂t2

=
∂2u
∂x2
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https://ranocha.de/
SummationByPartsOperators.jl/
stable/tutorials/wave_equation/

https://ranocha.de/SummationByPartsOperators.jl/stable/tutorials/wave_equation/
https://ranocha.de/SummationByPartsOperators.jl/stable/tutorials/wave_equation/
https://ranocha.de/SummationByPartsOperators.jl/stable/tutorials/wave_equation/


The heat equation

 

• Second derivative → oscillations / waves 

• First derivative → decay / smoothing 

 
So, here is our problem: 

Given the partial differential equation 
and the initial conditions u(x, t=0), 

find the spatial distribution u(x, t) at all future times t

∂u
∂t

=
∂2u
∂x2

https://en.wikipedia.org/wiki/
File:Heatequation_exampleB.gif

https://en.wikipedia.org/wiki/File:Heatequation_exampleB.gif
https://en.wikipedia.org/wiki/File:Heatequation_exampleB.gif


At any future time t, how to represent the function u(x, t)? 

• Even if u(x, 0) has an analytical form, u(x, t) probably doesn’t for t > 0 

Simplest representation: store samples ui(t) = u(xi, t) at various xi 
 
 
 
 
 
 

Now we need to solve  …
dui

dt
=

∂2u
∂x2

u(x, t) u(x, t)

x x



How to estimate spatial derivatives from discrete samples? 
General strategy: reconstruct a sufficiently smooth function, 
then differentiate it 

    (forward difference) 

             (backward difference) 

               (centered difference) 

 

 

Also gives intuition: d2u/dx2 ∝ (average of neighbours) − ui

du
dx

≈
ui+1 − ui

Δx

≈
ui − ui−1

Δx

≈
ui+1 − ui−1

2Δx

d2u
dx2

≈
ui−1 − 2ui + ui+1

Δx2



Boundary conditions
Loïc Bethencourt

Dirichlet boundaries: u = fixed Neumann boundaries: n · ∇u = fixed

https://www.youtube.com/watch?v=-chMgHvZxH0 https://www.youtube.com/watch?v=1hsj10dOgt0

https://www.youtube.com/watch?v=-chMgHvZxH0
https://www.youtube.com/watch?v=1hsj10dOgt0


Anyway, we can’t do things like  if i = 0 or N. 

• Dirichlet boundary: u = user-specified f 

Easy: Just fix u0 = f 

• Neumann boundary: du/dx = user-specified g 

Create a “ghost node” u−1 so that  = g, then plug in

ui−1 − 2ui + ui+1

Δx2

u0 − u−1

Δx



 

↓ 

 

↓ 

 

 
This is now an ordinary differential equation! And we know how to solve those. 

• Choose a time integration scheme, solve the equations, …

∂u
∂t

=
∂2u
∂x2

dui

dt
=

∂2u
∂x2

dui

dt
=

ui−1 − 2ui + ui+1

Δx2



PDEs in higher dimensions

In 1D, unknown function is u = u(x, t), equation is something like  

In nD, it’s u = u(x, y, …, t) 

 

In particular, right-hand side of heat equation / wave equation becomes the Laplacian 

∇2u = 

∂2u
∂t2

= f (u,
∂u
∂x

,
∂2u
∂x2

, …)

∂2u
∂t2

= f (u,
∂u
∂x

,
∂u
∂y

, …,
∂2u
∂x2

,
∂2u
∂y2

,
∂2u

∂x∂y
, …)

∂2u
∂x2

+
∂2u
∂y2

+ ⋯



Spatial discretizations
Now we have more choices of how to discretize space…

Grids Meshes Particles

Easier computation More flexibility



Example: Finite differences on grids in 2D 

 ≈   (or    or  …) 

 ≈  

So the Laplacian becomes 

∇2u =  +  ≈ 

∂u
∂x

ui+1,j − ui,j

Δx
ui,j − ui−1,j

Δx
ui+1,j − ui−1,j

2Δx
∂2u
∂x2

ui−1,j − 2ui,j + ui+1,j

Δx2

∂2u
∂x2

∂2u
∂y2

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

Δx2



For concreteness, here’s one possible spatial discretization of the wave equation in 2D: 

 

↓ 

 

∂2u
∂t2

= ∇2u

dui,j

dt
= vi,j

dvi,j

dt
=

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

Δx2


