

Announcements

Assignment 3 demos some time next week (TBA)

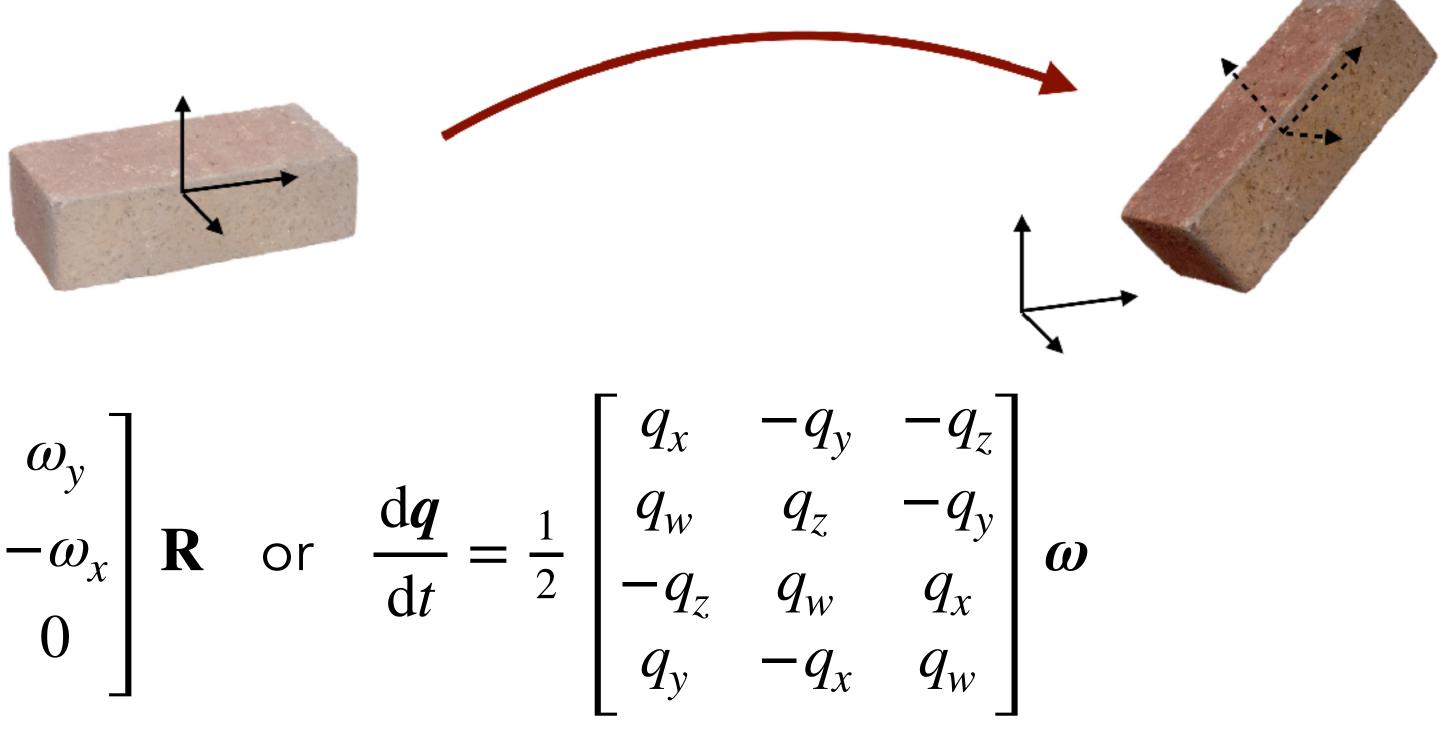
No class tomorrow (Saturday, 13 April)

Rigid bodies

Degrees of freedom: Center of mass position \mathbf{x} , rotation (matrix \mathbf{R} or quaternion \mathbf{q}) ...Basically just the body's coordinate system

Kinematics:

• (Linear) velocity: $d\mathbf{x}/dt = \mathbf{v}$



Angular velocity: ω

$$\frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \mathbf{R}$$

Dynamics:

 $dv/dt = m^{-1}f$

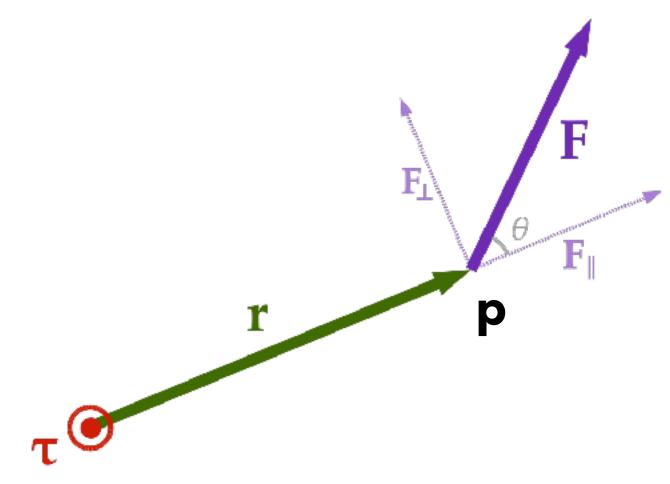
 $d\boldsymbol{\omega}/dt = \mathbf{I}^{-1} \left(\mathbf{T} - \boldsymbol{\omega} \times \mathbf{I} \, \boldsymbol{\omega} \right)$

where

• I = moment of inertia in world space = $\mathbf{R} \mathbf{I}_0 \mathbf{R}^T$ where \mathbf{I}_0 is moment of inertia in body frame

•
$$\mathbf{T}$$
 = net torque = $\sum (\mathbf{p}_i - \mathbf{x}) \times \mathbf{f}_i$

• $\boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega} = "gyroscopic term"$ that makes things tumble



https://commons.wikimedia.org/wiki/File:Tennis_racket_theorem.gif

2

A typical simulation loop:

- Sum up forces **f** and torques **T**
- Update velocities using $d\mathbf{v}/dt = m^{-1}\mathbf{f}$, $d\mathbf{\omega}/dt = \cdots$
- Update DOFs using $d\mathbf{x}/dt = \mathbf{v}$, $d\mathbf{q}/dt = \cdots$
- Normalize *q* to a unit quaternion

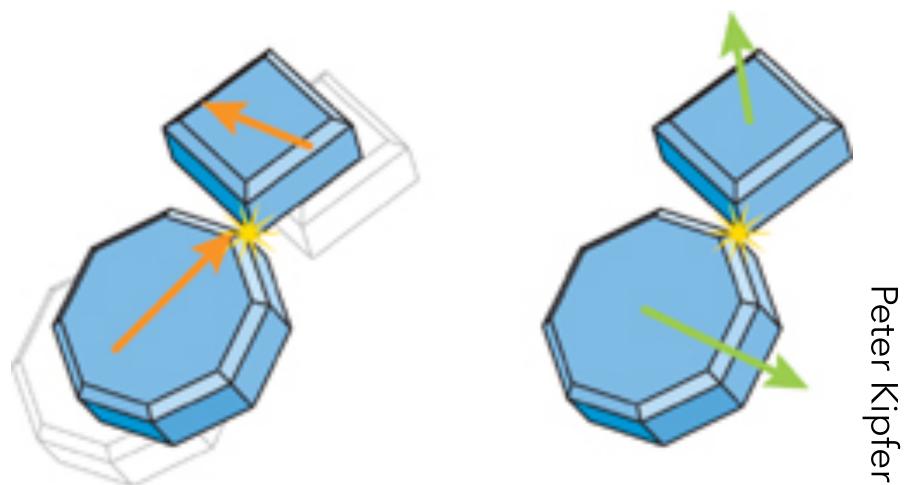
Compare with constrained semi-implicit Euler:

 $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_n, \mathbf{v}_n) \Delta t$ $\mathbf{q}_{\text{pred}} = \mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$ $q_{n+1} = project(q_{pred})$

Collisions

Collision detection: find out which particles / bodies / etc. are colliding

Purely a geometric problem



Collision response: figure out how to update their velocities / positions

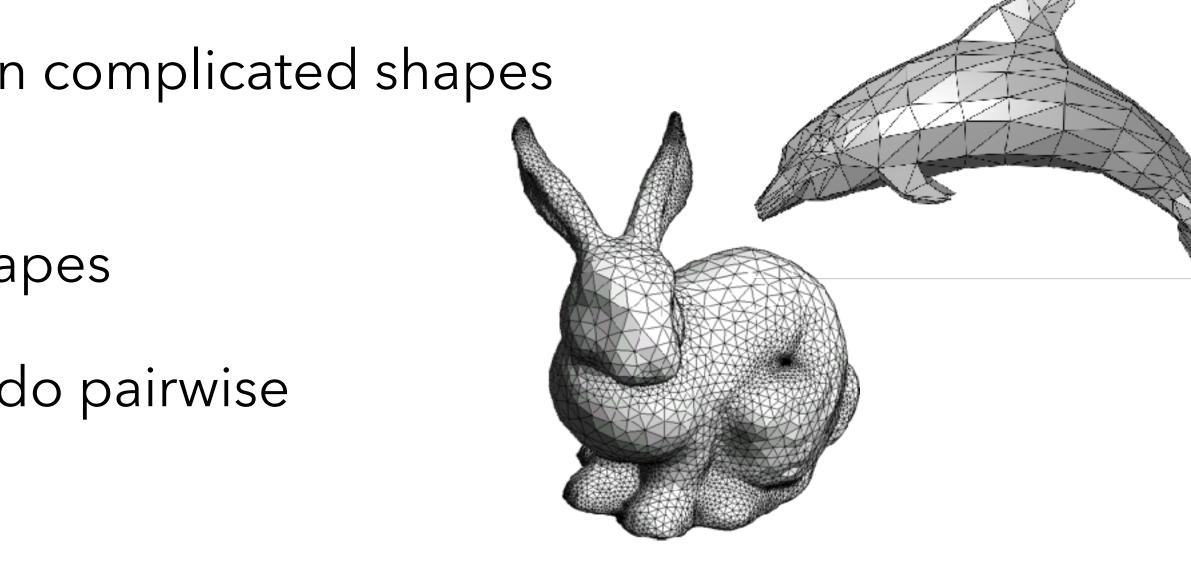
Involves physics of contact forces, friction, etc.

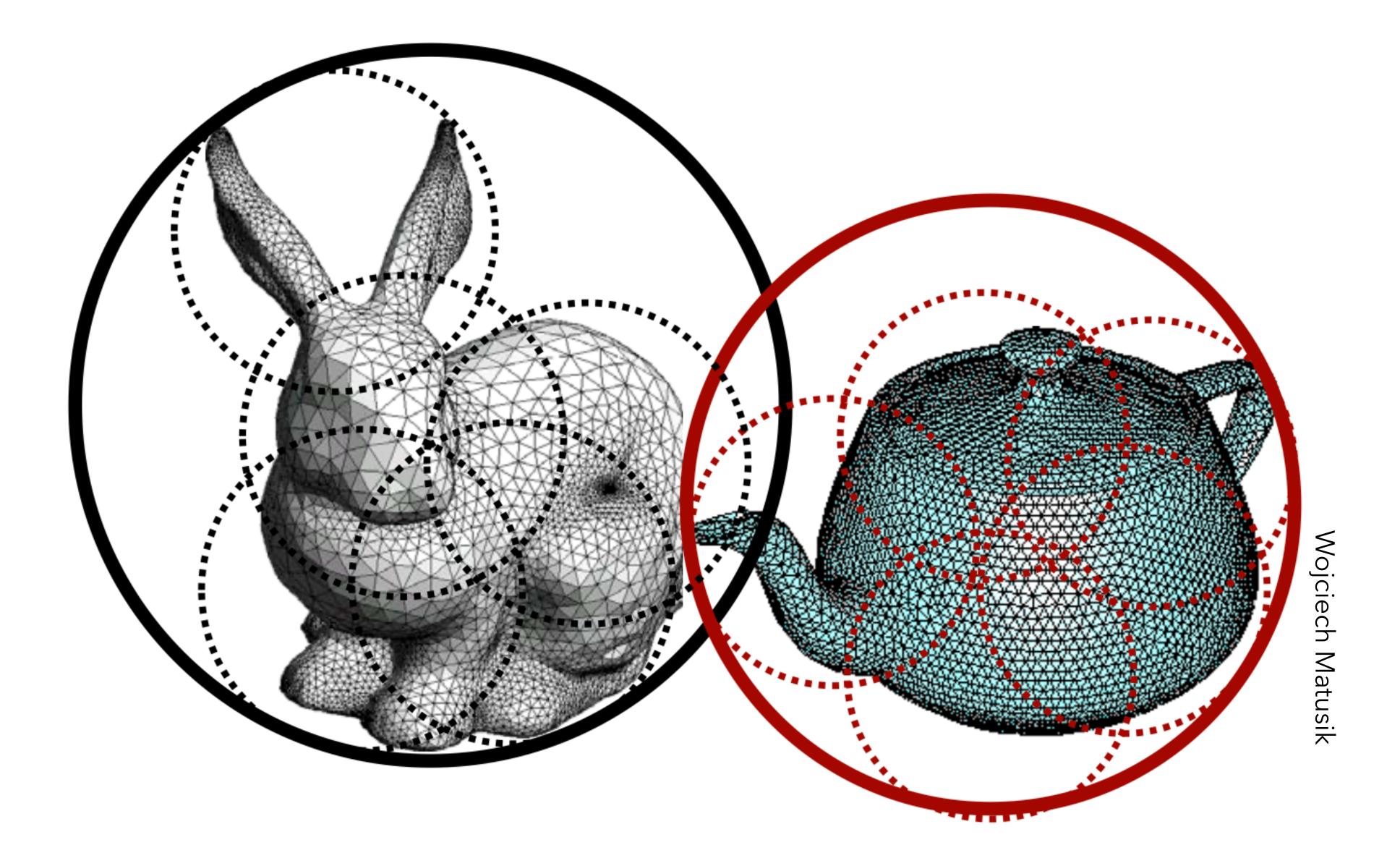
Example: Suppose I have an infinite cylinder along the x-axis with radius R.

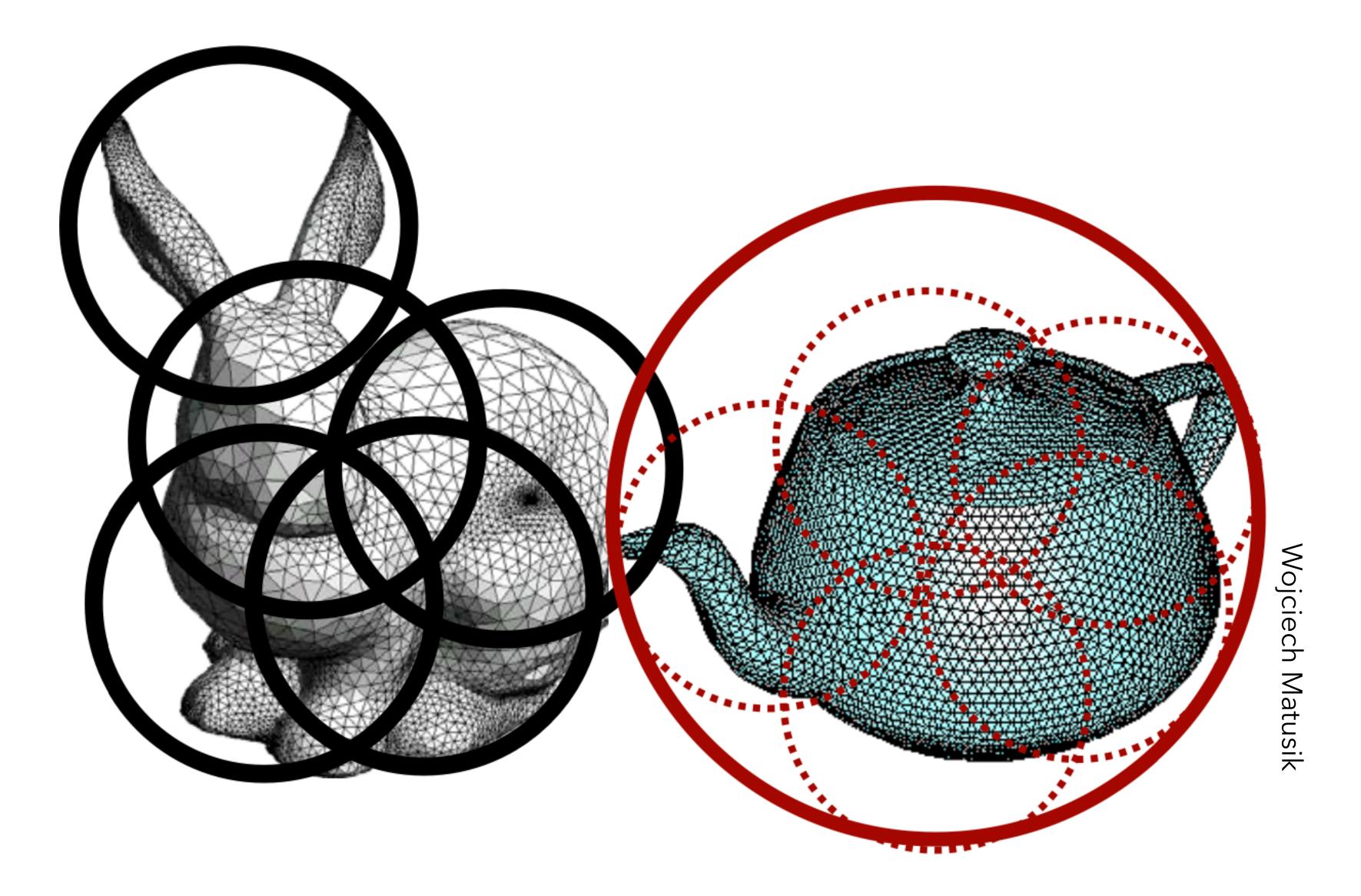
- I also have a particle with radius r moving to positions $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots$ at times t_0, t_1, t_2, \dots
- 1. How can I do discrete collision detection between the particle and the cylinder?
- 2. How can I do continuous collision detection for the same?
- 3. If I model a sheet of cloth as a mass-spring system, is it enough to check that none of the particles are colliding with the cylinder?

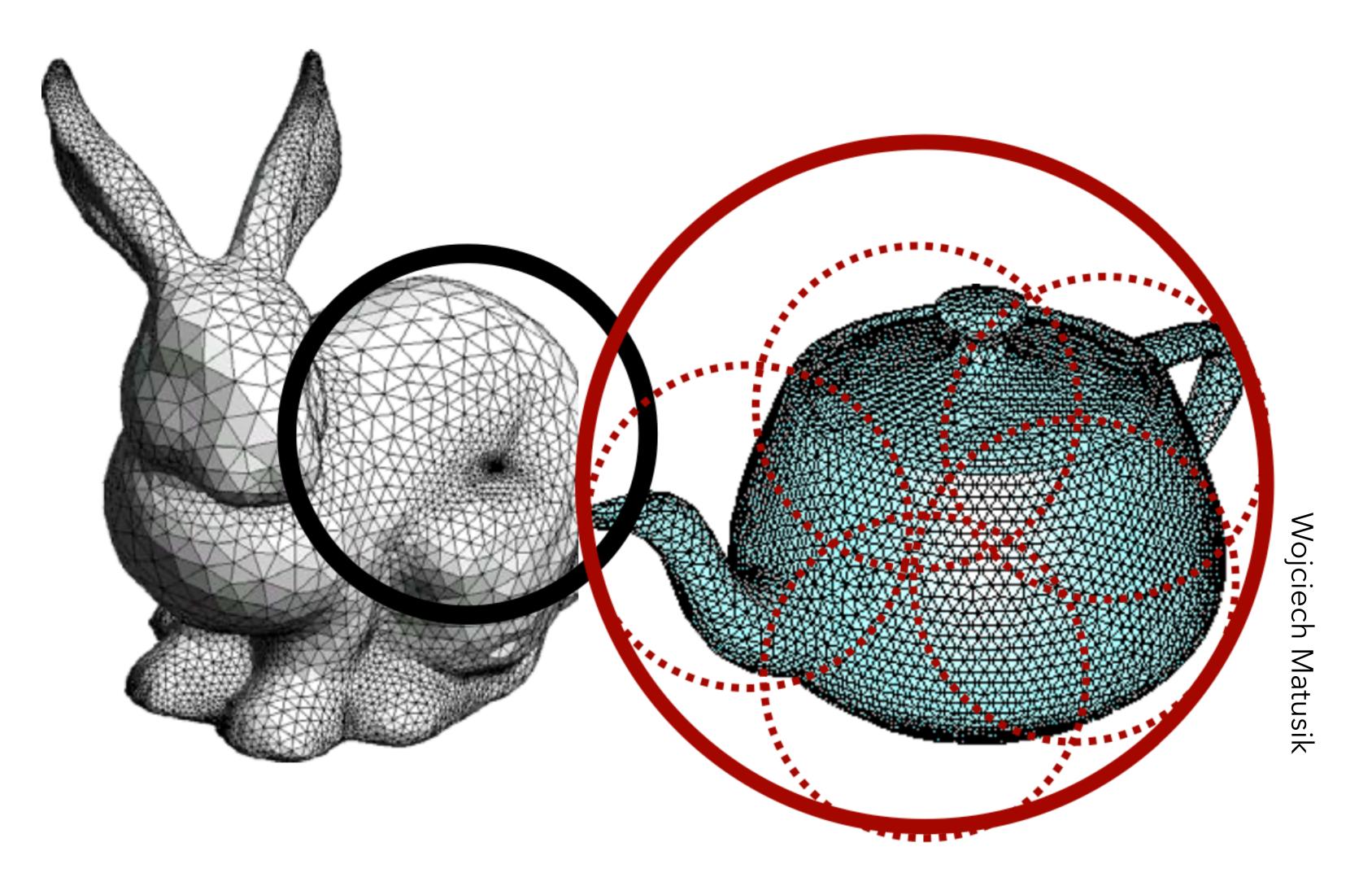
How to efficiently detect collisions between complicated shapes without $O(n^2)$ intersection tests?

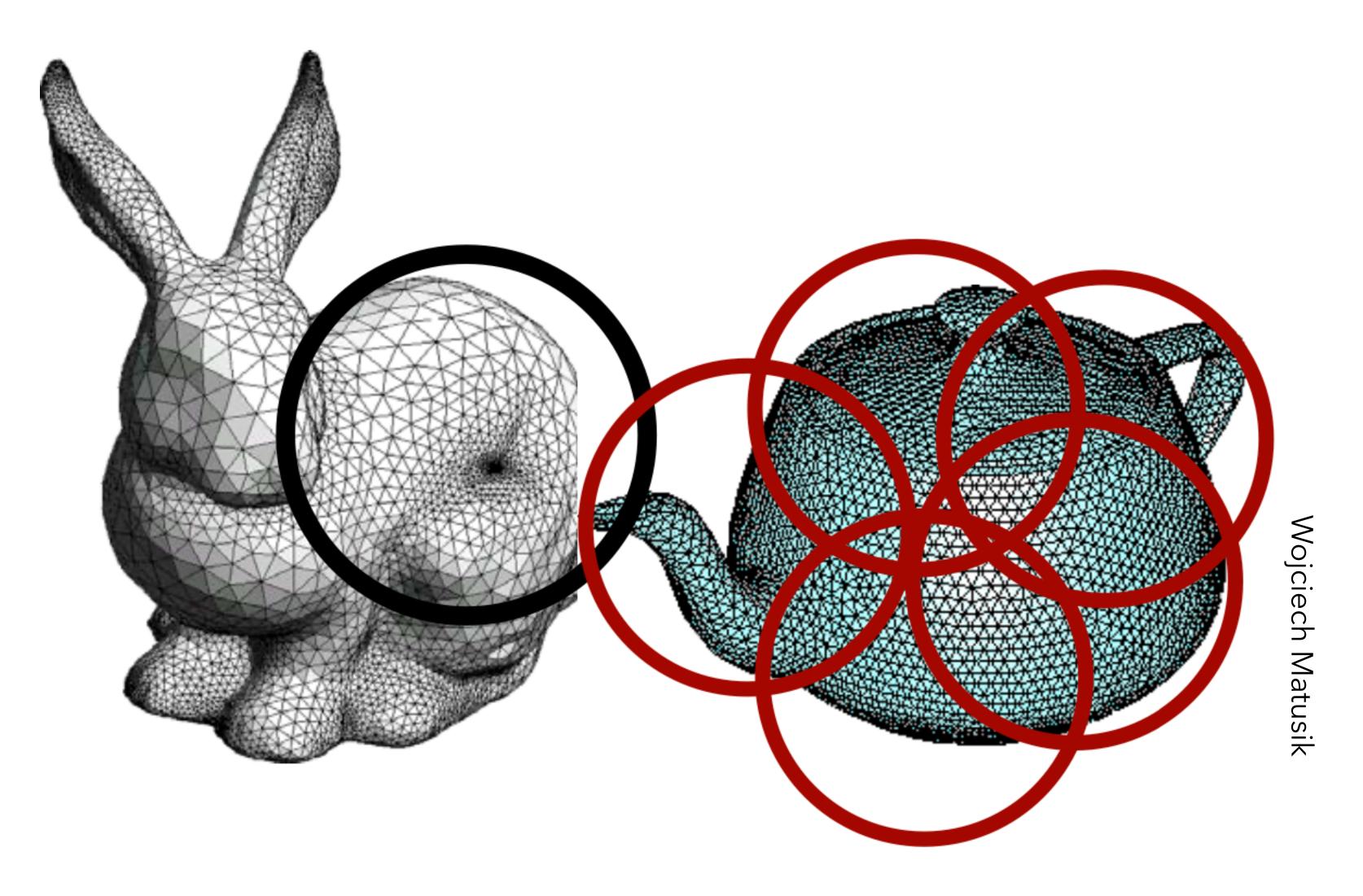
- 1. Broad phase: traverse BVHs of both shapes
- 2. Narrow phase: if BVH leaves intersect, do pairwise intersection tests between primitives

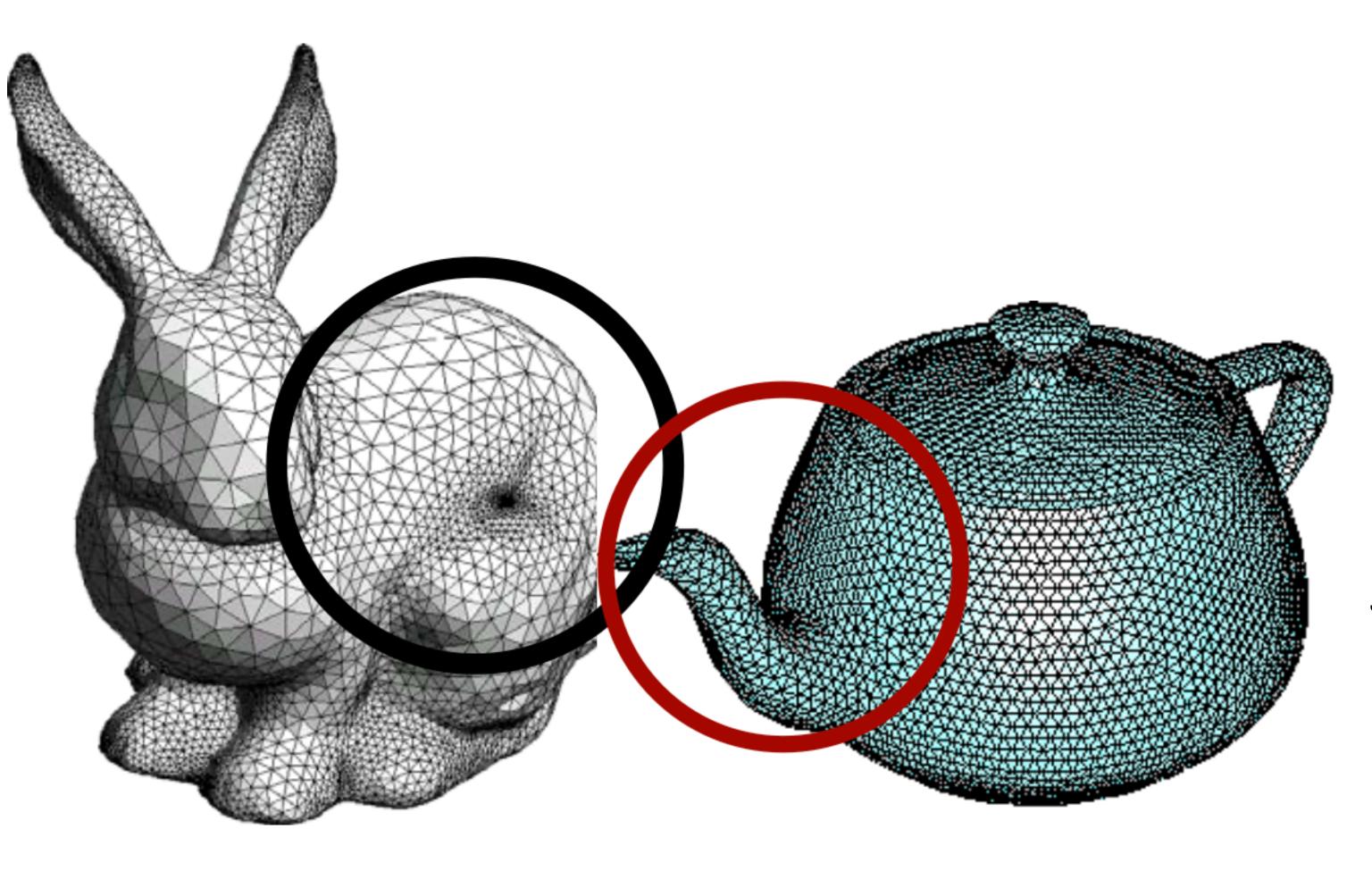




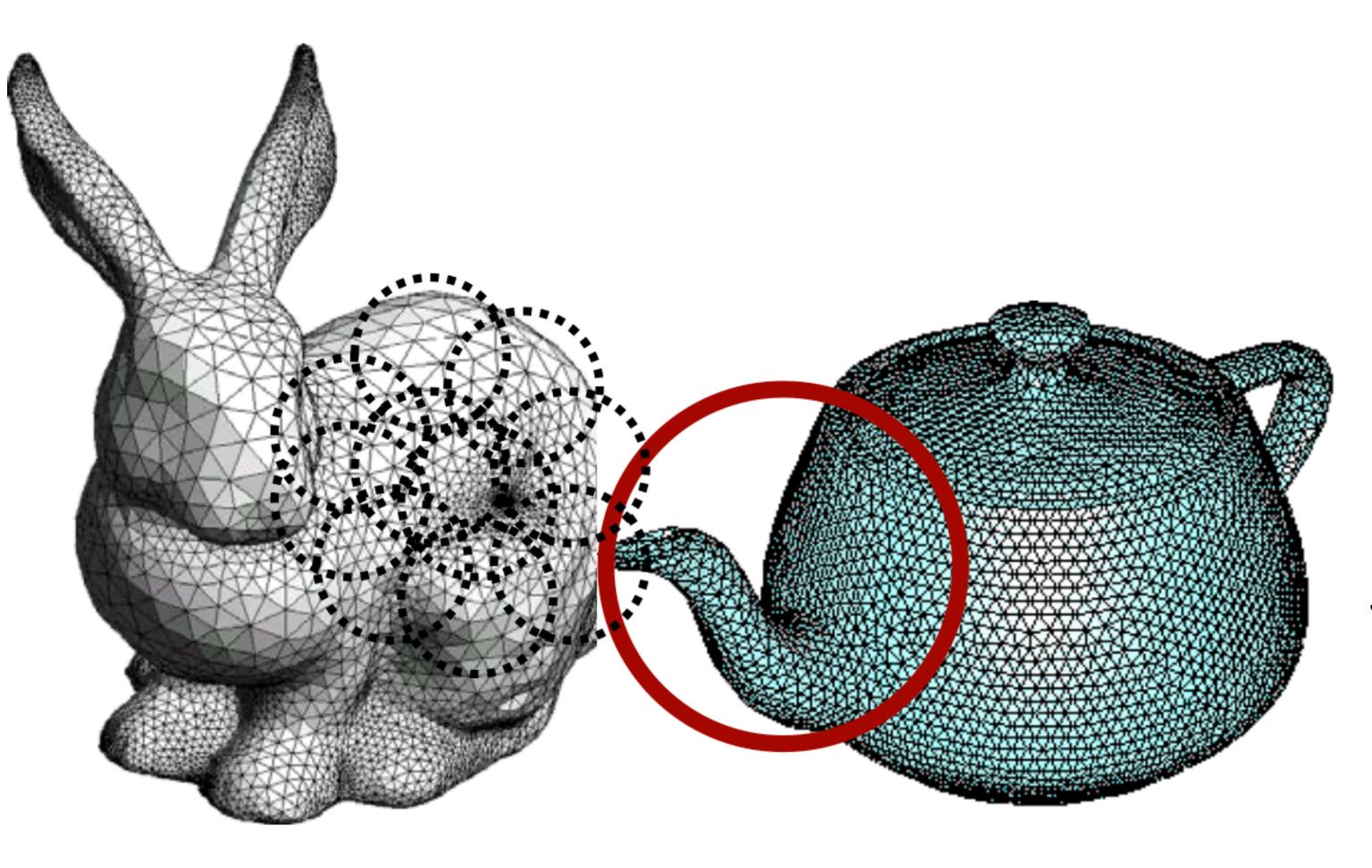






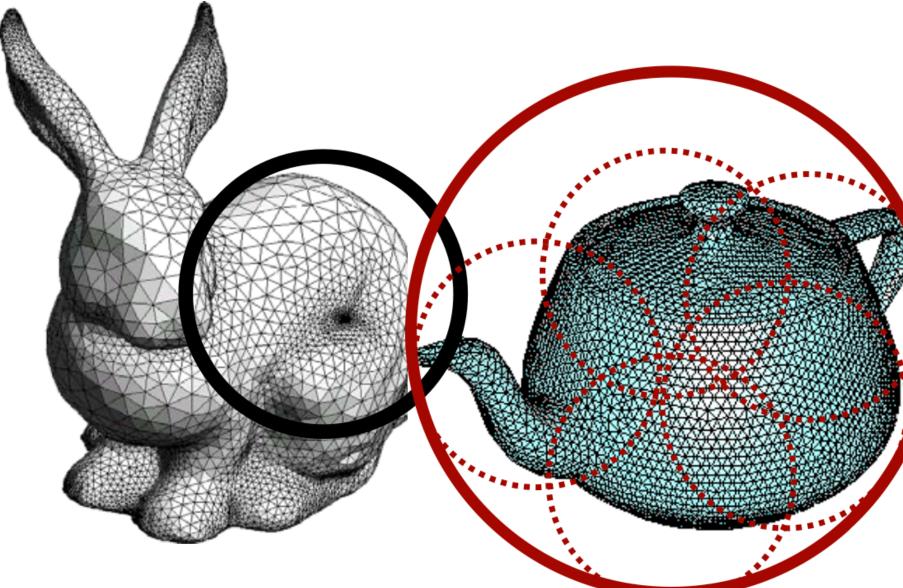


Wojciech Matusik

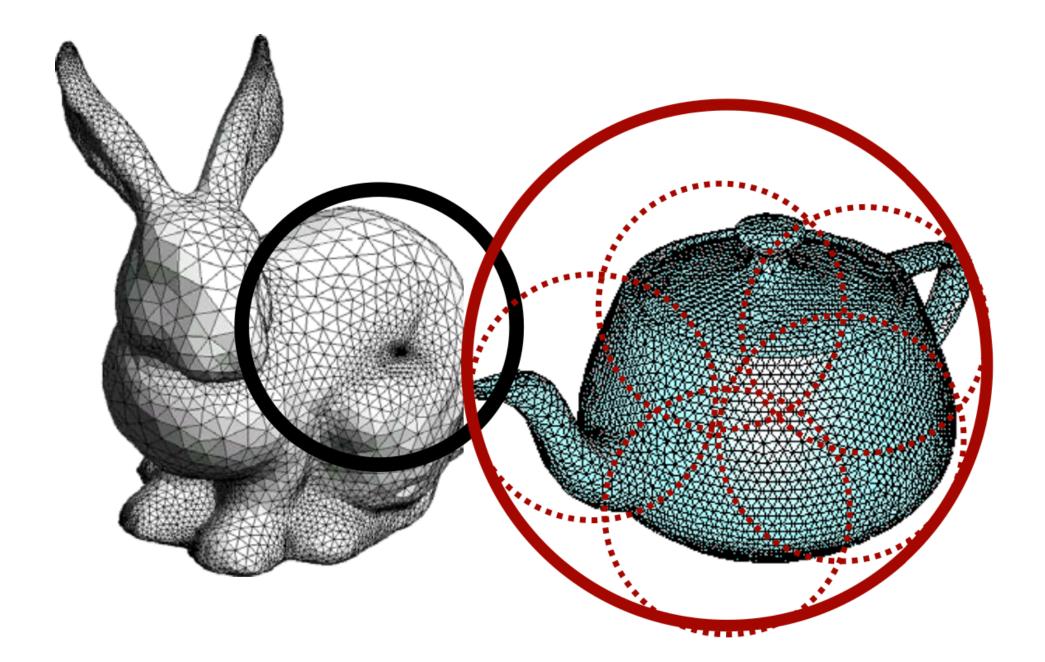


Wojciech Matusik

FindIntersections(node1, node2):
if BVs of node1 and node2 overlap:
 for each child of bigger node:
 FindIntersections(child, smaller node)



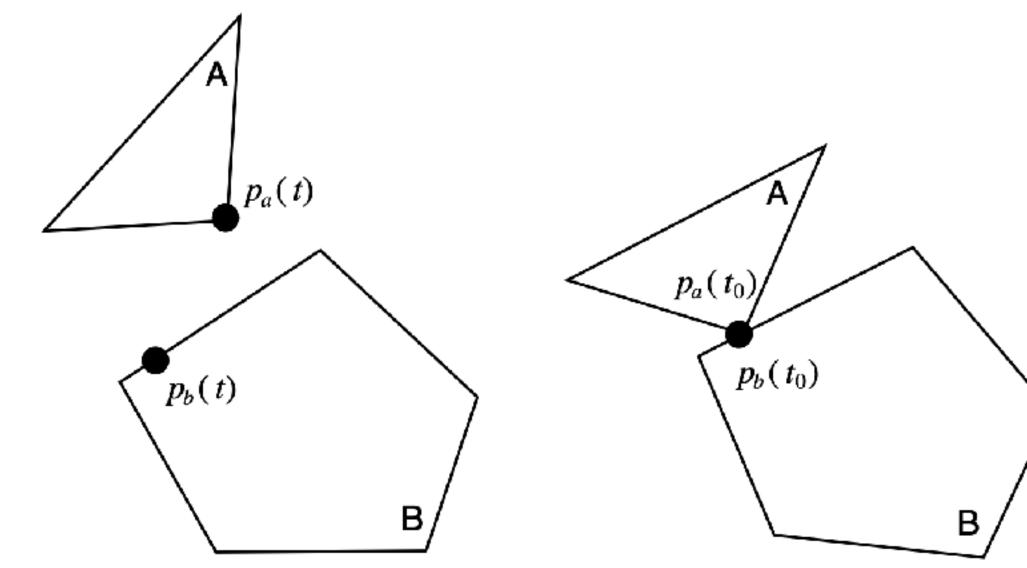
FindIntersections(node₁, node₂): if BVs of node₁ and node₂ overlap: if neither node₁ nor node₂ are leaves: for each child of bigger node: FindIntersections(child, smaller node) else if only one node is a leaf: for each child of other node: FindIntersections(child, leaf node) else (both are leaves): test intersections between all pairs of primitives



Output of collision detection: contact pairs

- Point **p**_a on one body
- Point **p**_b on other body
- Contact normal **n**
- Time of impact *t**

Now, what to do with this information? **Collision resolution**



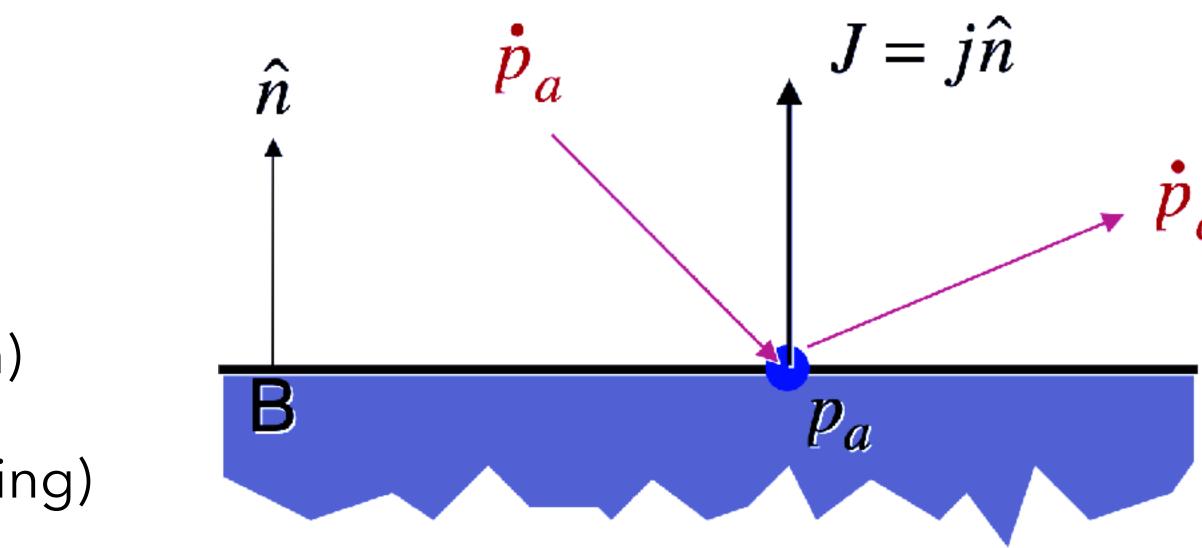
Collision resolution

Two components:

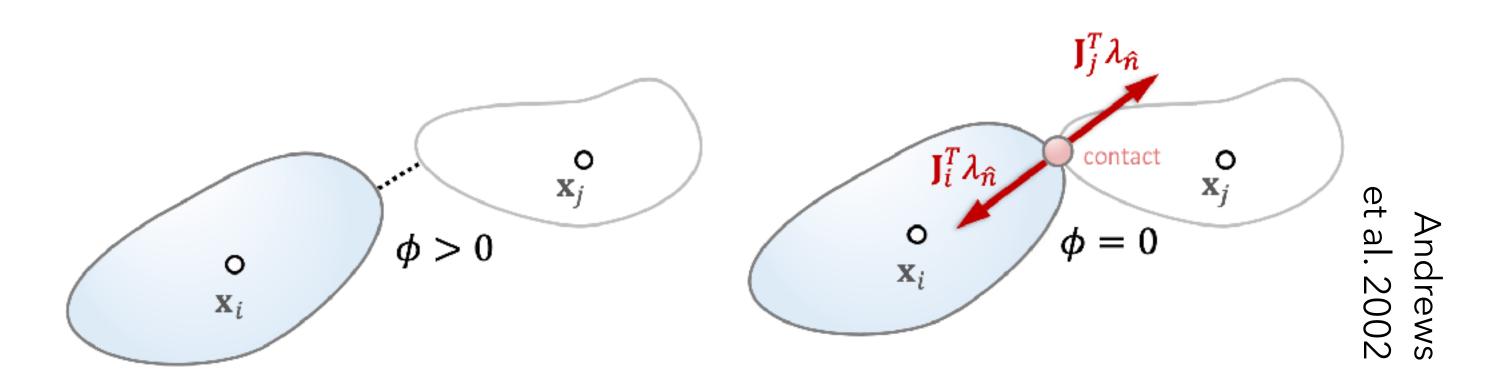
- Normal force (prevents interpenetration)
- Frictional force (opposes tangential sliding)

Actually, collision forces change velocity over an extremely very short time → treat as an instantaneous impulse j (change in momentum)

 $v^{+} = v + m^{-1} j$



The normal component is like a constraint force, except it's "one-sided"... Define a gap function $\varphi(\mathbf{q})$ which measures the distance between the bodies



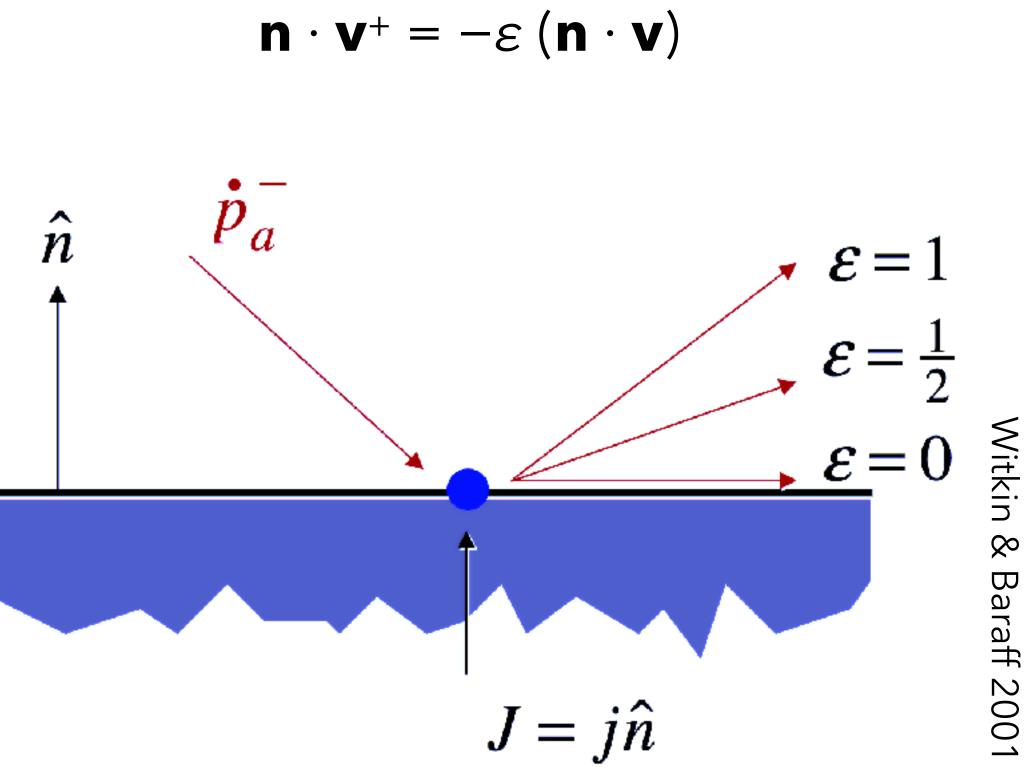
Constraint: $\varphi(\mathbf{q}) \ge 0$

Normal impulse: $\mathbf{j} = \lambda \nabla \varphi(\mathbf{q}), \ \lambda \ge 0$ (no sticking)

Complementarity: if $\varphi(\mathbf{q}) > 0$ then $\lambda = 0$, if $\lambda > 0$ then $\varphi(\mathbf{q}) = 0$

 $0 \le \varphi(\mathbf{q}) \perp \lambda \ge 0$

Coefficient of restitution ε : how elastic the collision is

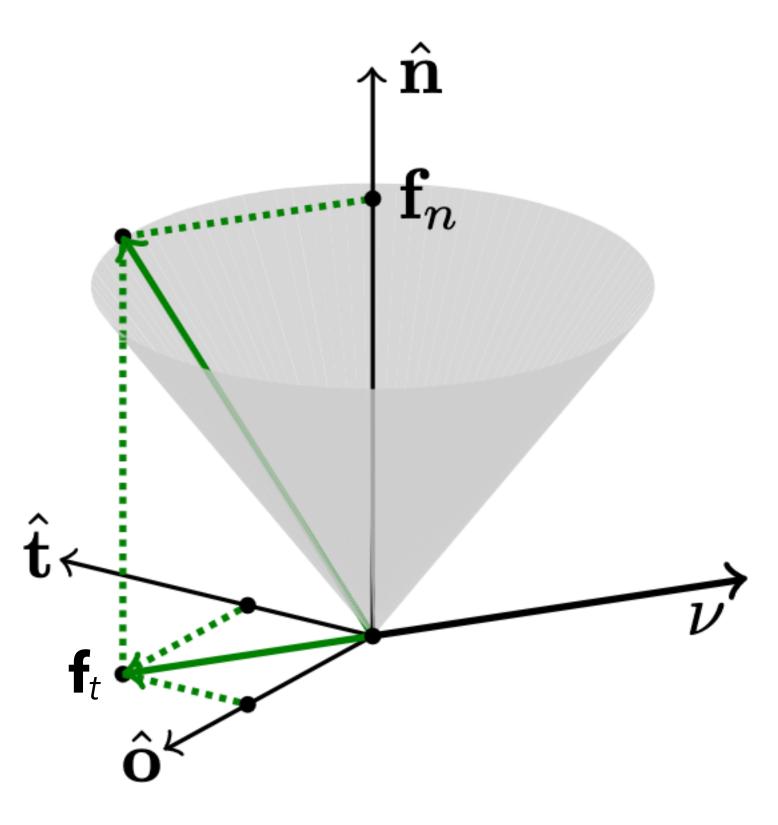


Friction is described by Coulomb's law $\|\mathbf{f}_t\| \le \mu f_n$

Maximum dissipation principle: Frictional force takes the value which dissipates as much kinetic energy as possible.

1. If
$$\|\mathbf{v}_t\| > 0$$
 (slipping) then $\mathbf{f}_t = -(\mu f_n) \, \hat{\mathbf{v}}_t$

2. If $\|\mathbf{v}_t\| = 0$ (sticking) then \mathbf{f}_t is any force in friction cone

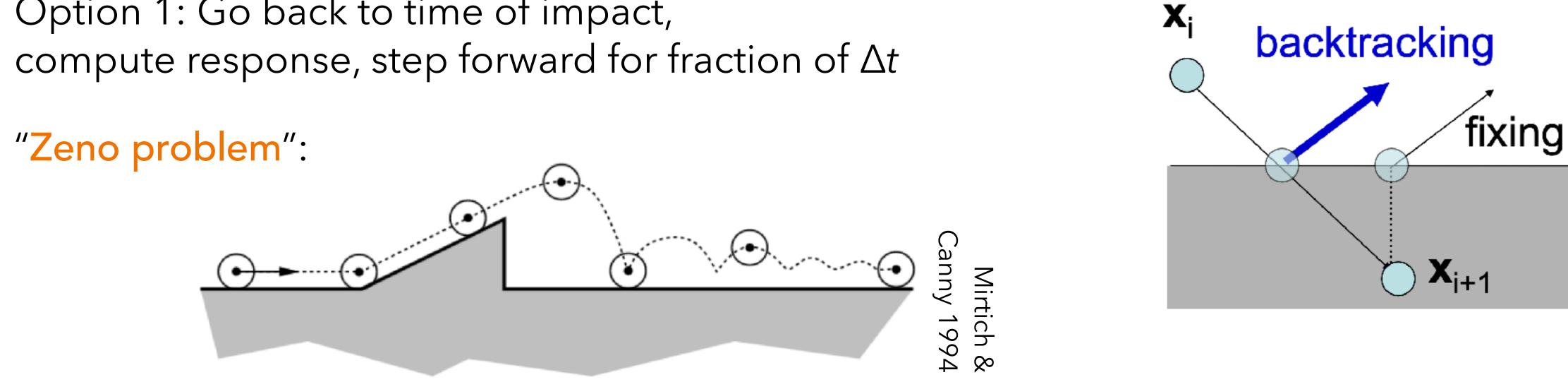


Bend er et al. 2012

Time stepping issues

We usually only detect collisions after they've already happened!

• Option 1: Go back to time of impact,



• Option 2: Just lie about it! Project end-of-step positions to remove interpenetration

A simple strategy for particle/implicit collisions:

Perform **v**, **x** update as usual

If inside obstacle ($\phi(\mathbf{x}) < 0$):

If velocity is also inwards ($v_n = \mathbf{n} \cdot \mathbf{v} < 0$):

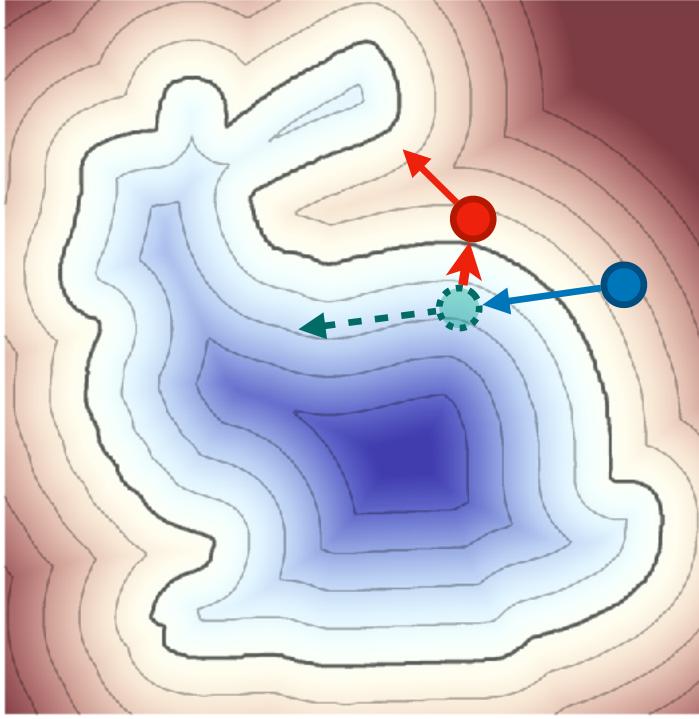
Compute normal impuse: $j_n = -(1 + \varepsilon) m v_n$

Compute tangential impulse: $\mathbf{j}_t = -\min(\mu j_n, m \|\mathbf{v}_t\|) \mathbf{\hat{v}}_t$

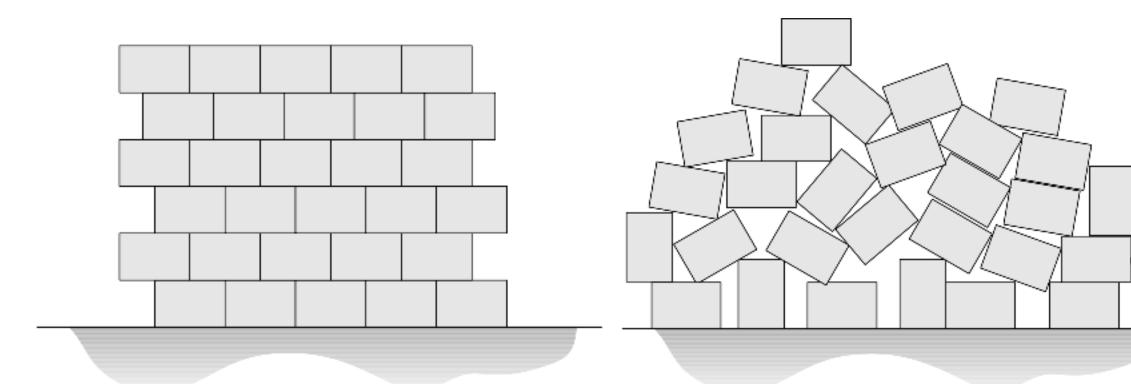
Update velocity: $\mathbf{v} += m^{-1}(j_n \mathbf{n} + \mathbf{j}_t)$

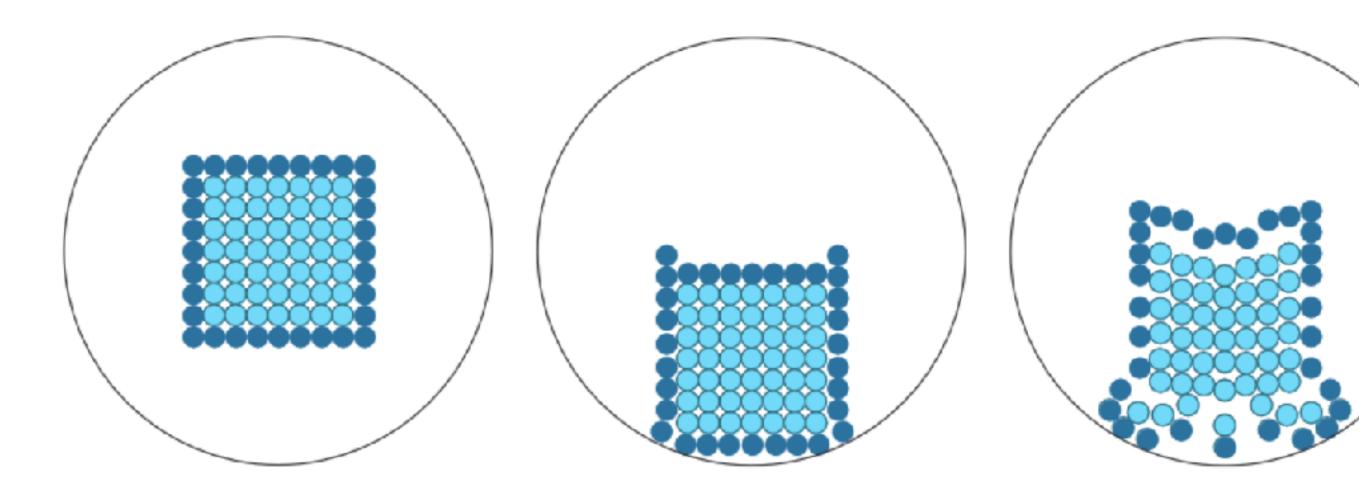
Compute position correction: $\Delta x_n = -\varphi(\mathbf{x})$ Project particle out: $\mathbf{x} + = \Delta x_n \mathbf{n}$

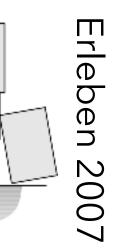
Can also add a tangential position correction (using $(\mathbf{x}^{n+1} - \mathbf{x}^n)_t$ instead of \mathbf{v}_t) to counteract artificial sliding...

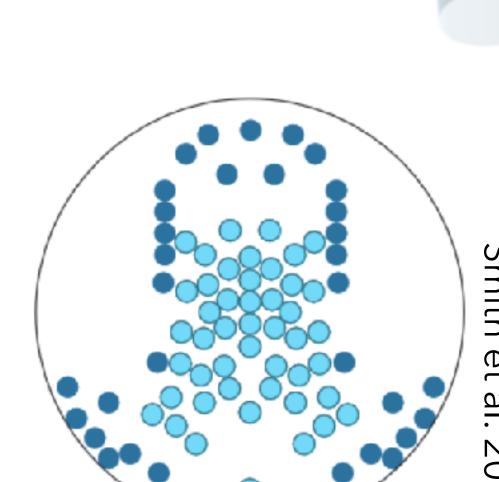


Multi-contact problems (harder!)









Smith et 2012

Harmon et a . 2008