
33. Constraints
COL781: Computer Graphics

M
ül

le
r e

t a
l.

20
20

Last class
Backward Euler gives us a system of equations in the unknown next state (qn+1, vn+1):

qn+1 = qn + vn+1 Δt
vn+1 = vn + M−1 f(qn+1, vn+1) Δt

Suppose you try to implement it with Newton’s method starting at q̃ = qn, ṽ = vn, but you
drop the force Jacobians:

(q̃+Δq) = qn + (ṽ+Δv) Δt

(ṽ+Δv) ≈ vn + M−1 (f(q̃, ṽ) + (q̃, ṽ) Δq + (q̃, ṽ) Δv) Δt

What kind of time integration scheme do you get? Does it reduce to a known one?

∂f
∂q

∂f
∂v

(qn+Δq) = qn + (vn+Δv) Δt
(vn+Δv) = vn + M−1 (f(qn, vn) + 0 Δq + 0 Δv) Δt

qn+1 = qn + vn+1 Δt
vn+1 = vn + M−1 f(qn, vn) Δt

This is basically semi-implicit Euler again! Except the acceleration term is also explicit in
velocity (we’re using f(qn, vn) instead of f(qn, vn+1))

Moral: Approximating backward Euler can still give you good behaviour.

Corollary: You can be explicit in some terms and implicit in others, for example

• use f(qn+1, vn+1) only for strong forces that cause instability

• use f(qn, vn) for weak ones (especially if their Jacobian is hard to compute)

Constraints

Example: How would you model a pendulum?

Make it a spring with rest length ℓ0, spring constant ks, then take ks very large?

Rule of thumb: explicit methods are only stable when
Δt = O(Tfast), where Tfast = fastest timescale of dynamics in the system

• Period of horizontal swing: Tslow ≈

• Period of vertical vibration of spring: Tfast ≈

When ks is very very large, Tfast and stable Δt become very very small!

We only care about dynamics on the scale of Tslow,
but we’re forced to take time steps on the scale of Tfast ≪ Tslow.

In such cases, we say the problem is stiff. This happens a lot in graphics…

O(l0/g)
O(m/ks)

https://www.youtube.com/watch?v=2R9u-tjhRYA

https://www.youtube.com/watch?v=2R9u-tjhRYA

Constraints
Another general problem-solving strategy:
If a parameter being very large is causing problems, make it infinity instead.

What happens to the spring when ks → ∞?

fij = −ks (xij − ℓ0) x̂ij

Puzzle:

• Physically, does the behaviour of this system still make sense? (At least if started from a
valid initial state, xij0 = ℓ0)

• What can you say about the direction and magnitude of the spring force?

∥ ∥

∥ ∥

Original equations of motion:

ẍ = g − m−1 ks (xij − ℓ0) x̂

Constrained equations of motion:

ẍ = g + m−1 λ x̂
xij = ℓ0

• One new unknown: constraint force magnitude λ.

• One new equation: constraint xij = ℓ0.

λ is such that constraint remains satisfied over time…

∥ ∥

∥ ∥

∥ ∥

Si
fa

ki
s

et
 a

l.
20

07

W
an

g
 e

t a
l.

20
19

G
o

ld
en

th
al

 e
t a

l.
20

07

Sliding on a fixed
line / curve / surface

Joints between
rigid parts Inextensible cloth

In general, we may have lots of constraints on the system, each of the form

cj (q) = 0

Constraint force:

fj = λj ∇cj (q)

Force is orthogonal to constraint surface
⇒ only resists moving away from constraint, not along constraint

Exercise: verify that the inextensible spring constraint from before is of this form.

c(q) = 0

∇c(q)

cj (q) = 0
fj = λj ∇cj (q)

q̈ = M−1 (f(q, q̇) + ∑ fj)

How to actually do time stepping of such a system?

• Try to estimate instantaneous λj at each tn ⇒ drift

• Replace with penalty force: λj = −k cj (q) ⇒ soft constraints

• Choose parameterization that automatically satisfies constraints
⇒ reduced coordinates

• Treat constraint forces implicitly: solve for all λj’s so that all cj (qn+1) = 0

C
line &

 Pai 2003
K

eenan C
rane

q̈ = M−1 (f(q, q̇) + ∑ λj ∇cj (q))

cj (q) = 0

Suppose we treat the external forces explicitly and the constraint
forces implicitly.

We can also eliminate vn+1:

qn+1 = qpred + ∑ M−1 λj ∇cj (qn+1) Δt2
cj (qn+1) = 0

where qpred = qn + vn Δt + M−1 f(qn, vn) Δt2.

Solve for qn+1 and λ1, λ2, … simultaneously using Newton’s method

…Then update vn+1 = (qn+1 − qn)/Δt

qn

qpred

qn+1

Position-based dynamics
For real-time graphics, solving a big linear system for all λ’s is too expensive!
But it’s easy to solve one constraint at a time:

Example: Inextensible spring between particles i and j

xij = ℓ0

fij = λ x̂ij

Recall qn+1 = qpred + ∑ M−1 λj x̂ij Δt2

Δqn+1 = M−1 Δλ x̂ij Δt2

Find Δλ which makes updated positions satisfy x̃ij + Δxij = ℓ0

∥ ∥

∥ ∥

In general, we have a guess of the next positions: q̃

1. Applying a constraint force Δλj changes the positions by Δq = M−1 Δλj ∇cj (q̃) Δt2

2. Solve for Δλj so that cj (q̃ + Δq) = 0

3. Update the positions (constraint projection): q̃ ← q̃ + Δq

4. Repeat for other constraints

Projecting one constraint makes other constraints violated!

• Loop over all constraints = 1 iteration. Have to repeat many iterations

• If not enough iterations, constraints appear soft!

M
üller et al. 2006https://www.youtube.com/watch?v=j5igW5-h4ZM

https://www.youtube.com/watch?v=j5igW5-h4ZM

M
üller et al. 2006https://www.youtube.com/watch?v=j5igW5-h4ZM

https://www.youtube.com/watch?v=j5igW5-h4ZM

Collisions

Bridson et al. 2002https://www.cs.ubc.ca/~rbridson/

https://www.cs.ubc.ca/~rbridson/

Collision detection: find out which particles / bodies / etc. are colliding

Purely a geometric problem

Collision response: figure out how to update their velocities / positions

Involves physics of contact forces, friction, etc.

Peter Kipfer

Collision detection: discrete vs. continuous

Peter Kipfer

Example: Suppose I have an infinite cylinder along the x-axis with radius R.

I also have a particle with radius r moving to positions x0, x1, x2, … at times t0, t1, t2, …

1. How can I do discrete collision detection between the particle and the cylinder?

2. How can I do continuous collision detection between them?

3. If I model a sheet of cloth as a mass-spring system, is it enough to check that none of
the particles are colliding with the cylinder?

