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Recap: Skeletal animation
The vector of generalized coordinates q (containing 
joint angles etc.) determines the character’s pose. 

• We know how to do forward kinematics: 
find bone transformations from q 

• Inverse kinematics: find q to achieve 
desired position/rotation of end point(s)



Inverse kinematics
Position of target point (end effector) 
depends nonlinearly on joint angles 

x = f (q) 

Given desired x, how to compute q?
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Closed-form solution for 2 segments in 2D: 

 

 

 
Does not generalize!

θ1 = cos−1 ( l2
1 + x2 + y2 − l2

2

2l1 x2 + y2 )
θ2 = cos−1 ( l2

1 + l2
2 − x2 − y2

2l1l2 )
Aristidou et al. 2017



Solving nonlinear equations



Warm-up: 1 equation in 1 variable
f : ℝ → ℝ is some nonlinear function. We want to find x such that f (x) = 0 

• Usually no analytical solution (no formula for f −1) 

• Assume f is smooth: we can evaluate f (x), f ′(x), f ′′(x), … at any x 

 
One way to solve: Newton’s method



Here’s a general problem-solving strategy (not specific to Newton’s method): 

Say you have a problem you don’t know how to solve exactly. 

1. Approximate the problem. 

2. Solve the approximation exactly. 

3. If possible, use the solution to improve the approximation, and repeat… 

In Newton’s method, approximation = 1st-order Taylor series 

f (x + Δx) ≈ f (x) + f ’(x) Δx 

when Δx is small



Say you have a nonlinear equation you don’t know how to solve exactly: 
Find x such that f (x) = 0. 

Start with a guess:  x̃. 

1. Approximate the problem near the guess: 

0 = f (x̃ + Δx) ≈ f (x̃) + f ’(x̃) Δx 

2. Solve the approximation exactly: 

Δx = −f (x̃)/f ’(x̃) 

3. Improve the guess and repeat:  x̃ ← x̃ + Δx



Newton’s method is not guaranteed to work: 

• Can overshoot the solution 

• Can move in the wrong direction 

• Can diverge when f ’(x̃) is close to 0 

 
Converges rapidly when initial guess x̃ is close to the solution



Going to n dimensions
Say we have a function f : ℝn → ℝn 

y = f(x) 

 

 
Can we do the same thing? 

f(x + Δx) ≈ ?

y1
⋮
yn

=
f1(x1, …, xn)

⋮
fn(x1, …, xn)



f1 (x + Δx) ≈ f1 (x) + Δx1 + ⋯ + Δxn 

⋮ 

fn (x + Δx) ≈ fn (x) + Δx1 + ⋯ + Δxn 

 

f(x + Δx) ≈ f(x) + J(x) Δx 

J(x) = 

∂f1
∂x1

∂f1
∂xn

∂fn
∂x1

∂fn
∂xn

∂f1
∂x1

⋯ ∂f1
∂xn

⋮ ⋱ ⋮
∂fn
∂x1

⋯
∂fn
∂xn

Jacobian matrix



The Jacobian matrix

J(x) =  

What does this mean, geometrically? 

• jth column = : how the output f = [f1, …, fn] changes if one coordinate xj is changed 

• ith row = ∇fi : gradient of fi with respect to changes in all coordinates x = [x1, …, xn]

∂f1
∂x1

⋯ ∂f1
∂xn

⋮ ⋱ ⋮
∂fn
∂x1

⋯
∂fn
∂xn

∂f
∂xj



B
ill

 B
ax

te
r



Example: 

x = f(θ1, θ2, θ3) = M1(θ1) M2(θ2) M3(θ3) x0 

 

 =  M2(θ2) M3(θ3) x0 

 = M1(θ1)  M3(θ3) x0 

 = M1(θ1) M2(θ2)  x0

∂f
∂θ1

dM1

dθ1

∂f
∂θ2

dM2

dθ2

∂f
∂θ3

dM3

dθ3

θ1

θ2

θ3

x



Newton’s method for systems of nonlinear equations: Find x such that f(x) = 0. 

Start with a guess x̃. 

1. Approximate the problem near the guess: 

0 = f(x̃ + Δx) ≈ f(x̃) + J(x̃) Δx 

2. Solve the approximation exactly: 

Δx = −J(x̃)−1 f(x̃) 

3. Improve the guess and repeat: x̃ ← x̃ + Δx



Back to inverse kinematics



In IK, we usually have more joints than end effector DOFs… 

 

J(x) =  

Jacobian becomes rectangular, can’t do Newton update Δx = −J(x̃)−1 f(x̃)!

y1
⋮
ym

=
f1(x1, …, …, xn)

⋮
fm(x1, …, …, xn)

∂f1
∂x1

⋯ ⋯ ∂f1
∂xn

⋮ ⋱ ⋱ ⋮
∂fm
∂x1

⋯ ⋯
∂fm
∂xn



Jacobian-based strategies: 
We know Δf = J(x̃) Δx, choose Δx to get desired Δf = −f(x̃) 

• Pseudoinverse of Jacobian: Δx = JT (J JT)−1 Δf 

• Jacobian transpose: Δx = α JT Δf 

• Damped least squares: Δx = JT (J JT + λ 𝐈)−1 Δf



Cyclic coordinate descent 

• Pick one coordinate j, hold all others fixed. 

• Update qj to best value 

• Repeat with new choice of j 

 
Smarter version: FABRIK (Aristidou et al. 2011) K
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Keyframe animation

Animator specifies character pose (i.e. values of animation controls) at specific keyframes. 

How to interpolate to arbitrary times?

q0 q2q1

C
hu &

 Lee 2009



 
 
Recall splines: piecewise polynomial functions with some continuity/differentiability 

Except now, we really want interpolation instead of approximation: 
We want the animation to exactly match the specified pose at the keyframes



• Piecewise linear interpolation 

q(t) =  qi +  qi+1 

• Cubic Hermite spline: assume positions qi and velocities qi′ are given. 

Let q(t) = at3 + bt2 + ct + d, solve for coefficients so that 

  q(ti) = qi, q(ti+1) = qi+1, 
q′(ti) = qi′, q′(ti+1) = q′i+1 

Closed-form solution: 

q(t) = (2t3−3t2+1) qi +(t3−2t2+t) qi′ + (−2t3+3t2) qi+1 + (t3−t2) q′i+1

ti+1 − t
ti+1 − ti

t − ti
ti+1 − ti



 
What if derivatives are not given, but still want 
a C1 curve? Catmull-Rom splines 

 
Estimate derivatives from neighbouring points, 
e.g. slope at ti of quadratic passing through qi−1, qi, qi+1 

• Equally spaced points: qi′ =  

• Unequally spaced points: not as simple 
(work it out yourself)

qi+1 − qi−1

2Δt



Rigid bone transformations may be sufficient for robots and toys with rigid parts. 

What about organic characters?
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Skinning

Skeleton Skinning weights Deformed shape
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