COL781: Computer Graphics

Last class

Backward Euler gives us a system of equations in the unknown next state $\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right)$:

$$
\begin{gathered}
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\mathbf{v}^{n+1} \Delta t \\
\mathbf{v}^{n+1}=\mathbf{v}^{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}^{n+1}, \mathbf{v}^{n+1}\right) \Delta t
\end{gathered}
$$

Suppose you try to implement it with Newton's method starting at $\tilde{\mathbf{q}}=\mathbf{q}_{n}, \tilde{\mathbf{v}}=\mathbf{v}_{n}$, but you drop the force Jacobians:

$$
\begin{aligned}
& (\tilde{\mathbf{q}}+\Delta \mathbf{q})=\mathbf{q}_{n}+(\tilde{\mathbf{v}}+\Delta \mathbf{v}) \Delta t \\
& (\tilde{\mathbf{v}}+\Delta \mathbf{v}) \approx \mathbf{v}_{n}+\mathbf{M}^{-1}\left(\mathbf{f}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}})+\frac{\partial \mathbf{f}}{2}\left(\tilde{\mathbf{q}} \Delta \mathbf{q}+\frac{\partial \mathbf{f}}{}(\tilde{\mathbf{q}} \quad \Delta \mathrm{v}) \Delta t\right.\right.
\end{aligned}
$$

What kind of time integration scheme do you get? Does it reduce to a known one?

$$
\begin{aligned}
& \left(\mathbf{q}_{n}+\Delta \mathbf{q}\right)=\mathbf{q}_{n}+\left(\mathbf{v}_{n}+\Delta \mathbf{v}\right) \Delta t \\
& \left(\mathbf{v}_{n}+\Delta \mathbf{v}\right)=\mathbf{v}_{n}+\mathbf{M}^{-1}\left(\mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right)+\mathbf{0} \Delta \mathbf{q}+\mathbf{0} \Delta \mathbf{v}\right) \Delta t \\
& \mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t
\end{aligned}
$$

This is basically semi-implicit Euler again! Except the acceleration term is also explicit in velocity (we're using $\mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right)$ instead of $\mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n+1}\right)$)

Moral: Approximating backward Euler can still give you good behaviour.
Corollary: You can be explicit in some terms and implicit in others, for example

- use $\mathbf{f}\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right)$ only for strong forces that cause instability
- use $\mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right)$ for weak ones (especially if their Jacobian is hard to compute)

Constraints

Example: How would you model a pendulum?

Make it a spring with rest length ℓ_{0}, spring constant k_{s}, then take k_{s} very large?
Rule of thumb: explicit methods are only stable when $\Delta t=O\left(T_{\text {fast }}\right)$, where $T_{\text {fast }}=$ fastest timescale of dynamics in the system

- Period of horizontal swing: $T_{\text {slow }} \approx O\left(\sqrt{l_{0} / g}\right)$
- Period of vertical vibration of spring: $T_{\text {fast }} \approx O\left(\sqrt{m / k_{s}}\right)$

When k_{s} is very very large, $T_{\text {fast }}$ and stable Δt become very very small!

> We only care about dynamics on the scale of $T_{\text {slow }}$ but we're forced to take time steps on the scale of $T_{\text {fast }} \ll T_{\text {slow. }}$.

In such cases, we say the problem is stiff. This happens a lot in graphics...

Constraints

Another general problem-solving strategy: If a parameter being very large is causing problems, make it infinity instead.

What happens to the spring when $k_{s} \rightarrow \infty$?

$$
\mathbf{f}_{i j}=-k_{s}\left(\left\|\mathbf{x}_{i j}\right\|-\ell_{0}\right) \hat{\mathbf{x}}_{i j}
$$

Puzzle:

- Physically, does the behaviour of this system still make sense? (At least if started from a valid initial state, $\left\|\mathbf{x}_{i j}{ }^{0}\right\|=\ell_{0}$)
- What can you say about the direction and magnitude of the spring force?

Original equations of motion:

$$
\ddot{\mathbf{x}}=\mathbf{g}-m^{-1} k_{s}\left(\left\|\mathbf{x}_{i j}\right\|-\ell_{0}\right) \hat{\mathbf{x}}
$$

Constrained equations of motion:

$$
\begin{aligned}
& \ddot{\mathbf{x}}=\mathbf{g}+m^{-1} \lambda \hat{\mathbf{x}} \\
& \left\|\mathbf{x}_{i j}\right\|=\ell_{0}
\end{aligned}
$$

- One new unknown: constraint force magnitude λ.
- One new equation: constraint $\left\|\mathbf{x}_{i j}\right\|=\ell_{0}$.
λ is such that constraint remains satisfied over time...

Sliding on a fixed line / curve / surface

Joints between rigid parts

Inextensible cloth

In general, we may have lots of constraints on the system, each of the form

$$
c_{j}(\mathbf{q})=0
$$

Constraint force:

$$
\mathbf{f}_{j}=\lambda_{j} \nabla c_{j}(\mathbf{q})
$$

Force is orthogonal to constraint surface
\Rightarrow only resists moving away from constraint, not along constraint

Exercise: verify that the inextensible spring constraint from before is of this form.

$$
\begin{gathered}
c_{j}(\mathbf{q})=0 \\
\mathbf{f}_{j}=\lambda_{j} \nabla c_{j}(\mathbf{q}) \\
\ddot{\mathbf{q}}=\mathbf{M}^{-1}\left(\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})+\sum \mathbf{f}_{j}\right)
\end{gathered}
$$

How to actually do time stepping of such a system?

- Try to estimate instantaneous λ_{j} at each $t_{n} \Rightarrow$ drift
- Replace with penalty force: $\lambda_{j}=-k c_{j}(\mathbf{q}) \Rightarrow$ soft constraints
- Choose parameterization that automatically satisfies constraints \Rightarrow reduced coordinates
- Treat constraint forces implicitly: solve for all λ_{j}^{\prime} s so that all $c_{j}\left(\mathbf{q}_{n+1}\right)=0$

$$
\begin{gathered}
\ddot{\mathbf{q}}=\mathbf{M}^{-1}\left(\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})+\sum \lambda_{j} \nabla c_{j}(\mathbf{q})\right) \\
c_{j}(\mathbf{q})=0
\end{gathered}
$$

Suppose we treat the external forces explicitly and the constraint forces implicitly.

We can also eliminate \mathbf{v}_{n+1} :

$$
\begin{gathered}
\quad \mathbf{q}_{n+1}=\mathbf{q}_{\text {pred }}+\sum_{c_{j}} \mathbf{M}^{-1} \lambda_{j} \nabla c_{j}\left(\mathbf{q}_{n+1}\right) \Delta t^{2} \\
\left.c_{j+1}\right)=0 \\
\text { where } \mathbf{q}_{\text {pred }}=\mathbf{q}_{n}+\mathbf{v}_{n} \Delta t+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t^{2} .
\end{gathered}
$$

Solve for \mathbf{q}_{n+1} and $\lambda_{1}, \lambda_{2}, \ldots$ simultaneously using Newton's method
\ldots...Then update $\mathbf{v}_{n+1}=\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right) / \Delta t$

Position-based dynamics

For real-time graphics, solving a big linear system for all λ^{\prime} 's is too expensive! But it's easy to solve one constraint at a time:

Example: Inextensible spring between particles i and j

$$
\begin{gathered}
\left\|\mathbf{x}_{i j}\right\|=\ell_{0} \\
\mathbf{f}_{i j}=\lambda \hat{\mathbf{x}}_{i j}
\end{gathered}
$$

Recall $\mathbf{q}_{n+1}=\mathbf{q}_{\text {pred }}+\sum \mathbf{M}^{-1} \lambda_{j} \hat{\mathbf{x}}_{i j} \Delta t^{2}$

$$
\Delta \mathbf{q}_{n+1}=\mathbf{M}^{-1} \Delta \lambda \hat{\mathbf{x}}_{i j} \Delta t^{2}
$$

Find $\Delta \lambda$ which makes updated positions satisfy $\left\|\tilde{\mathbf{x}}_{i j}+\Delta \mathbf{x}_{i j}\right\|=\ell_{0}$

In general, we have a guess of the next positions: $\tilde{\mathbf{q}}$

1. Applying a constraint force $\Delta \lambda_{j}$ changes the positions by $\Delta \mathbf{q}=\mathbf{M}^{-1} \Delta \lambda_{j} \nabla c_{j}(\tilde{\mathbf{q}}) \Delta t^{2}$
2. Solve for $\Delta \lambda_{j}$ so that $c_{j}(\tilde{\mathbf{q}}+\Delta \boldsymbol{q})=0$
3. Update the positions (constraint projection): $\tilde{\mathbf{q}} \leftarrow \tilde{\mathbf{q}}+\Delta \mathbf{q}$
4. Repeat for other constraints

Projecting one constraint makes other constraints violated!

- Loop over all constraints $=1$ iteration. Have to repeat many iterations
- If not enough iterations, constraints appear soft!

Collisions

Collision detection: find out which particles / bodies / etc. are colliding
Purely a geometric problem

Collision response: figure out how to update their velocities / positions Involves physics of contact forces, friction, etc.

Collision detection: discrete vs. continuous

(a)

Example: Suppose I have an infinite cylinder along the x-axis with radius R.
I also have a particle with radius r moving to positions $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ at times $t_{0}, t_{1}, t_{2}, \ldots$

1. How can I do discrete collision detection between the particle and the cylinder?
2. How can I do continuous collision detection between them?
3. If I model a sheet of cloth as a mass-spring system, is it enough to check that none of the particles are colliding with the cylinder?
