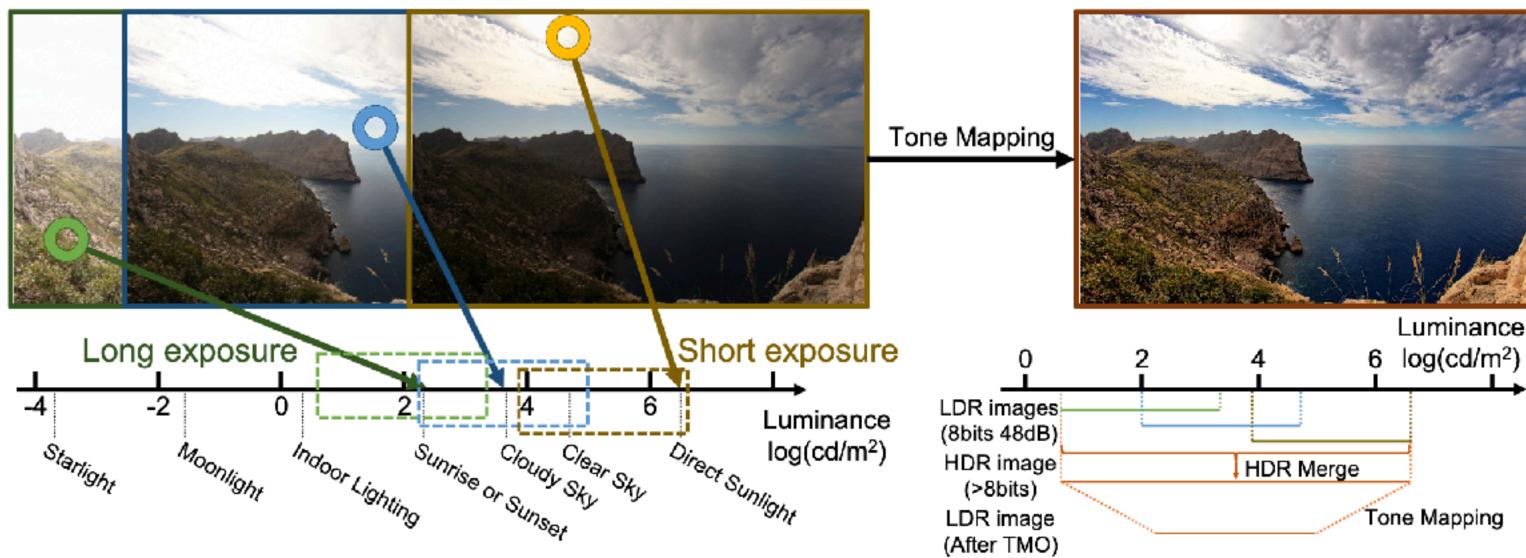
COL781: Computer Graphics 30. Skinning

Announcements

- Assignment 3 due at midnight tonight!
- Assignment 4 is out: keyframing and simulation
- Next semester: COL829 Advanced Computer Graphics Potential topics:
- Modeling: mesh processing, surface reconstruction, level of detail, ...
- Rendering: volume rendering, radiance fields, real-time global illumination, ...
- Animation: character control, continuum mechanics, model reduction, ...

Output of physics-based rendering is radiance, which can span many orders of magnitude!

Displayable RGB values are in [0, 1]

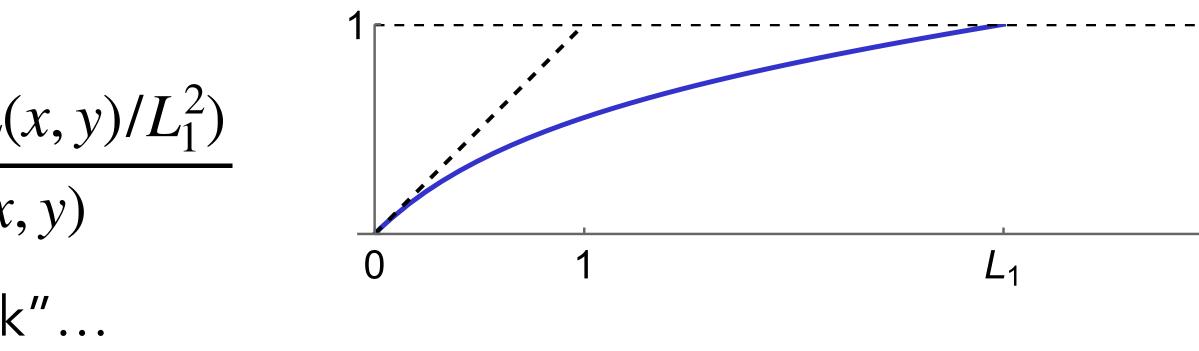


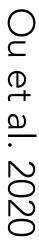
Scale up/down by some (manually specified) exposure value. Then? Tone mapping

• Clamping: $L(x,y) \rightarrow \min(L(x,y), 1)$

• Reinhard operator: $L(x,y) \rightarrow \frac{L(x,y)(1 + L(x,y)/L_1^2)}{1 + L(x,y)}$

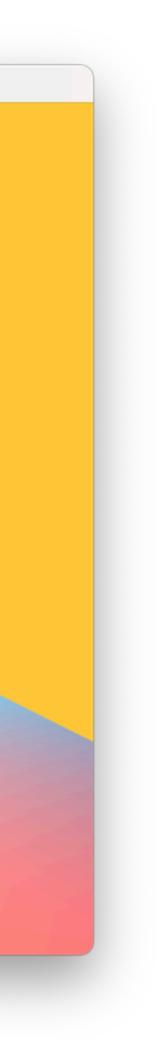
• Various other choices to control the "look"...



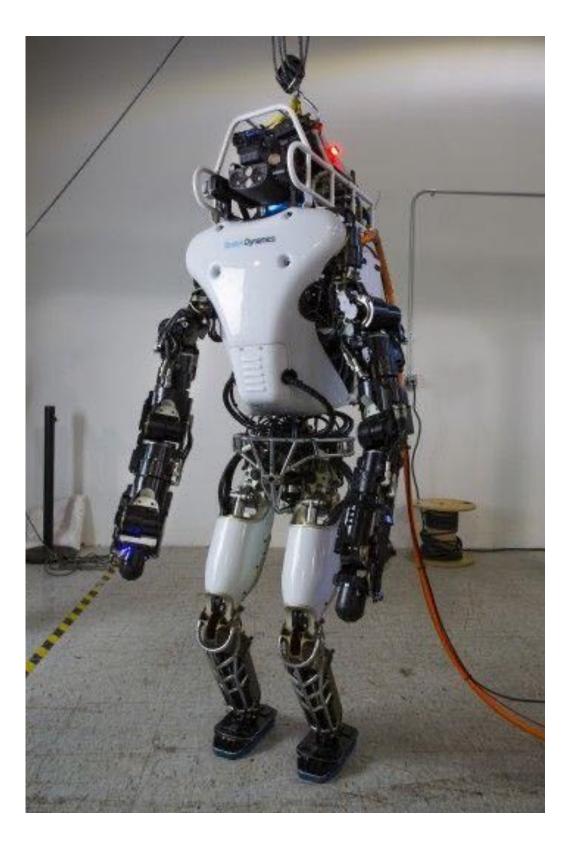


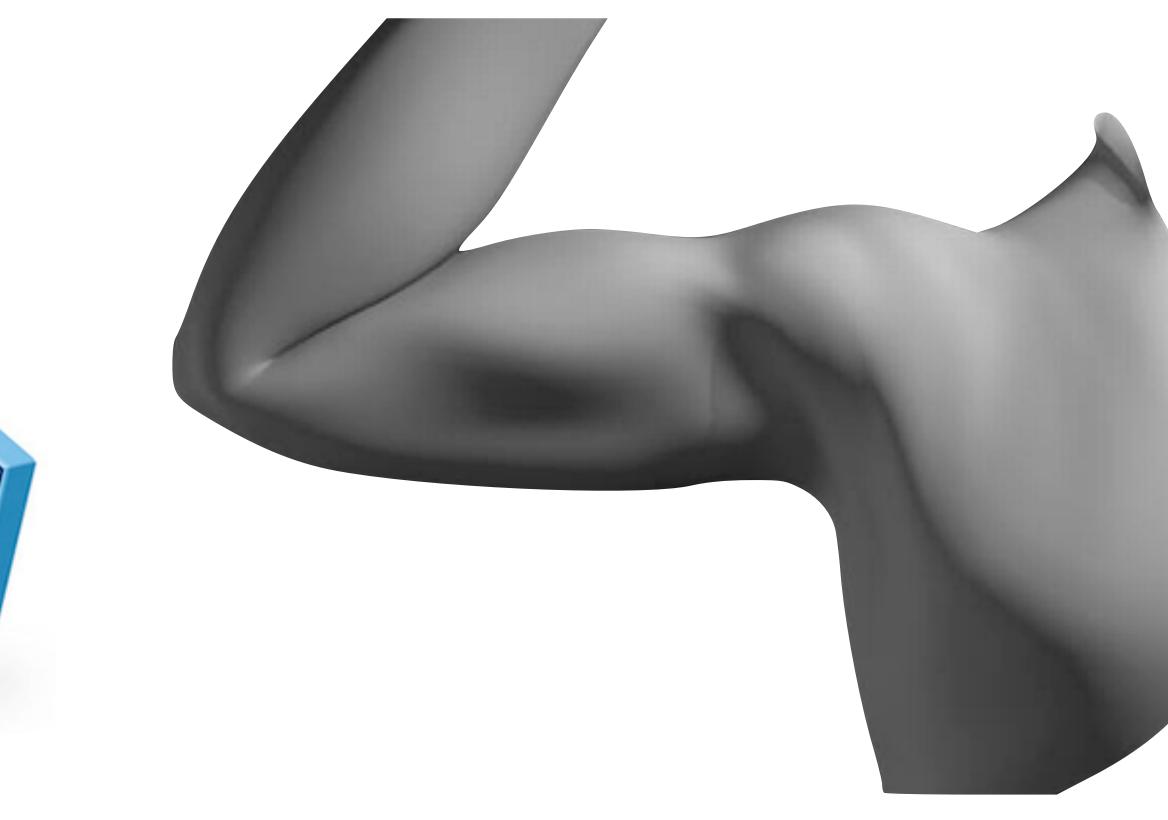
•••

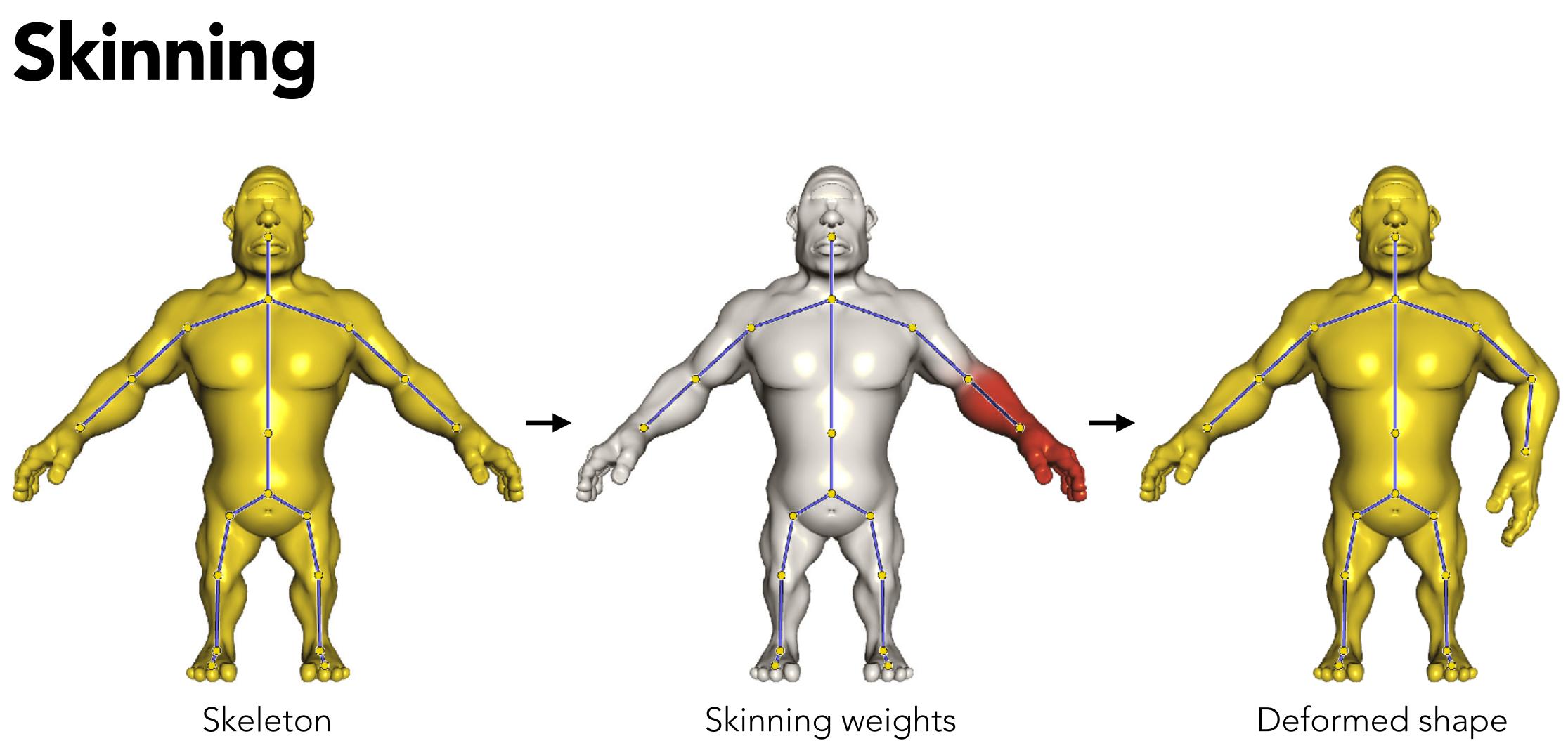
Image



Rigid bone transformations may be sufficient for robots and toys with rigid parts. What about organic characters?





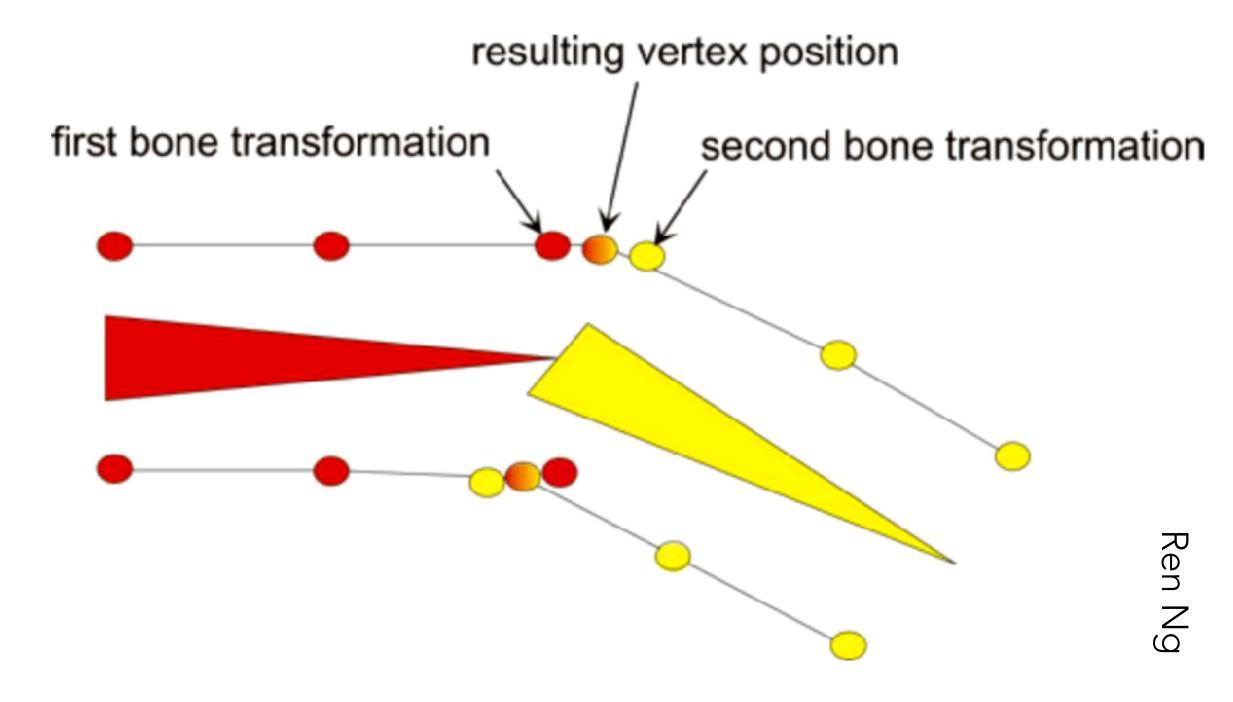


Each vertex **v** may be affected by transformations from multiple bones.

Linear blend skinning: Final position is weighted average

$$\mathbf{v}' = \sum_{\text{bone } i} w_i \mathbf{T}_i \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}$$

Of course, for a weighted average, we should have $\sum_{i} w_i = 1$ for each vertex

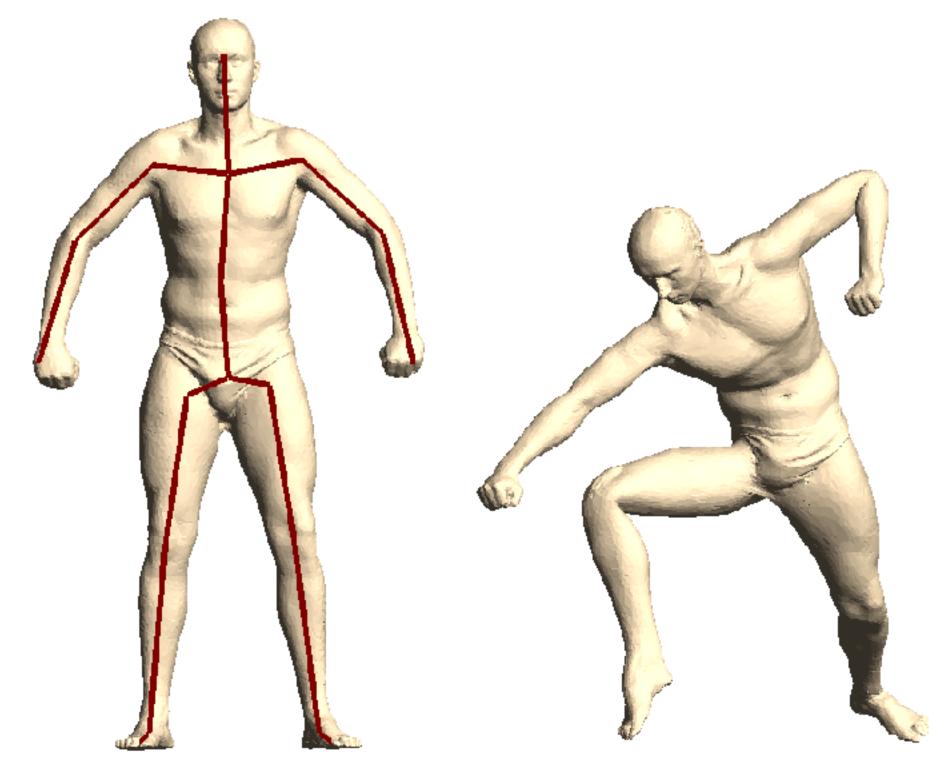


Wait, to apply bone transformation \mathbf{T}_i , we need to have vertex **v** in the **bone's** coordinate frame...

$$\mathbf{v}' = \sum_{\text{bone } i} w_i \mathbf{T}_i \mathbf{B}_i^{-1} \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}$$

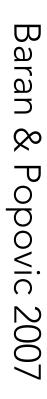
- **B**_i: bone transformation in bind pose
- **T**_{*i*}: bone transformation in deformed pose

From now on, we'll just call the product \mathbf{T}_i

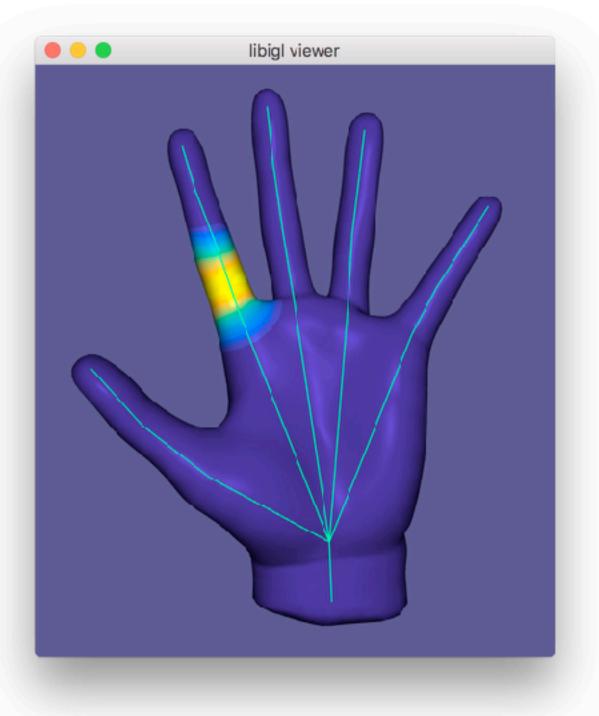


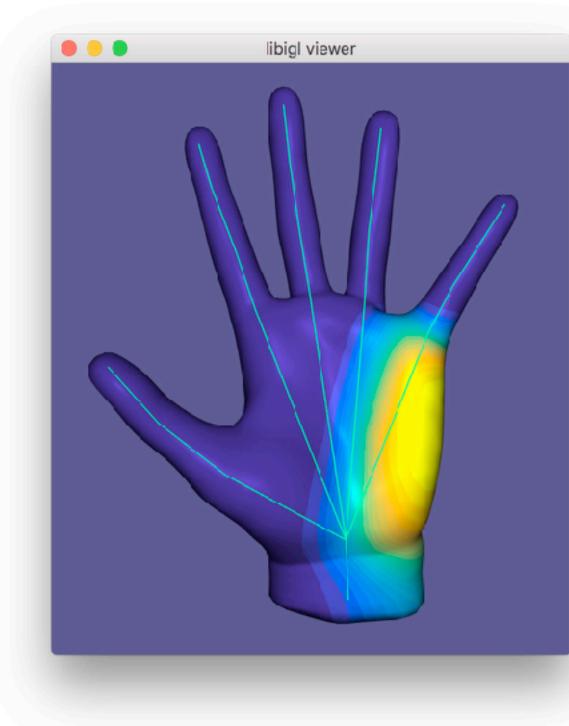
Bind pose

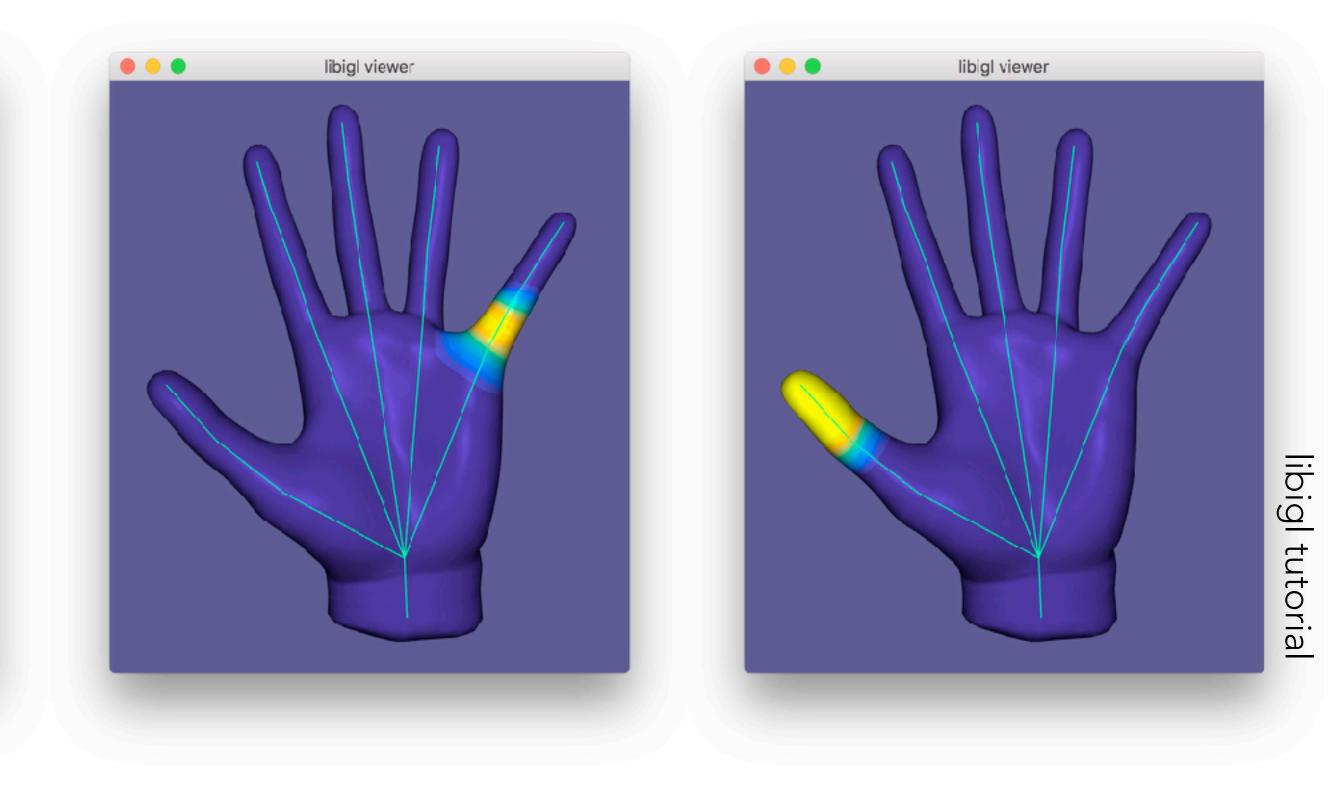
Deformed pose



Example: Skinning weights

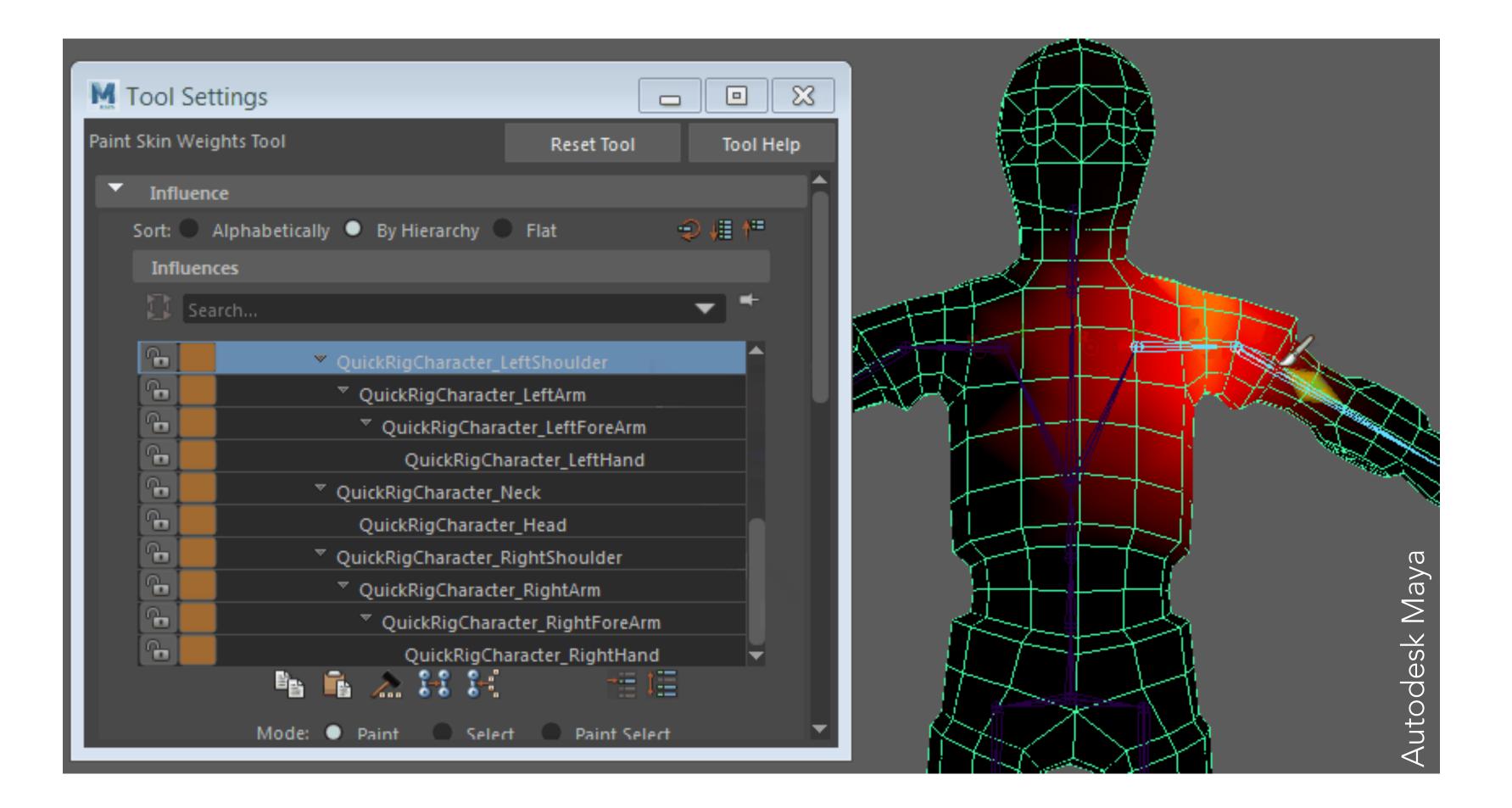






How to get the weights?

One common way: User paints them manually on the mesh!

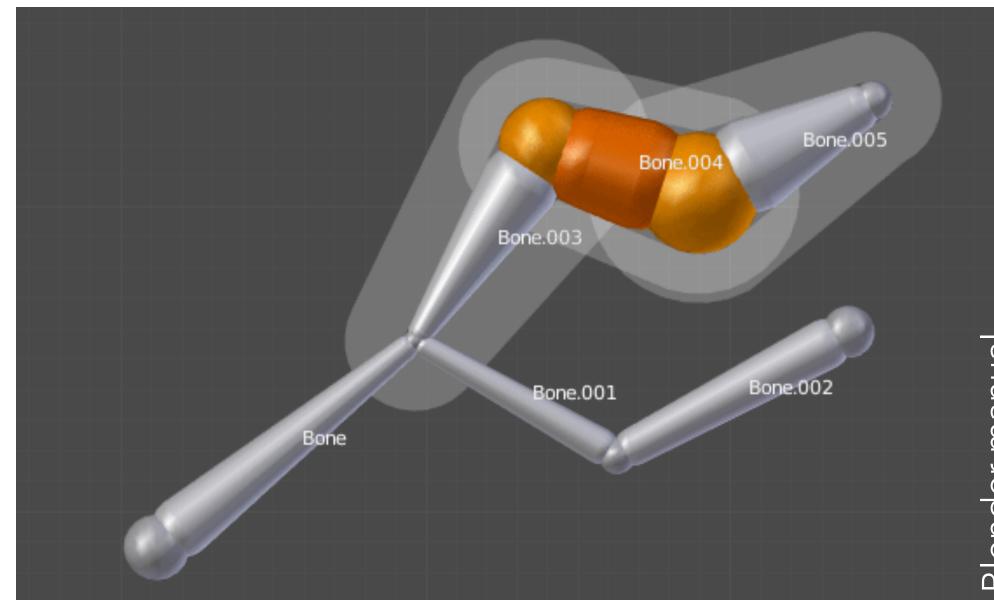


How to get the weights?

Various automatic methods, for example:

- Envelopes: manually specified region of influence
 - Influence function $\hat{w}_i(\mathbf{x}) = 1$ inside inner envelope, 0 outside outer envelope, smooth decay in between

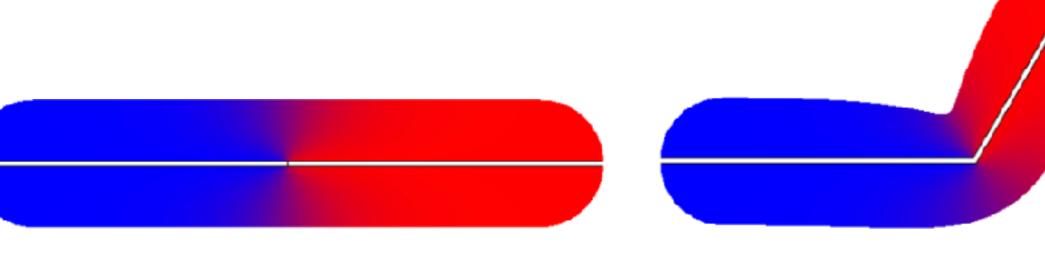
$$w_i = \frac{\hat{w}_i(\mathbf{v})}{\sum_{\text{bone } j} \hat{w}_j(\mathbf{v})}$$



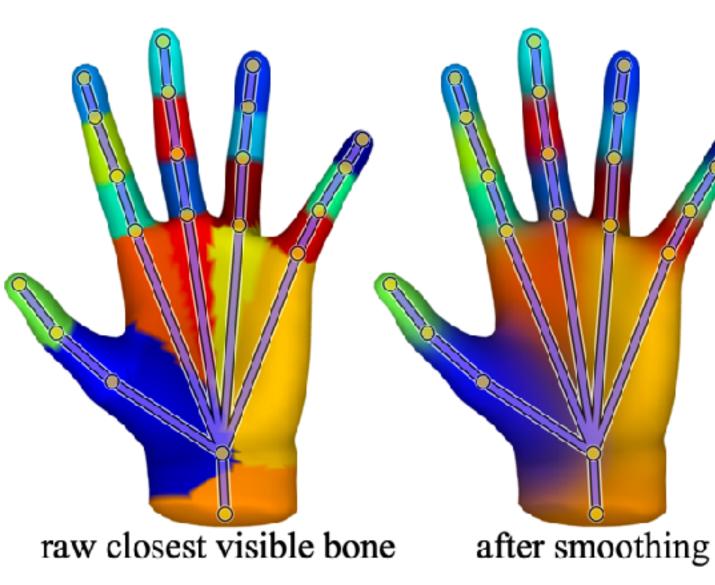
How to get the weights?

Various automatic methods, for example:

- Envelopes: manually specified region of influence
- Bone heat (Baran & Popovic 2007): solve PDE to get weights as smooth as possible
 - Optimize weights for smoothness, locality, monotonicity, etc., e.g. "bounded biharmonic weights" (Jacobson et al. 2011)



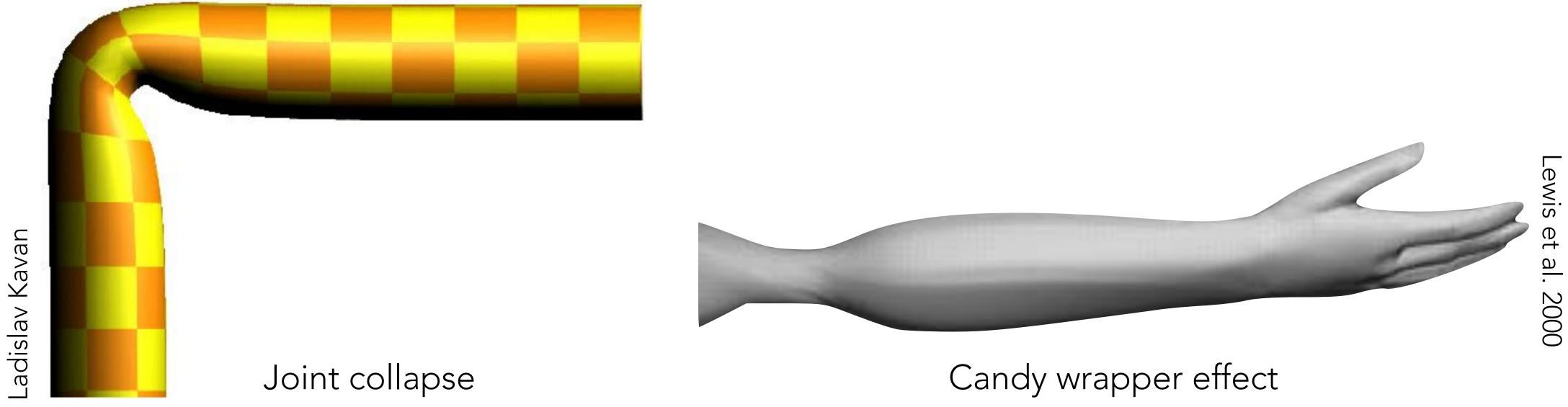
(weight of bone *i* = equilibrium heat distribution when bone *j* is held at temperature δ_{ii})



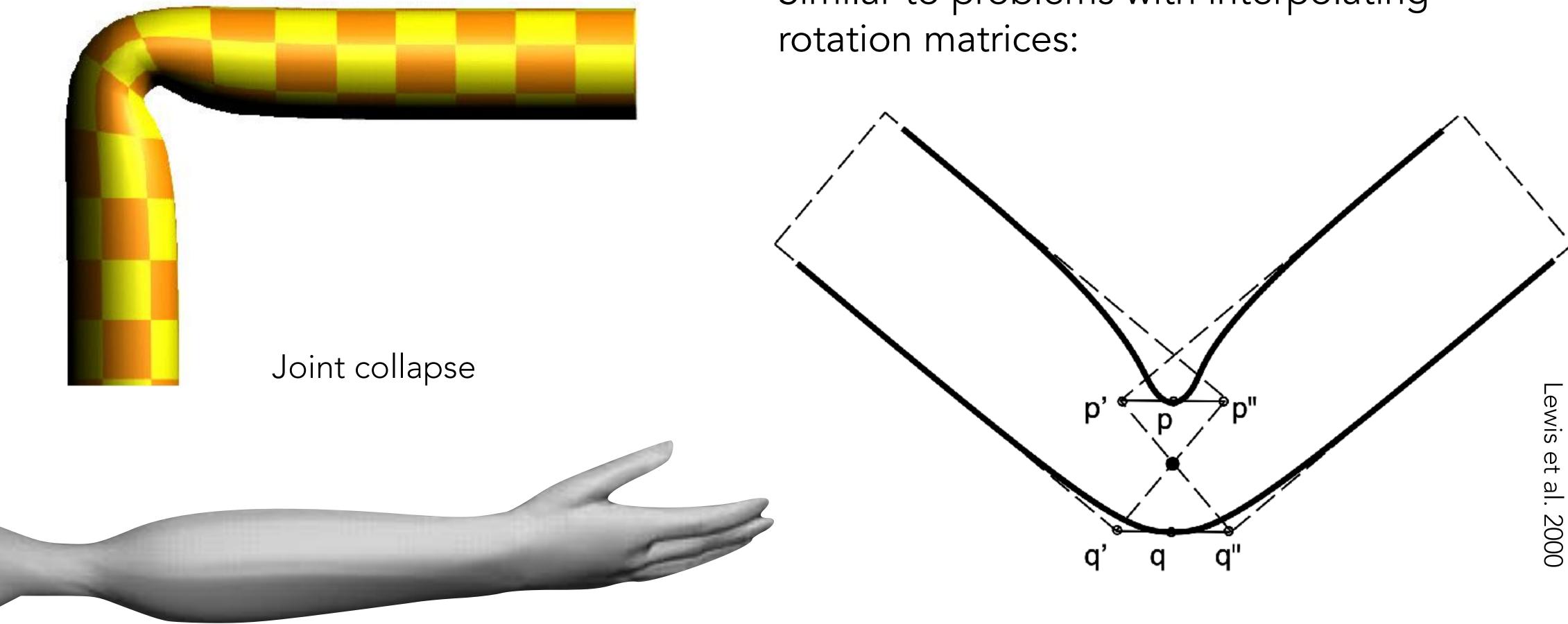
https://www.youtube.com/watch?v=OHbb6igqnnY

harrumphoid

Problems with linear blending



Puzzle: Why does this happen?



Candy wrapper effect

Similar to problems with interpolating

Linearly averaging two rigid transformations does not give a rigid transformation!

Dual quaternions in 1 slide (not on the exam)

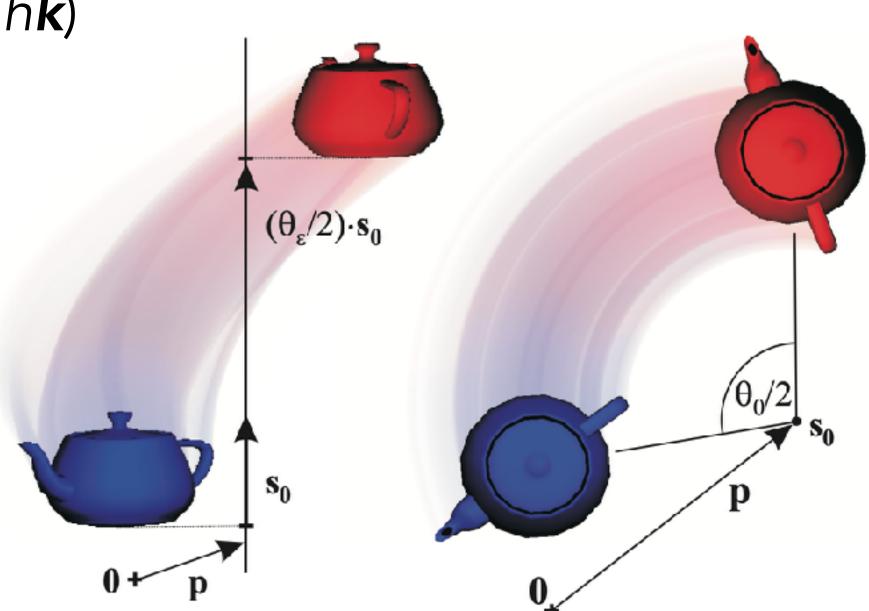
Quaternions: $\mathbf{q} = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$

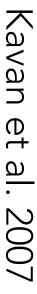
• Unit quaternions ($q^*q = 1$) represent rotations

Dual quaternions: $\hat{\boldsymbol{q}} = (a + b\boldsymbol{i} + c\boldsymbol{j} + d\boldsymbol{k}) + \boldsymbol{\varepsilon}(e + f\boldsymbol{i} + g\boldsymbol{j} + h\boldsymbol{k})$

• Unit dual quaternions ($\hat{q}^*\hat{q} = 1 + 0\varepsilon$) represent rigid transformations: translation & rotation, no scaling

In both cases: easy to normalize after interpolation





Linear blend skinning:
$$\mathbf{v}' = \sum_{\text{bone } i} w_i \mathbf{T}_i \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix} =$$

- Take weighted average of bones' transformation matrices
- Apply to vertex

- Take weighted average of bones' DQs
- Normalize to unit DQ \Rightarrow rigid transformation!
- Apply to vertex

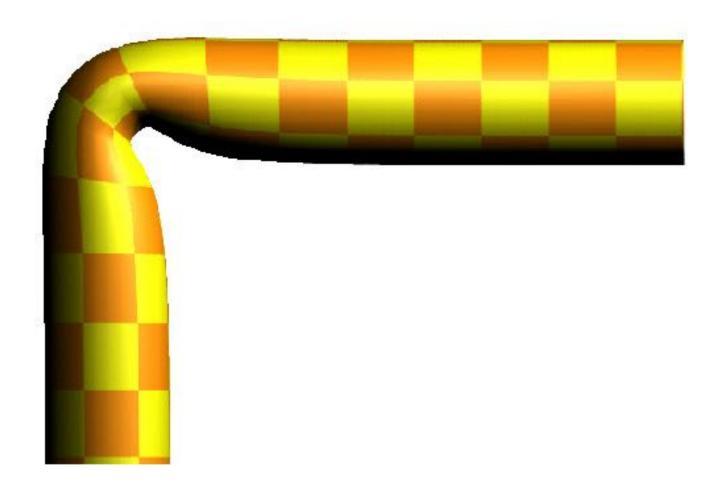
 $= \left(\sum_{\text{bone } i} w_i \mathbf{T}_i\right) \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}$

Dual quaternion skinning: represent bone transformations as DQs instead of matrices

Linear blend skinning

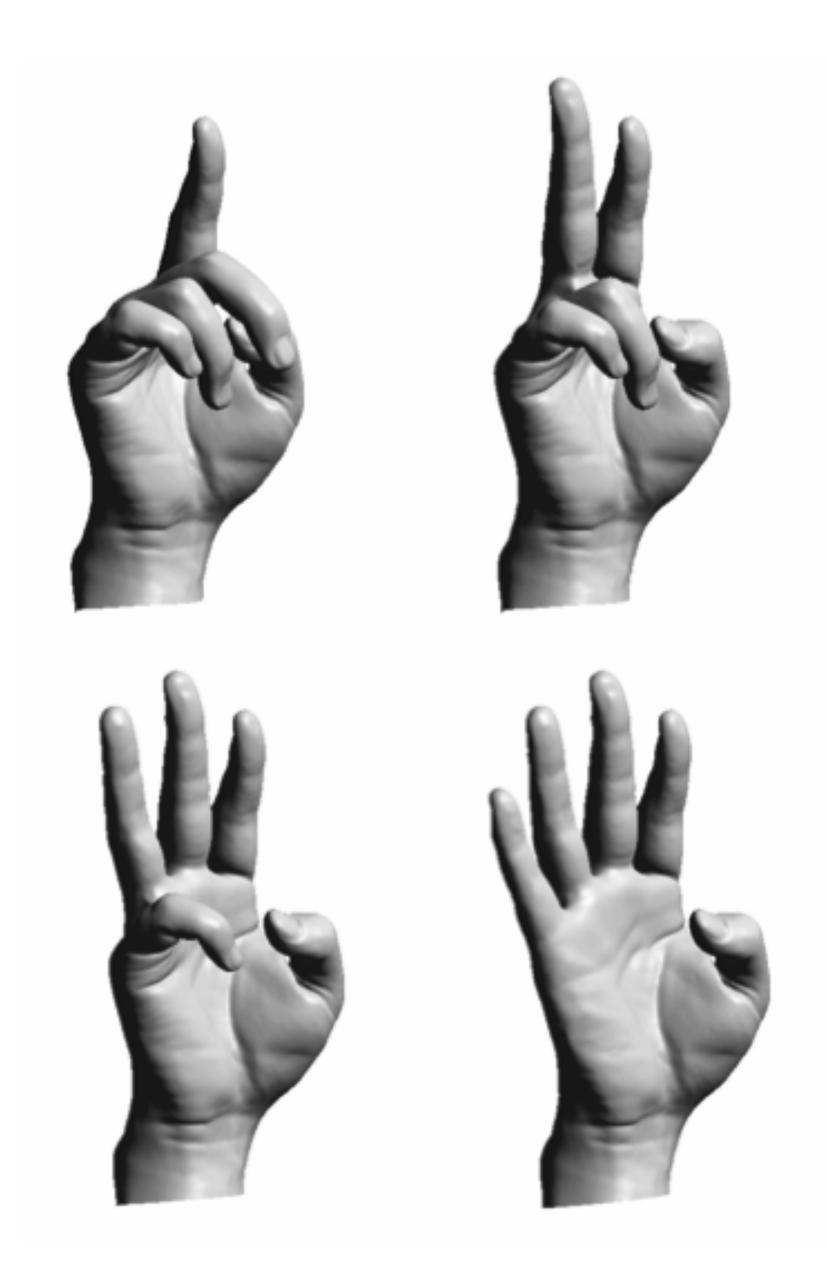
Dual quaternion skinning

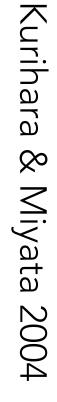
Kavan et al. 2007



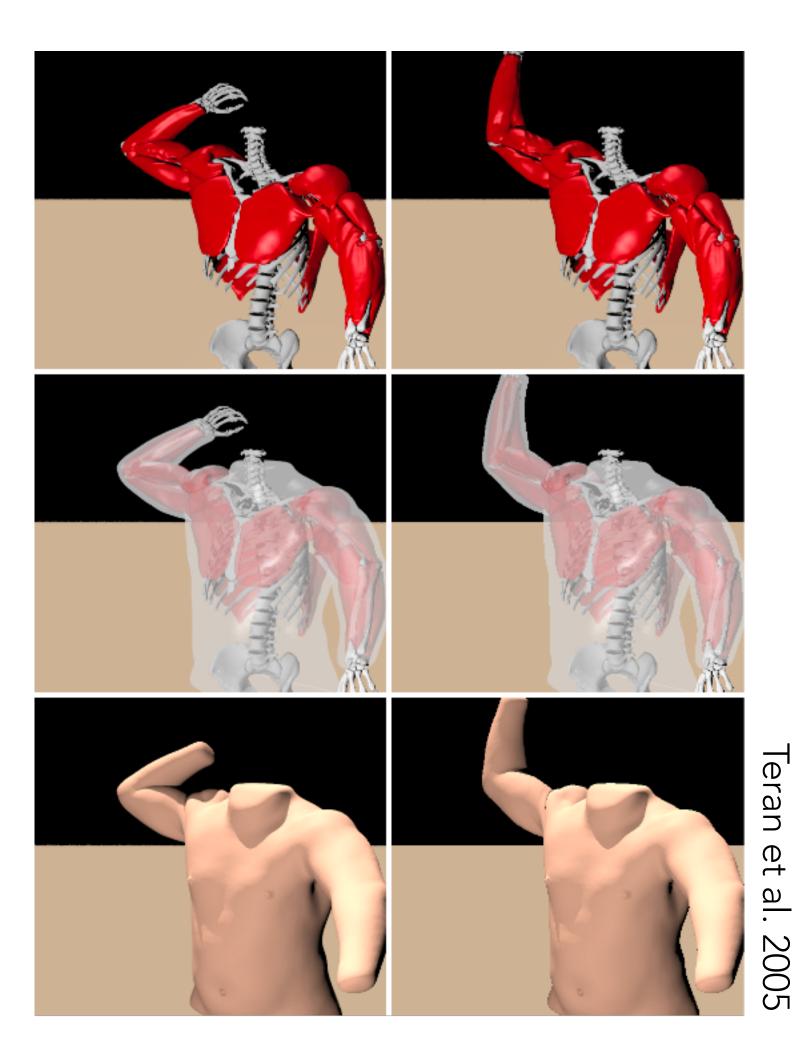
Lots of other techniques:

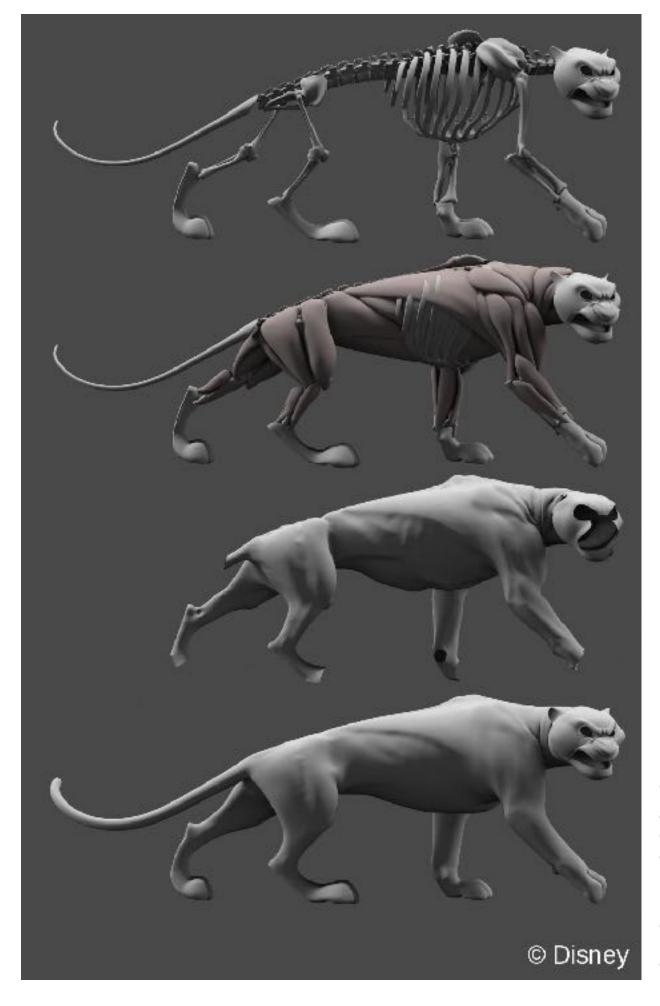
- Pose space deformation
- Elasticity-inspired deformers
- Implicit skinning
- Optimized centers of rotation
- Direct delta mush
- ...





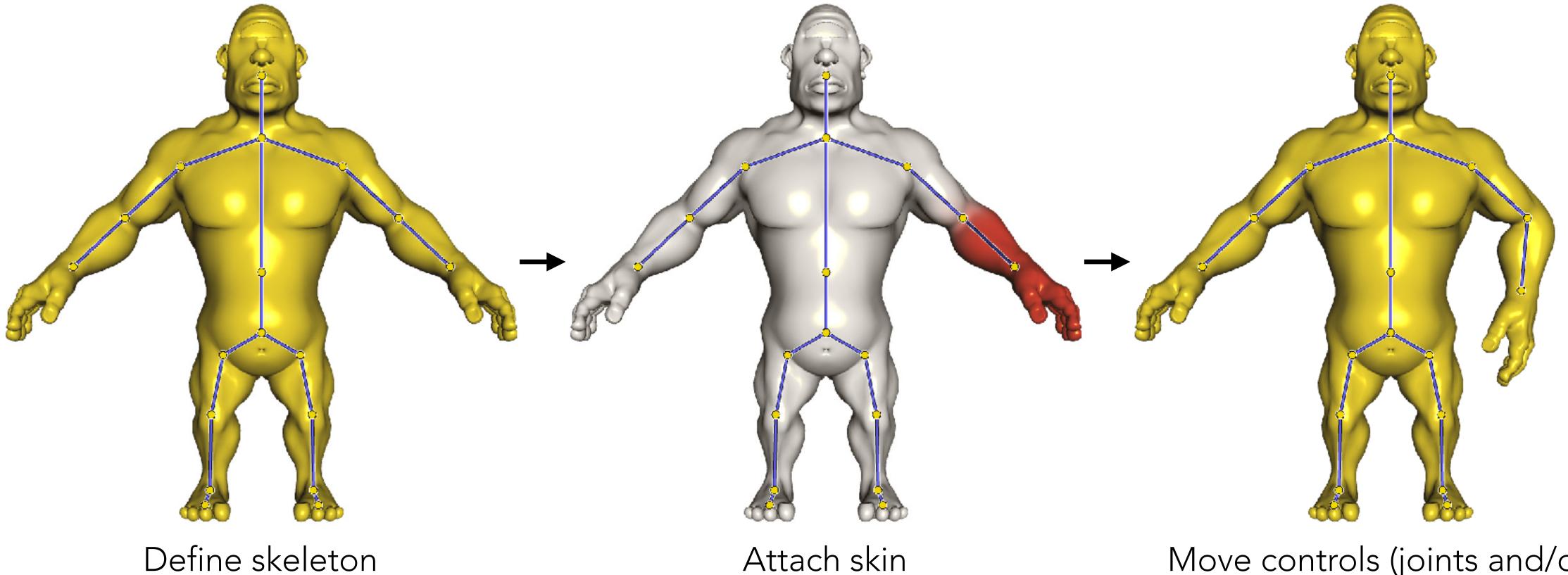
Beyond geometric skinning





$\overline{}$
\leq
-•
Ð
С П
νų.
0 T
\cap
വ
•
• •
N
$\tilde{\mathbf{C}}$
20
_
5
۲U

Character animation wrap-up



Attach skin

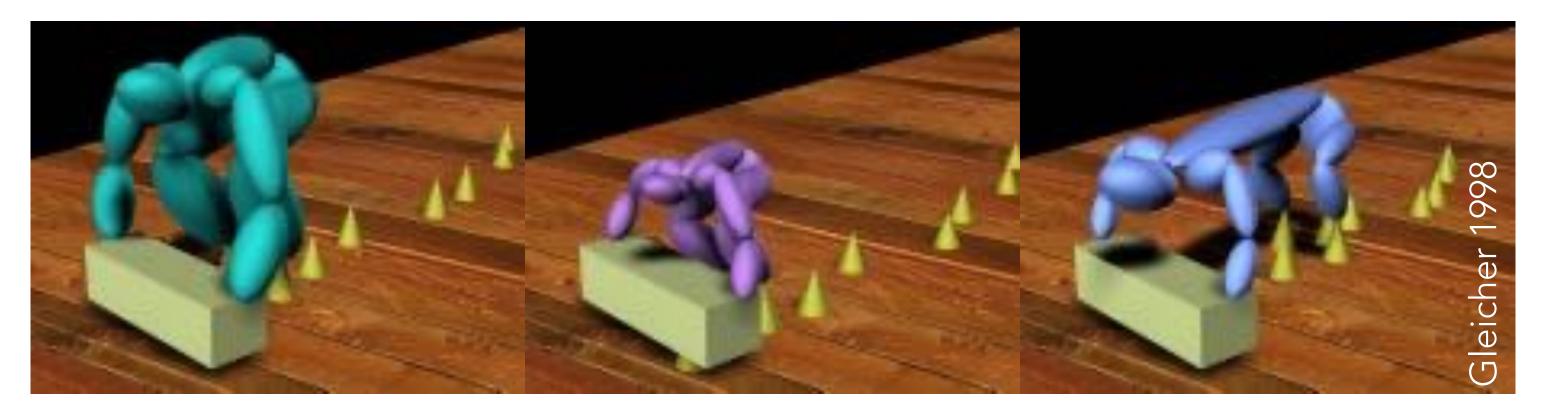
Move controls (joints and/or end effectors) to animate

Where does the motion data come from?

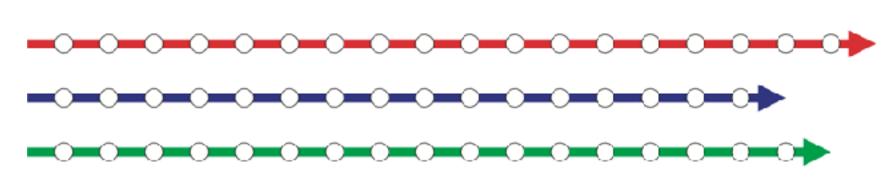
Keyframe animation

Motion capture ("mocap")

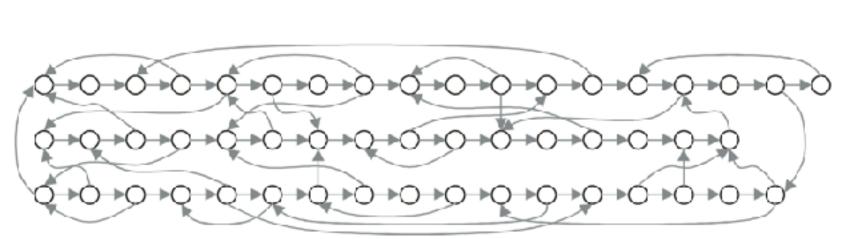
Mocap editing



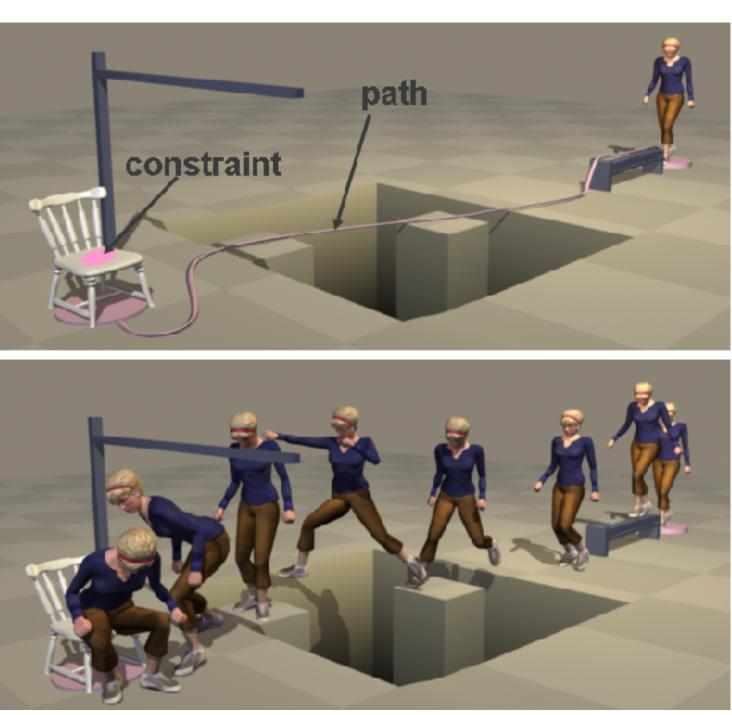
Retargeting

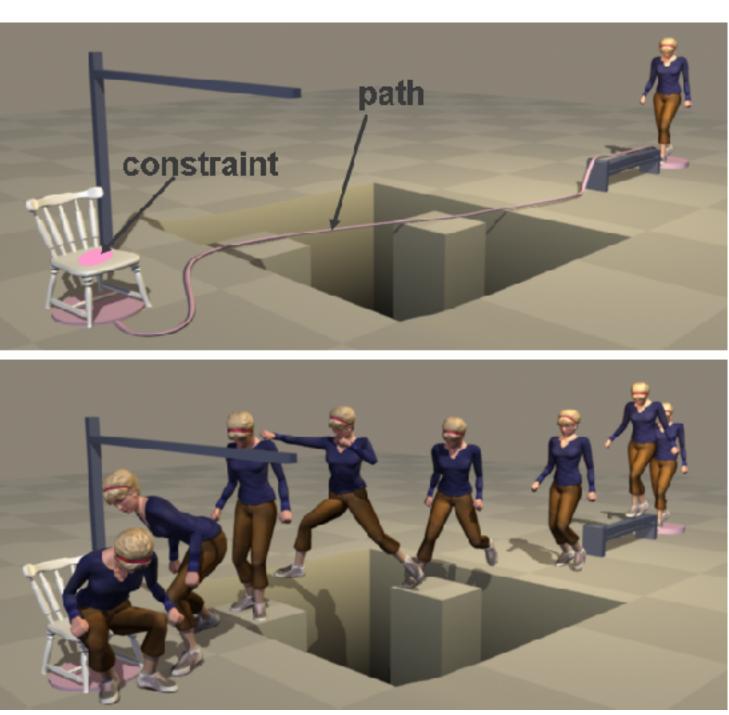


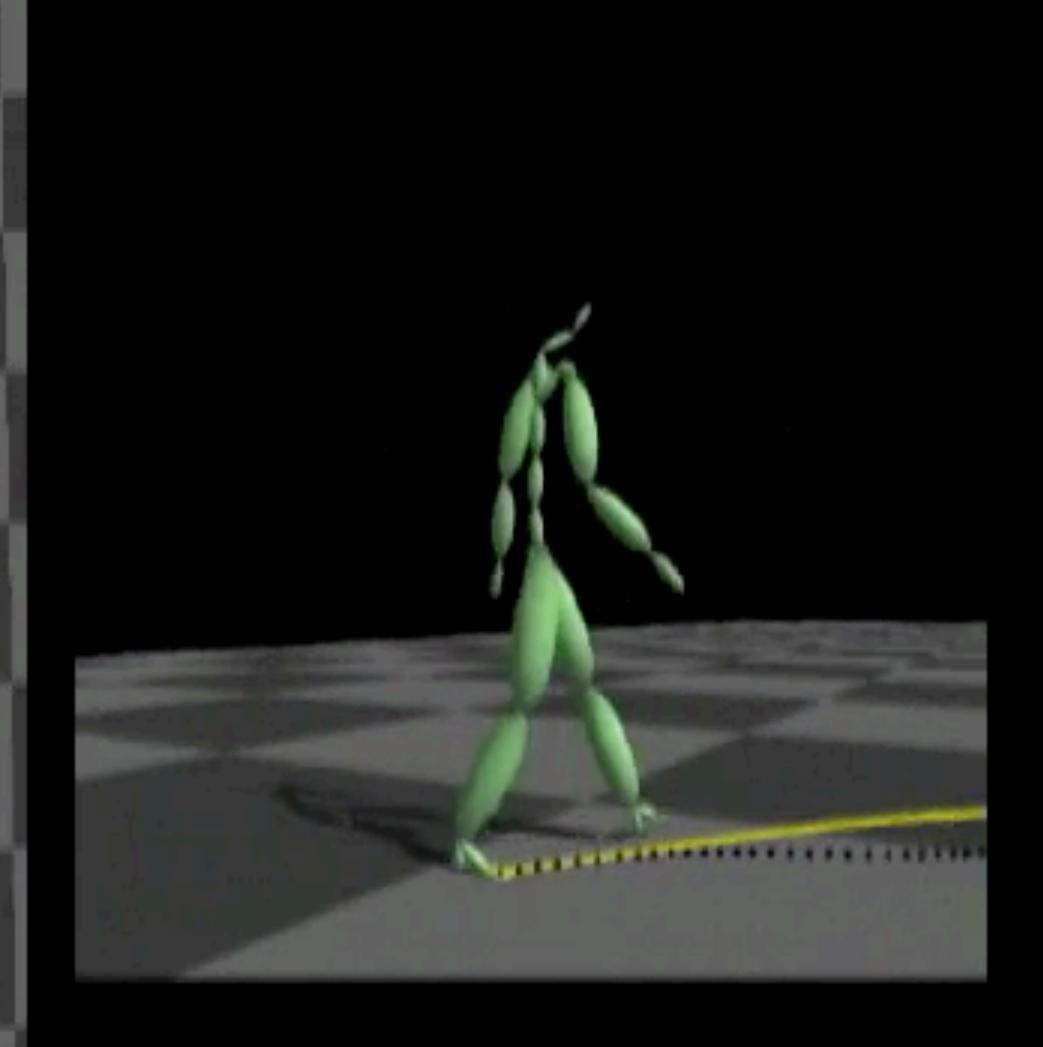
2002 <u>ם</u>. et Ð



Motion graphs

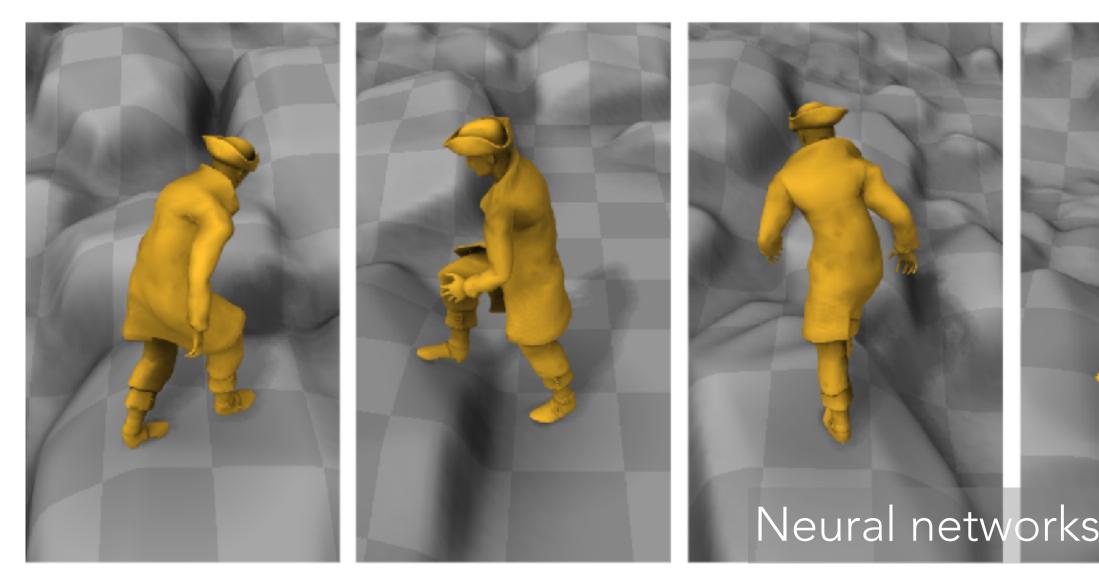


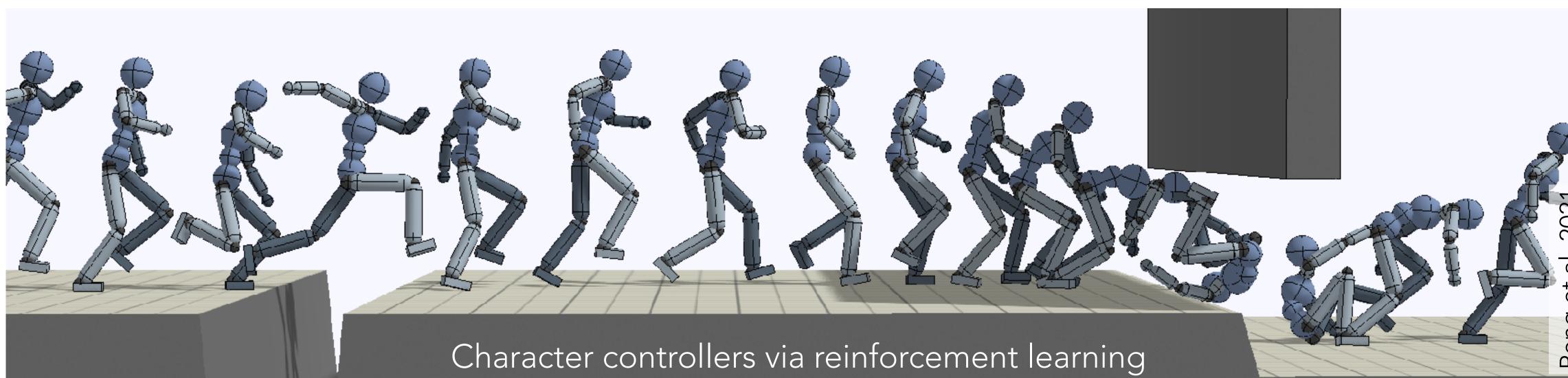




https://research.cs.wisc.edu/graphics/Gallery/kovar.vol/MoGraphs/

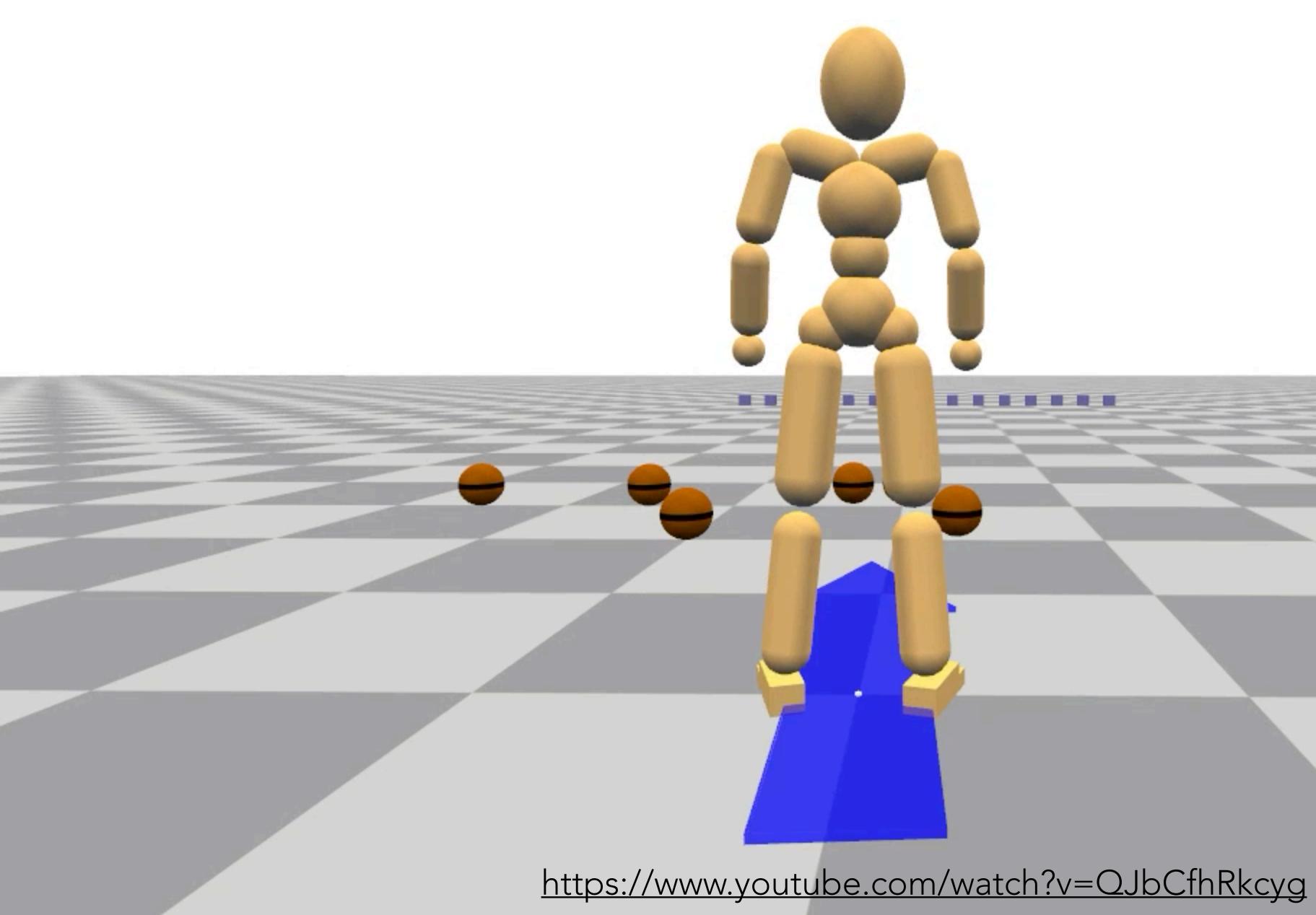
Ko var et al. 2002





Neural networks trained on motion data

Stand->SlowRun



Physics-based animation for things hard to animate using keyframing or motion capture...

Losasso et al. 2008

Cloth

https://www.cs.columbia.edu/cg/ESIC/esic.html

(m)

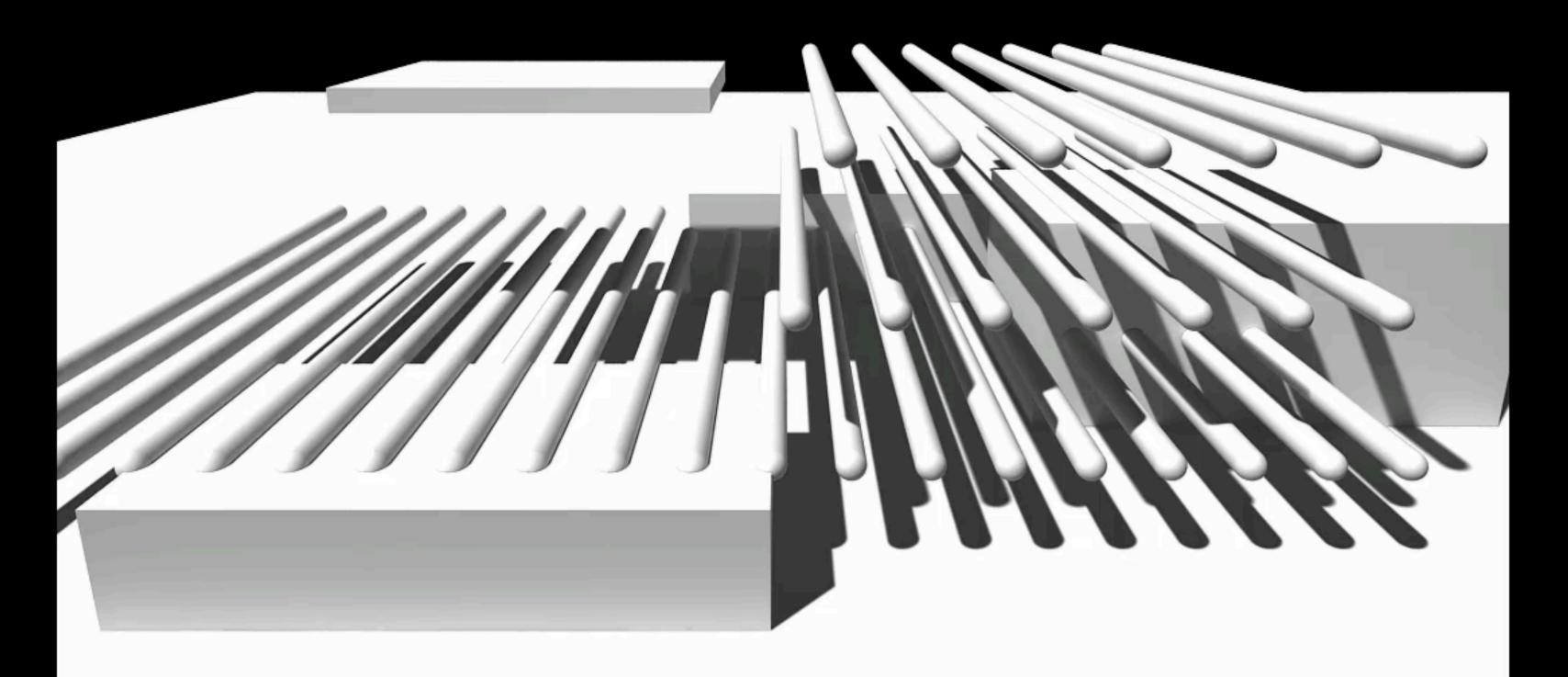
Goldenthal et al. 2007

Fracture

https://www.youtube.com/watch?v=eB2iBY-HjYU

A A A A

The simplest physics-based characters :)



Lewin et a 1. 2013

https://researchportal.bath.ac.uk/en/publications/rod-constraints-for-simplified-ragdolls

Next class

We'll start simple: **Particle system** = collection of (usually non-interacting) particles in motion

