
23. The Rendering 
      Equation

COL781: Computer Graphics
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Ray tracing
For each sample: 

Cast a ray into the scene 

Find the closest intersection 

Get shaded colour at intersection point 

Set sample colour to it
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Global illumination



Global illumination

Ritschel et al. 2012



Ray tracing revisited
For each sample: 

Cast a ray into the scene 

Find the closest intersection 

Get exitant radiance at intersection point 

Set sample colour to it 

 

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi∫H2



Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi 

• How to evaluate incident radiance from 
any direction (not just light sources)? 

• How to compute the integral over 
a hemisphere? 

∫H2



What is Li (p, ωi)? Simply exitant radiance from somewhere else! 

 
 
 
 
 
 
 
 
 
 
 
 
Define tr(p, ω) as the first surface point hit by the ray p + tω. 

Li (p, ωi) = Lo (tr(p, ωi), −ωi)

p

tr(p, ω)
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Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Lo (tr(p, ωi), −ωi) cos(θi) dωi 

This is an integral equation! 
Unknown quantity Lo on both sides 

Like ray tracing, we’ll evaluate it recursively

∫H2



Numerical integration



 f(x) dx 

If I know how to compute f(x), how can I compute its integral? 

• Analytical / symbolic 

• Numerical quadrature 

• Monte Carlo methods

∫
b

a



Analytical integration

Closed-form formulas only possible in very special cases. 

In rendering, integrand is very complicated! Depends on visibility, texture, BRDF, … 
No chance of analytical solution.

∫ x3 dx =
1
4

x4 ∫ x cos x dx = x sin x + cos x

∫ e−x2 dx = ? ∫ ⌈sin x2⌉ dx = ?



Numerical quadrature
Sample function at various points, estimate integral as weighted sum 

e.g. trapezoidal rule: 

 

If integrand is smooth, error decreases as O(n−2) 

Many higher-order accurate methods 
e.g. Gaussian quadrature, Simpson’s rule, etc.

∫
b

a
f(x) dx ≈

n

∑
i=1

( f(xi−1) + f(xi)
2 ) Δxi



Why not use quadrature? 

• Integrand is not smooth! e.g. incident radiance from area light 

Error might decrease at only O(n−1) 

• Integral is high-dimensional! e.g. k-bounce illumination 
requires integral over k hemispheres 

If n samples per hemisphere, 
computational cost increases as O(nk). 
Error still decreasing at same rate w.r.t. n



Example: area of a disk
Suppose you want to estimate π by computing the area of the region {(x, y): x2 + y2 ≤ 1}. 

 

 

With trapezoidal rule: 

• O(n) samples in x and y each → N = O(n2) total samples 

• Discontinuous integrand → error decreases slowly 

What about finding the volume of a k-dimensional ball? 😬

f(x, y) = {1 if x2 + y2 ≤ 1,
0 otherwise.

A = ∫
1

−1 ∫
1

−1
f(x, y) dx dy



A randomized algorithm
Pick N random points uniformly distributed in [−1, 1]2, count how many land in the disk. 

Let M = number of points with x2 + y2 ≤ 1. 

• Probability of a point landing in the disk = A/4 

• Expected number of points: E[M] = NA/4 

So, estimated area = 4M/N. 

What is the likely error in the estimate?



Quick probability recap
If X is a random variable with probability distribution p(x), its expected value or 
expectation is 

E[X] =  xi pi 

E[X] =  x p(x) dx 

Expectation is linear: 

• E[X1 + X2] = E[X1] + E[X2] 

• E[aX] = a E[X]

∑

∫
(discrete)

(continuous)



Variance = average squared deviation from expected value 

V[X] = E[(X − E[X])2] = E[X2] − E[X]2 

Variance is not linear, but it is additive for independent random variables: 

• If X1 and X2 are independent, then V[X1 + X2] = V[X1] + V[X2] 

• V[aX] = a2 V[X] 

 
So if I take the mean of N i.i.d. random variables, 

V [ 1
N ∑ Xi] =

1
N2

V [∑ Xi] =
1

N2 ∑ V[Xi] =
1
N

V[X]



Randomized area estimation
Pick N random points Xi independently and uniformly distributed in [−1, 1]2. 

Let Yi = f(Xi), so number of points in disk is M = Yi. 

• What are E[Yi] and E[M]? 

• What are V[Yi] and V[M]? 

 
Variance of estimated area = O(N−1) 

 
What about in k dimensions? Estimated volume = 2k M/N, variance still O(N−1)!

∑



The basic Monte Carlo method
If X is uniformly distributed in [a, b], then 

 

So, if I take N independent samples of X, 

 

E[ f(X)] =
1

b − a ∫
b

a
f(x) dx

1
N

N

∑
i=1

f(xi) ≈ E[ f(X)] =
1

b − a ∫
b

a
f(x) dx

∫
b

a
f(x) dx ≈

b − a
N

N

∑
i=1

f(xi) Interpretation: 

Integral = average value × domain size



Basic Monte Carlo estimation of an integral : 

 

where Xi ~ U(a, b) with probability density p(x) = 1/(b − a). 

• FN is an unbiased estimator: E[FN] =  for any N. 

• Variance decreases linearly: V[FN] =  V[f(X)] 

• Standard deviation =  = O(N−1/2)

∫
b

a
f(x) dx

FN =
b − a

N

N

∑
i=1

f(Xi)

∫
b

a
f(x) dx

(b − a)2

N

V[FN]



Back to rendering



Monte Carlo rendering

We need to estimate the reflectance integral fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi 

With Monte Carlo, it’s easy: 

• Uniformly sample hemisphere of 
incident directions: Xi ~ U(H2), 
probability density p(ω) = 1/(2π) 

• Evaluate integrand 
Yi = fr (p, Xi → ωo) Li (p, Xi) cos(θi) 

• MC estimator is simply FN = 2π/N  Yi

∫H2

∑



incidentRadiance(x, ω): 

p = intersectScene(x, ω) 

L = p.emittedLight(−ω) 

for i = 1, …, N: 

ωi = sampleDirection(p.normal) 

L += incidentRadiance(p, ωi) * p.BRDF(ωi, −ω) * cos_θi * 2π / N 

return L 

 
Two problems: 

• Exponential increase in #samples: after k bounces, we’re tracing Nk rays 

• Don’t know when/how to stop recursion



Light

Blocker



Light

100 samples per pixel

Blocker



CMU 15-462/662

Incident lighting estimator uses different 
random directions in each pixel. Some of those 
directions point towards the light, others do not. 

(Estimator is a random variable)
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Three problems: 

• Exponential increase in #samples: after k bounces, we’re tracing Nk rays 

• Don’t know when/how to stop recursion 

• Results are noisy!


