COL781: Computer Graphics

 29: Inverse
Recap: Skeletal animation

The vector of generalized coordinates \mathbf{q} (containing joint angles etc.) determines the character's pose.

- We know how to do forward kinematics: find bone transformations from \mathbf{q}
- Inverse kinematics: find \mathbf{q} to achieve desired position/rotation of end point(s)

Inverse kinematics

Position of target point (end effector) depends nonlinearly on joint angles

$$
\mathbf{x}=f(\mathbf{q})
$$

Given desired \mathbf{x}, how to compute \mathbf{q} ?

Multiple solutions

Infinitely many solutions

No solution

Closed-form solution for 2 segments in 2D:

$$
\begin{aligned}
& \theta_{1}=\cos ^{-1}\left(\frac{l_{1}^{2}+x^{2}+y^{2}-l_{2}^{2}}{2 l_{1} \sqrt{x^{2}+y^{2}}}\right) \\
& \theta_{2}=\cos ^{-1}\left(\frac{l_{1}^{2}+l_{2}^{2}-x^{2}-y^{2}}{2 l_{1} l_{2}}\right)
\end{aligned}
$$

Does not generalize!

Solving nonlinear equations

Warm-up: 1 equation in 1 variable

$f: \mathbb{R} \rightarrow \mathbb{R}$ is some nonlinear function. We want to find x such that $f(x)=0$

- Usually no analytical solution (no formula for $f-1$)
- Assume f is smooth: we can evaluate $f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots$ at any x

One way to solve: Newton's method

Here's a general problem-solving strategy (not specific to Newton's method): Say you have a problem you don't know how to solve exactly.

1. Approximate the problem.
2. Solve the approximation exactly.
3. If possible, use the solution to improve the approximation, and repeat...

In Newton's method, approximation $=1$ st-order Taylor series

$$
f(x+\Delta x) \approx f(x)+f^{\prime}(x) \Delta x
$$

when Δx is small

Say you have a nonlinear equation you don't know how to solve exactly: Find x such that $f(x)=0$.

Start with a guess: \tilde{x}.

1. Approximate the problem near the guess:

$$
0=f(\tilde{x}+\Delta x) \approx f(\tilde{x})+f^{\prime}(\tilde{x}) \Delta x
$$

2. Solve the approximation exactly:

$$
\Delta x=-f(\tilde{x}) / f^{\prime}(\tilde{x})
$$

3. Improve the guess and repeat: $\tilde{x} \leftarrow \tilde{x}+\Delta x$

Newton's method is not guaranteed to work:

- Can overshoot the solution
- Can move in the wrong direction
- Can diverge when $f^{\prime}(\tilde{x})$ is close to 0

Converges rapidly when initial guess \tilde{x} is close to the solution

Going to \boldsymbol{n} dimensions

Say we have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\begin{gathered}
\mathbf{y}=\mathbf{f}(\mathbf{x}) \\
{\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]}
\end{gathered}
$$

Can we do the same thing?

$$
f(x+\Delta x) \approx ?
$$

$$
\begin{gathered}
f_{1}(\mathbf{x}+\Delta \mathbf{x}) \approx f_{1}(\mathbf{x})+\frac{\partial f_{1}}{\partial x_{1}} \Delta x_{1}+\cdots+\frac{\partial f_{1}}{\partial x_{n}} \Delta x_{n} \\
\vdots \\
f_{n}(\mathbf{x}+\Delta \mathbf{x}) \approx f_{n}(\mathbf{x})+\frac{\partial f_{n}}{\partial x_{1}} \Delta x_{1}+\cdots+\frac{\partial f_{n}}{\partial x_{n}} \Delta x_{n} \\
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) \approx \mathbf{f}(\mathbf{x})+\mathbf{J}(\mathbf{x}) \Delta \mathbf{x} \\
\mathbf{J}(\mathbf{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
\end{gathered}
$$

The Jacobian matrix

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

What does this mean, geometrically?

- j th column $=\frac{\partial \mathbf{f}}{\partial x_{j}}$: how the output $\mathbf{f}=\left[f_{1}, \ldots, f_{n}\right]$ changes if one coordinate x_{j} is changed
- i th row $=\nabla f_{i}$: gradient of f_{i} with respect to changes in all coordinates $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$
- Put another way, J tells us approximately how much x will change in world space when we adjust a joint parameter $q_{i} \uparrow$

$$
\Delta x \approx \Delta q_{i}\left(K_{1}, \cdots, K_{6}\right)
$$

Approximate Actual

Example:

$$
\mathbf{x}=\mathbf{f}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\mathbf{M}_{1}\left(\theta_{1}\right) \mathbf{M}_{2}\left(\theta_{2}\right) \mathbf{M}_{3}\left(\theta_{3}\right) \mathbf{x}^{0}
$$

$$
\begin{aligned}
\frac{\partial \mathbf{f}}{\partial \theta_{1}} & =\frac{\mathrm{d} \mathbf{M}_{1}}{\mathrm{~d} \theta_{1}} \mathbf{M}_{2}\left(\theta_{2}\right) \mathbf{M}_{3}\left(\theta_{3}\right) \mathbf{x}^{0} \\
\frac{\partial \mathbf{f}}{\partial \theta_{2}} & =\mathbf{M}_{1}\left(\theta_{1}\right) \frac{\mathrm{d} \mathbf{M}_{2}}{\mathrm{~d} \theta_{2}} \mathbf{M}_{3}\left(\theta_{3}\right) \mathbf{x}^{0} \\
\frac{\partial \mathbf{f}}{\partial \theta_{3}} & =\mathbf{M}_{1}\left(\theta_{1}\right) \mathbf{M}_{2}\left(\theta_{2}\right) \frac{\mathrm{d} \mathbf{M}_{3}}{\mathrm{~d} \theta_{3}} \mathbf{x}^{0}
\end{aligned}
$$

Newton's method for systems of nonlinear equations: Find \mathbf{x} such that $\mathbf{f}(\mathbf{x})=0$.
Start with a guess $\tilde{\mathbf{x}}$.

1. Approximate the problem near the guess:

$$
0=f(\tilde{\mathbf{x}}+\Delta \mathbf{x}) \approx \mathbf{f}(\tilde{\mathbf{x}})+\mathbf{J}(\tilde{\mathbf{x}}) \Delta \mathbf{x}
$$

2. Solve the approximation exactly:

$$
\Delta \mathbf{x}=-\mathbf{J}(\tilde{\mathbf{x}})^{-1} \mathbf{f}(\tilde{\mathbf{x}})
$$

3. Improve the guess and repeat: $\tilde{\mathbf{x}} \leftarrow \tilde{\mathbf{x}}+\Delta \mathbf{x}$

Back to inverse kinematics

In IK, we usually have more joints than end effector DOFs...

$$
\begin{gathered}
{\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, \ldots, x_{n}\right)
\end{array}\right]} \\
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \ldots & \ldots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
\end{gathered}
$$

Jacobian becomes rectangular, can't do Newton update $\Delta \mathbf{x}=-\mathbf{J}(\tilde{\mathbf{x}})^{-1} \mathbf{f}(\tilde{\mathbf{x}})$!

Jacobian-based strategies:

We know $\Delta \mathbf{f}=\mathbf{J}(\tilde{\mathbf{x}}) \Delta \mathbf{x}$, choose $\Delta \mathbf{x}$ to get desired $\Delta \mathbf{f}=-\mathbf{f}(\tilde{\mathbf{x}})$

- Pseudoinverse of Jacobian: $\Delta \mathbf{x}=\mathbf{J}^{\top}\left(\mathbf{J} \mathbf{J}^{\top}\right)^{-1} \Delta \mathbf{f}$
- Jacobian transpose: $\Delta \mathbf{x}=a \mathbf{J}^{\top} \Delta \mathbf{f}$
- Damped least squares: $\Delta \mathbf{x}=\mathbf{J}^{\boldsymbol{\top}}\left(\mathbf{J} \mathbf{J}^{\top}+\lambda \mathbf{I}\right)^{-1} \Delta \mathbf{f}$

Cyclic coordinate descent

- Pick one coordinate j, hold all others fixed.
- Update q_{j} to best value
- Repeat with new choice of j

Smarter version: FABRIK (Aristidou et al. 2011)

Keyframe animation

Animator specifies character pose (i.e. values of animation controls) at specific keyframes.
How to interpolate to arbitrary times?

Recall splines: piecewise polynomial functions with some continuity/differentiability
Except now, we really want interpolation instead of approximation:
We want the animation to exactly match the specified pose at the keyframes

- Piecewise linear interpolation

$$
q(t)=\frac{t_{i+1}-t}{t_{i+1}-t_{i}} q_{i}+\frac{t-t_{i}}{t_{i+1}-t_{i}} q_{i+1}
$$

- Cubic Hermite spline: assume positions q_{i} and velocities q_{i}^{\prime} are given.

Let $q(t)=a t^{3}+b t^{2}+c t+d$, solve for coefficients so that

$$
\begin{gathered}
q\left(t_{i}\right)=q_{i,}, q\left(t_{i+1}\right)=q_{i+1}, \\
q^{\prime}\left(t_{i}\right)=q_{i}^{\prime}, q^{\prime}\left(t_{i+1}\right)=q_{i+1}^{\prime}
\end{gathered}
$$

Closed-form solution:

What if derivatives are not given, but still want a C ${ }^{1}$ curve? Catmull-Rom splines

Estimate derivatives from neighbouring points, e.g. slope at t_{i} of quadratic passing through q_{i-1}, q_{i}, q_{i+1}

- Equally spaced points: $q_{i}{ }^{\prime}=\frac{q_{i+1}-q_{i-1}}{2 \Delta t}$
- Unequally spaced points: not as simple
 (work it out yourself)

Rigid bone transformations may be sufficient for robots and toys with rigid parts.
What about organic characters?

Skinning

uоsqoəer गə|甘

