COL781: Computer Graphics 23. The Rendering

Ray tracing

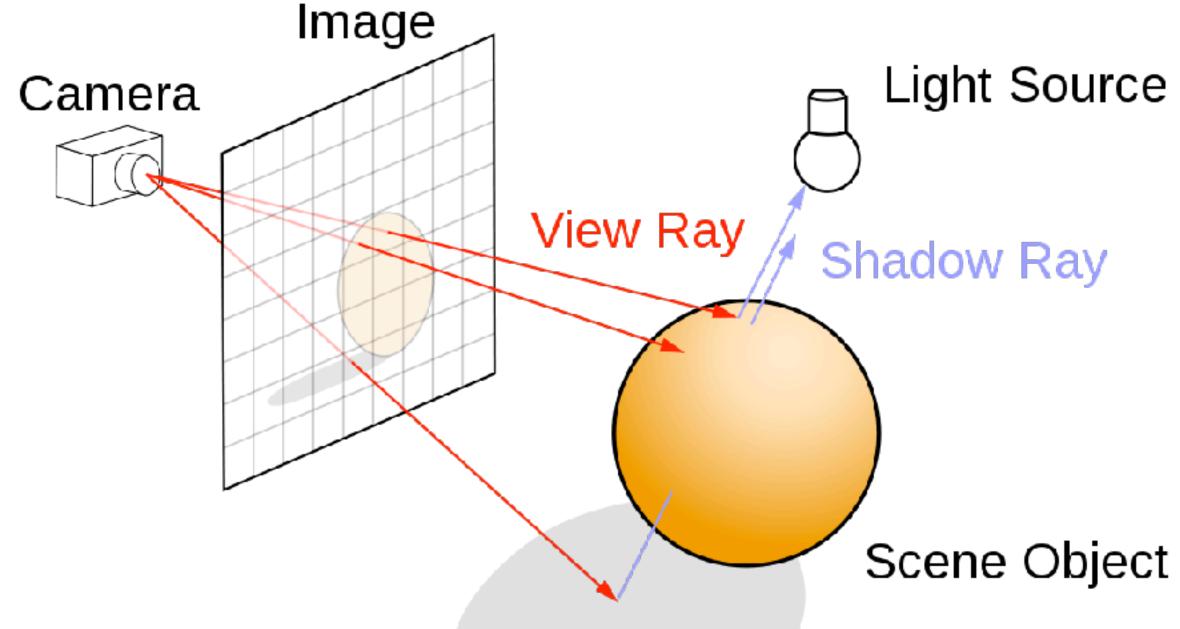
For each sample:

Cast a ray into the scene

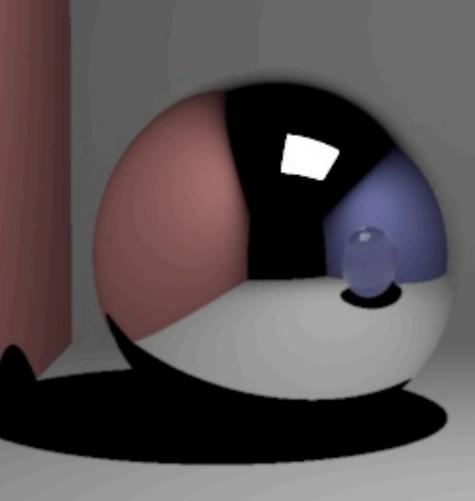
Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

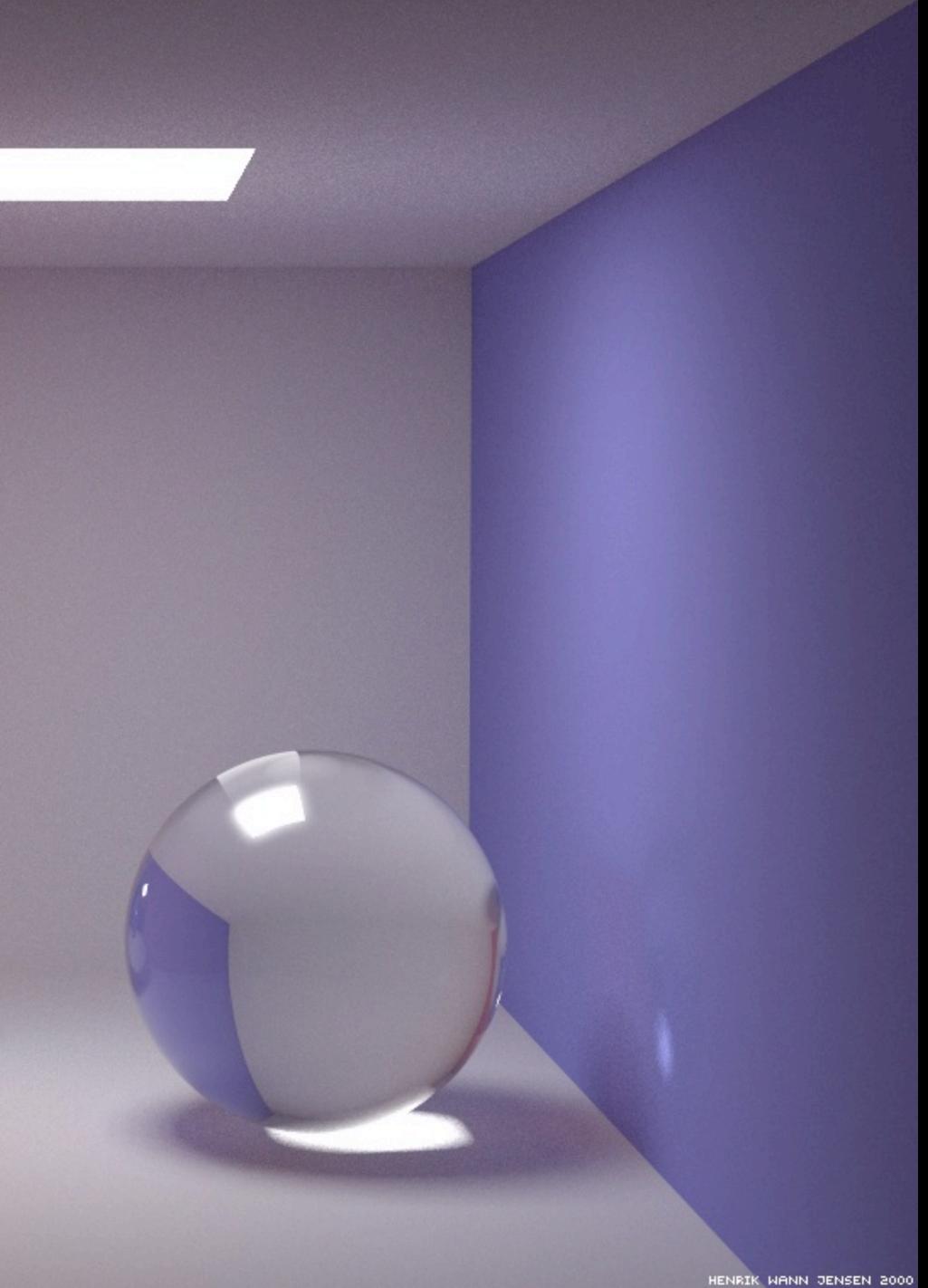


Ray tracing



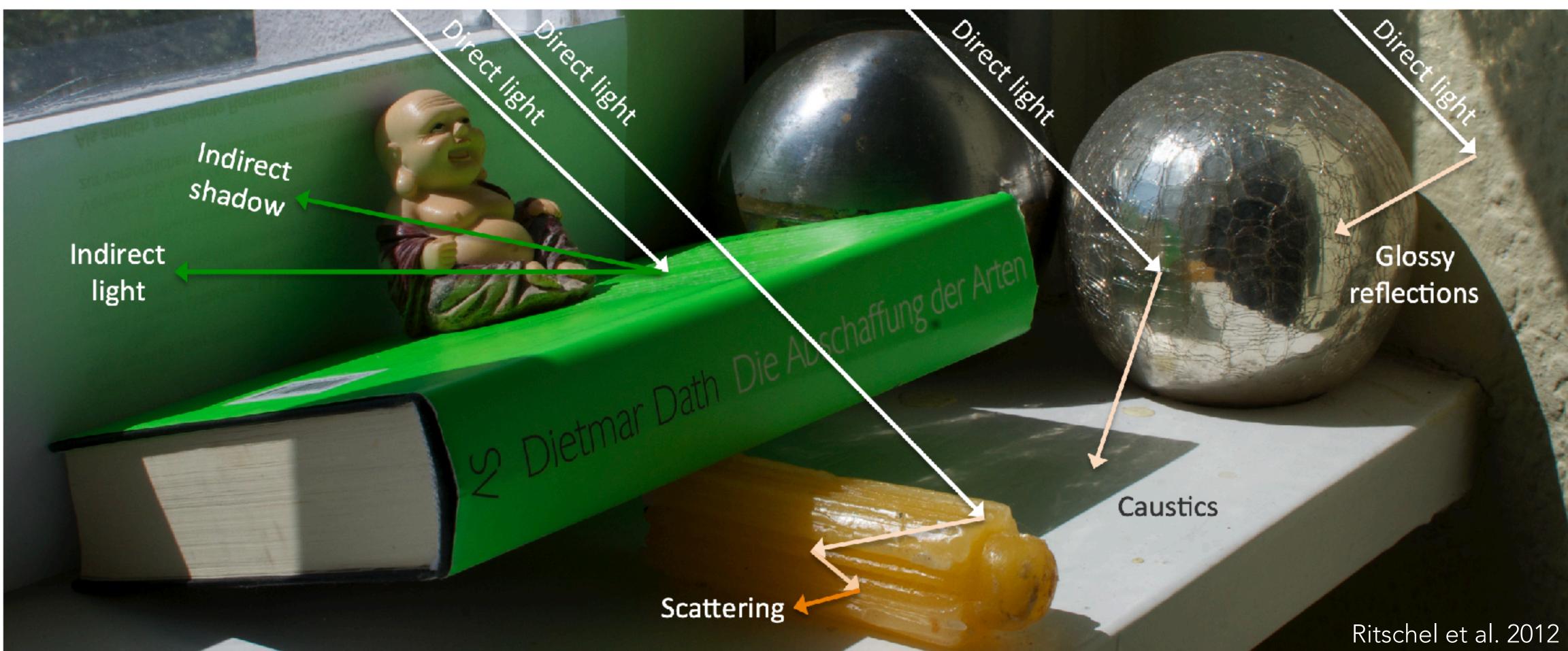
HENRIK WANN JENSEN 1999

Global illumination



Henrik Wann Jensen

Global illumination



Ray tracing revisited

For each sample:

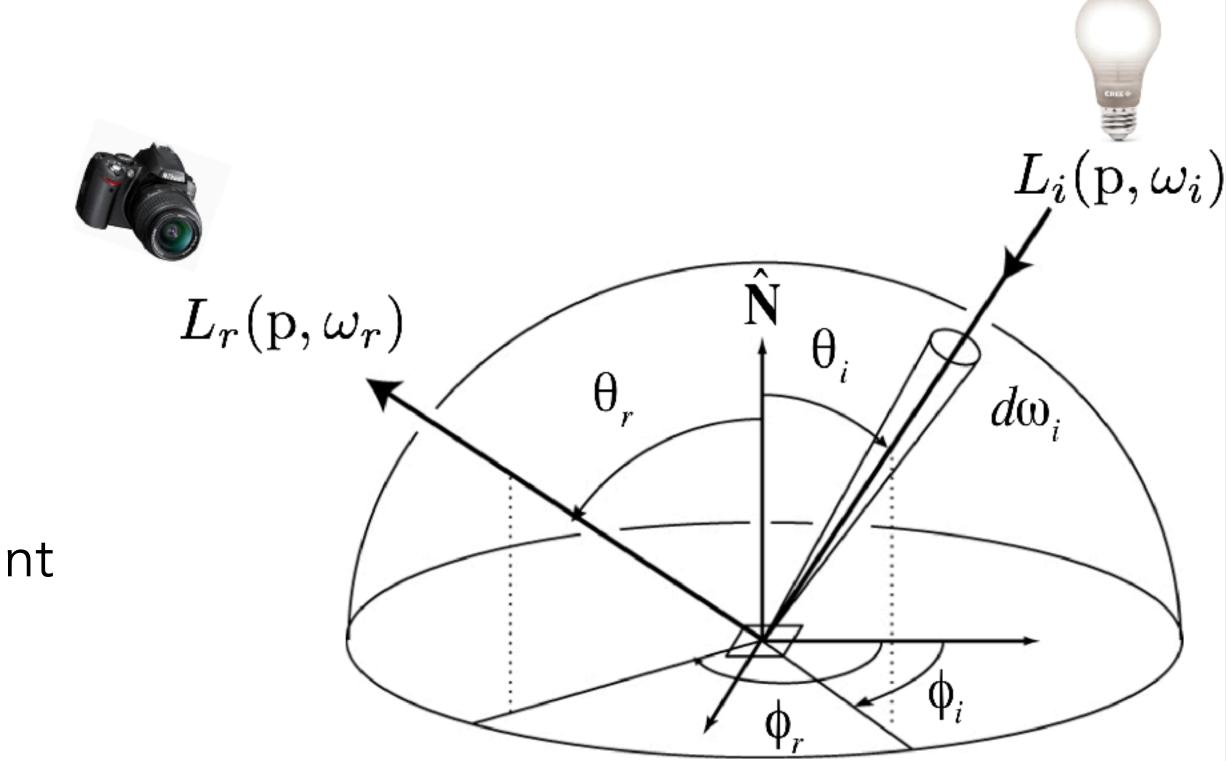
Cast a ray into the scene

Find the closest intersection

Get exitant radiance at intersection point

Set sample colour to it

$$L_o(\mathbf{p}, \boldsymbol{\omega}_o) = L_e(\mathbf{p}, \boldsymbol{\omega}_o) + \int_{H^2}$$

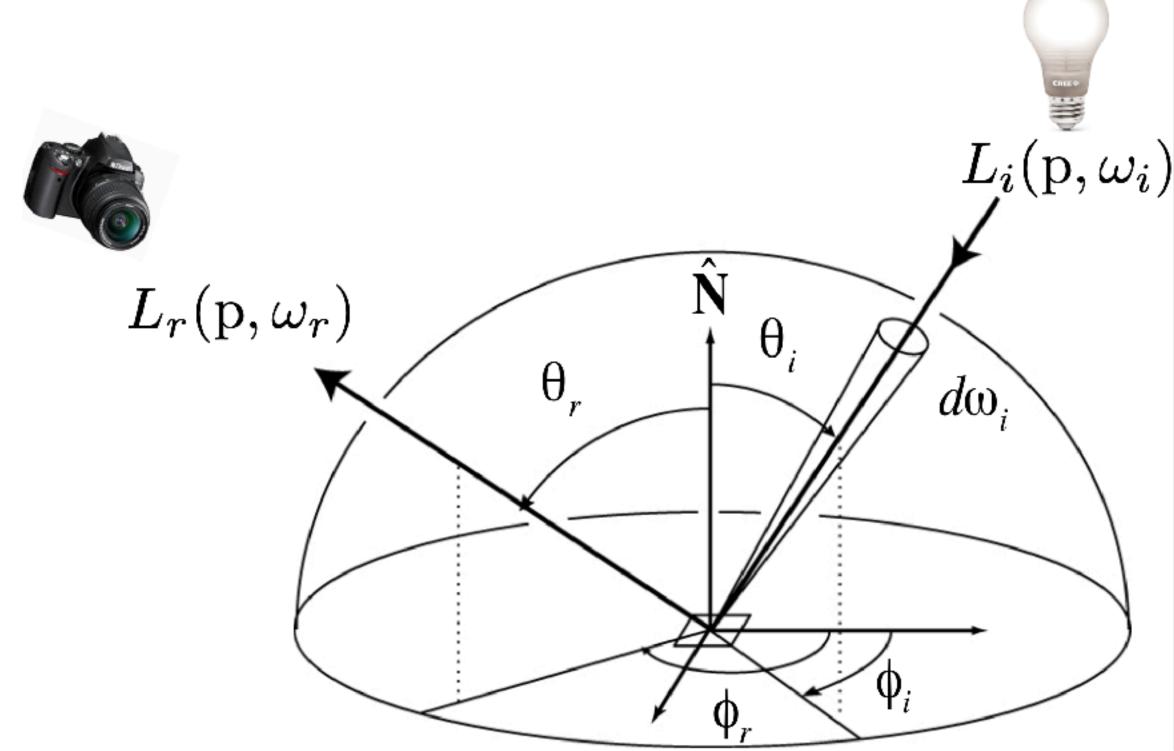


 $f_r(\mathbf{p}, \boldsymbol{\omega}_i \rightarrow \boldsymbol{\omega}_o) L_i(\mathbf{p}, \boldsymbol{\omega}_i) \cos(\theta_i) d\boldsymbol{\omega}_i$

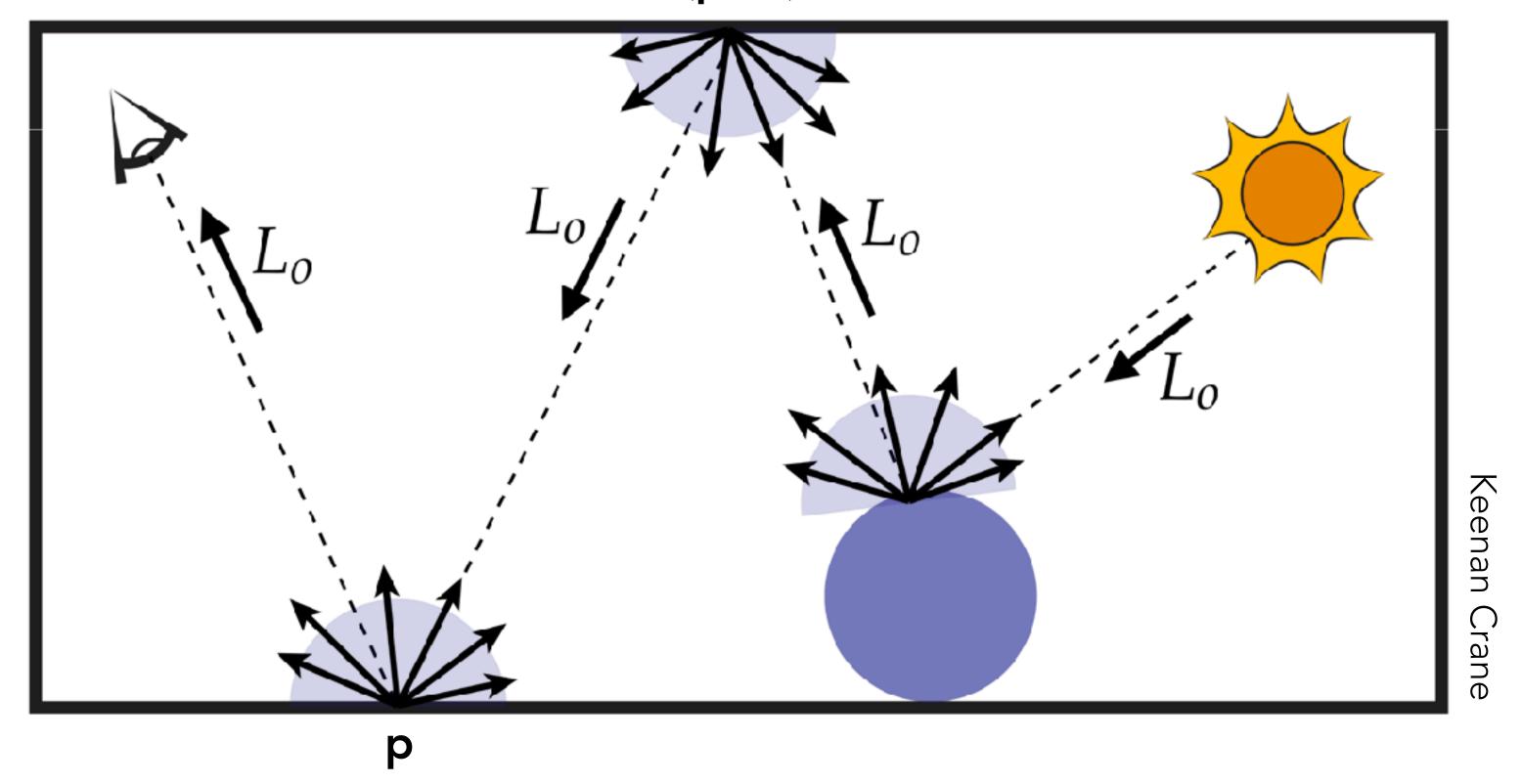
$$L_o(\mathbf{p}, \boldsymbol{\omega}_o) = L_e(\mathbf{p}, \boldsymbol{\omega}_o) + \int_{H^2}$$

- How to evaluate incident radiance from any direction (not just light sources)?
- How to compute the integral over a hemisphere?

$f_r(\mathbf{p}, \boldsymbol{\omega}_i \rightarrow \boldsymbol{\omega}_o) L_i(\mathbf{p}, \boldsymbol{\omega}_i) \cos(\theta_i) d\boldsymbol{\omega}_i$



What is $L_i(\mathbf{p}, \boldsymbol{\omega}_i)$? Simply exitant radiance from somewhere else!



Define tr(\mathbf{p} , $\boldsymbol{\omega}$) as the first surface point hit by the ray \mathbf{p} + $t\boldsymbol{\omega}$.

 $L_i(\mathbf{p}, \boldsymbol{\omega}_i) = L_o(tr(\mathbf{p}, \boldsymbol{\omega}_i), -\boldsymbol{\omega}_i)$

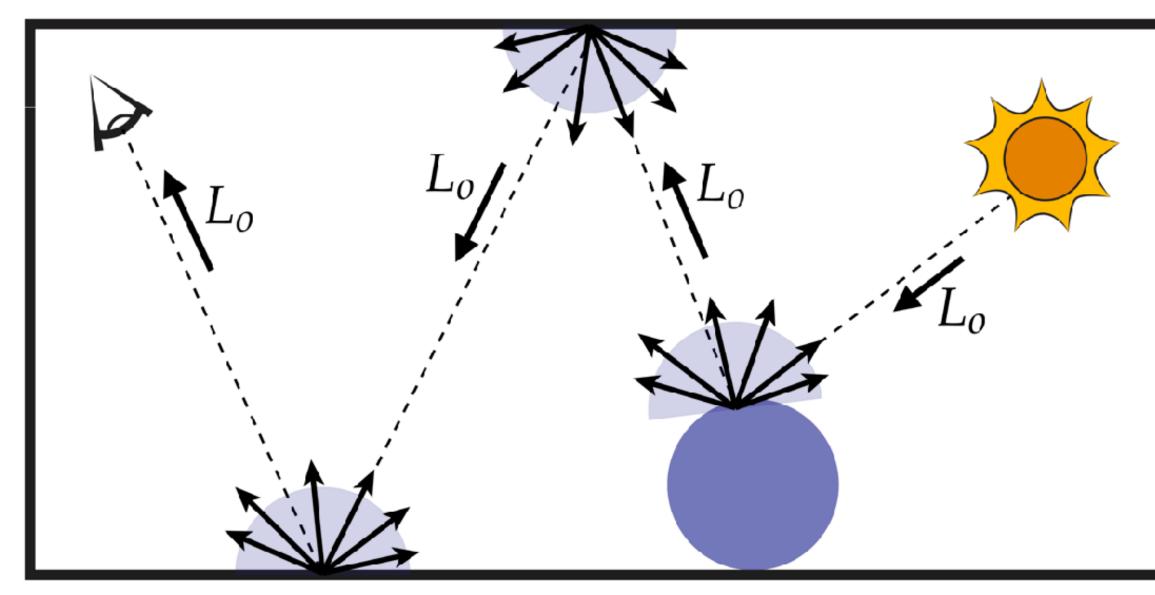
tr(**p**, **ω**)

$$L_o(\mathbf{p}, \boldsymbol{\omega}_o) = L_e(\mathbf{p}, \boldsymbol{\omega}_o) + \int_{H^2} f_r(\mathbf{p}, \boldsymbol{\omega}_o) d\boldsymbol{\omega}_o)$$

This is an integral equation! Unknown quantity L_o on both sides

Like ray tracing, we'll evaluate it recursively

$\boldsymbol{\omega}_i \rightarrow \boldsymbol{\omega}_o$) $L_o(tr(\mathbf{p}, \boldsymbol{\omega}_i), -\boldsymbol{\omega}_i) \cos(\theta_i) d\boldsymbol{\omega}_i$



Numerical integration

If I know how to compute f(x), how can I compute its integral?

- Analytical / symbolic
- Numerical quadrature
- Monte Carlo methods

$\int_{a}^{b} f(x) \, \mathrm{d}x$

Analytical integration

$$\int x^3 \, \mathrm{d}x = \frac{1}{4} x^4 \qquad \qquad \int x \cos x \, \mathrm{d}x =$$

$$\int e^{-x^2} dx = ? \qquad \int \int \sin x$$

Closed-form formulas only possible in very special cases.

In rendering, integrand is very complicated! Depends on visibility, texture, BRDF, ... No chance of analytical solution.

$$\int x\cos x\,\mathrm{d}x = x\sin x + \cos x$$

$$\int \left[\sin x^2 \right] dx = ?$$

Numerical quadrature

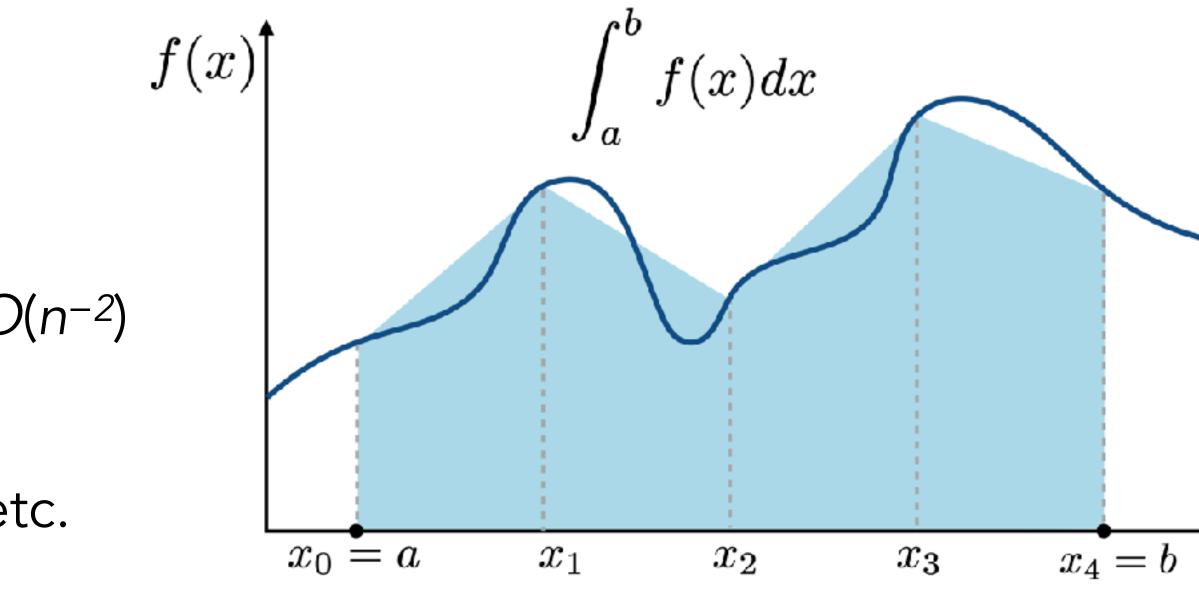
Sample function at various points, estimate integral as weighted sum

e.g. trapezoidal rule:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \sum_{i=1}^{n} \left(\frac{f(x_{i-1}) + f(x_i)}{2} \right) \Delta x_i$$

If integrand is smooth, error decreases as $O(n^{-2})$

Many higher-order accurate methods e.g. Gaussian quadrature, Simpson's rule, etc.

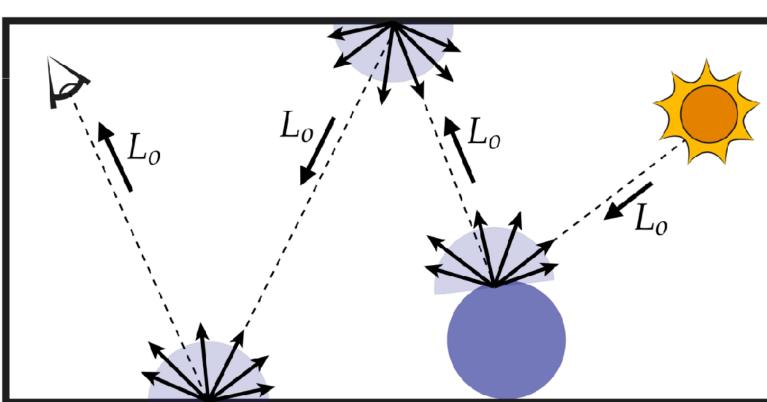




Why not use quadrature?

- Integrand is not smooth! e.g. incident radiance from area light Error might decrease at only $O(n^{-1})$
- Integral is high-dimensional! e.g. k-bounce illumination requires integral over k hemispheres

If *n* samples per hemisphere, computational cost increases as $O(n^k)$. Error still decreasing at same rate w.r.t. n



Example: area of a disk

 $A = \int_{-1}^{1} \int_{-1}^{1} dx$

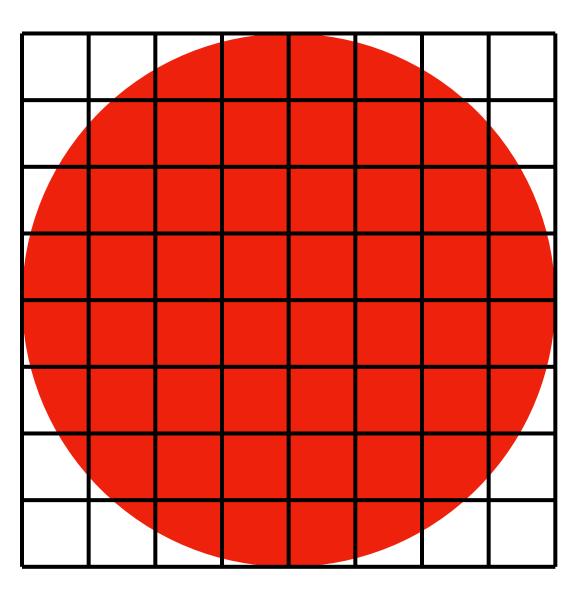
With trapezoidal rule:

- O(n) samples in x and y each $\rightarrow N = O(n^2)$ total samples
- Discontinuous integrand \rightarrow error decreases slowly

What about finding the volume of a k-dimensional ball? \cong

- Suppose you want to estimate π by computing the area of the region {(x, y): $x^2 + y^2 \le 1$ }.
 - $f(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \leq 1, \\ 0 & \text{otherwise.} \end{cases}$

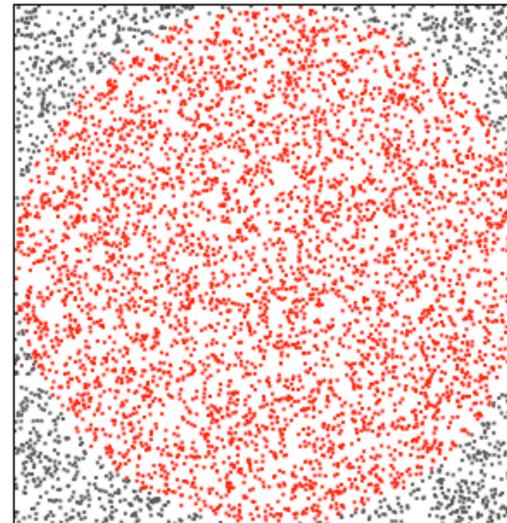
$$\int_{-1}^{1} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$



A randomized algorithm

- Let M = number of points with $x^2 + y^2 \le 1$.
- Probability of a point landing in the disk = A/4
- Expected number of points: E[M] = NA/4
- So, estimated area = 4M/N.
- What is the likely error in the estimate?

Pick N random points uniformly distributed in $[-1, 1]^2$, count how many land in the disk.



Quick probability recap

If X is a random variable with probability distribution p(x), its expected value or expectation is

Expectation is linear:

- $E[X_1 + X_2] = E[X_1] + E[X_2]$
- E[aX] = a E[X]

 $E[X] = \sum x_i p_i$ $E[X] = \int x p(x) dx$

(discrete)

(continuous)

Variance = average squared deviation from expected value $V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Variance is not linear, but it is additive for independent random variables:

• If X_1 and X_2 are independent, then $V[X_1 + X_2] = V[X_1] + V[X_2]$

•
$$V[aX] = a^2 V[X]$$

So if I take the mean of N i.i.d. random variables,

$$V\left[\frac{1}{N}\sum X_i\right] = \frac{1}{N^2}V\left[\sum X_i\right] = \frac{1}{N^2}\sum V[X_i] = \frac{1}{N}V[X]$$

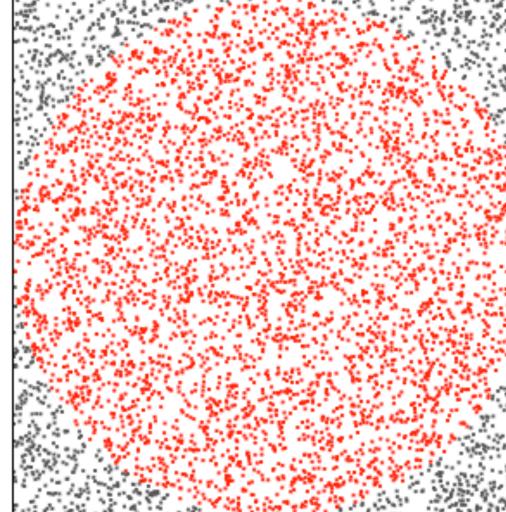
Randomized area estimation

- Pick N random points X_i independently and uniformly distributed in $[-1, 1]^2$.
- Let $Y_i = f(X_i)$, so number of points in disk is
- What are $E[Y_i]$ and E[M]?
- What are $V[Y_i]$ and V[M]?

Variance of estimated area = $O(N^{-1})$

What about in k dimensions? Estimated volume = $2^{k} M/N$, variance still $O(N^{-1})!$

$$M = \sum Y_i.$$



The basic Monte Carlo method

If X is uniformly distributed in [a, b], then

E[f(X)] =

So, if I take N independent samples of X,

$$\frac{1}{N} \sum_{i=1}^{N} f(x_i) \approx E[f(X)] = \frac{1}{b-a} \int_a^b f(x) \, dx$$
$$\int_a^b f(x) \, dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(x_i) \qquad \text{Interpretation: domain size}$$
$$\int_a^{\text{Integral}} e^{-a \operatorname{value} x} \, domain \operatorname{size}$$

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x$$

Basic Monte Carlo estimation of an integra

where $X_i \sim U(a, b)$ with probability density probability probability density probability probability density probability probabilit

• F_N is an **unbiased** estimator: $E[F_N] = \int^b f(x) \, dx$ for any N.

• Variance decreases linearly: $V[F_N] = \frac{(b-a)}{N}$

• Standard deviation = $\sqrt{V[F_N]} = O(N^{-1/2})$

$$\int_{a}^{b} f(x) dx:$$

$$\sum_{i=1}^{b} \sum_{i=1}^{N} f(X_{i})$$

$$p(x) = \frac{1}{b - a}.$$

$$\frac{a)^2}{d}$$
 V[f(X)]

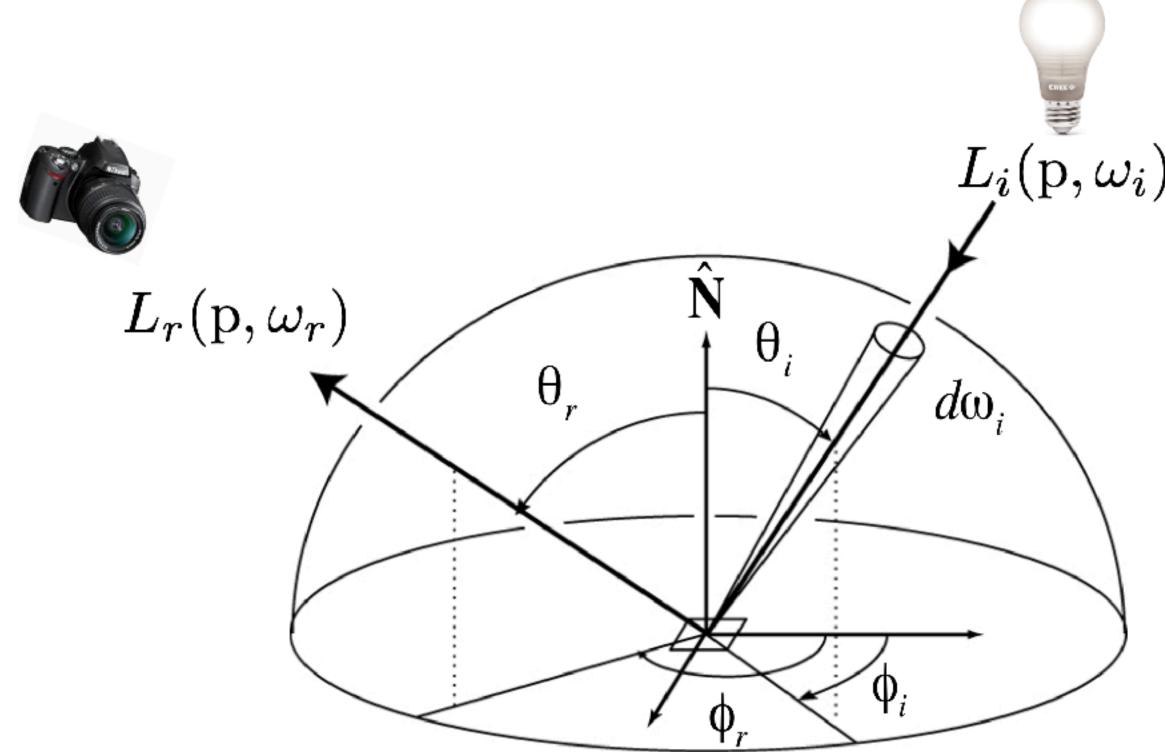
Back to rendering

Monte Carlo rendering

With Monte Carlo, it's easy:

- Uniformly sample hemisphere of incident directions: $\mathbf{X}_i \sim U(H^2)$, probability density $p(\boldsymbol{\omega}) = 1/(2\pi)$
- Evaluate integrand $Y_i = f_r(\mathbf{p}, \mathbf{X}_i \rightarrow \boldsymbol{\omega}_o) L_i(\mathbf{p}, \mathbf{X}_i) \cos(\theta_i)$
- MC estimator is simply $F_N = 2\pi/N \sum_i Y_i$

We need to estimate the reflectance integral $\int f_r(\mathbf{p}, \boldsymbol{\omega}_i \rightarrow \boldsymbol{\omega}_o) L_i(\mathbf{p}, \boldsymbol{\omega}_i) \cos(\theta_i) d\boldsymbol{\omega}_i$



incidentRadiance($\mathbf{x}, \boldsymbol{\omega}$):

$$\mathbf{p} = intersectScene(\mathbf{x}, \boldsymbol{\omega})$$

 $L = \mathbf{p}.emittedLight(-\omega)$

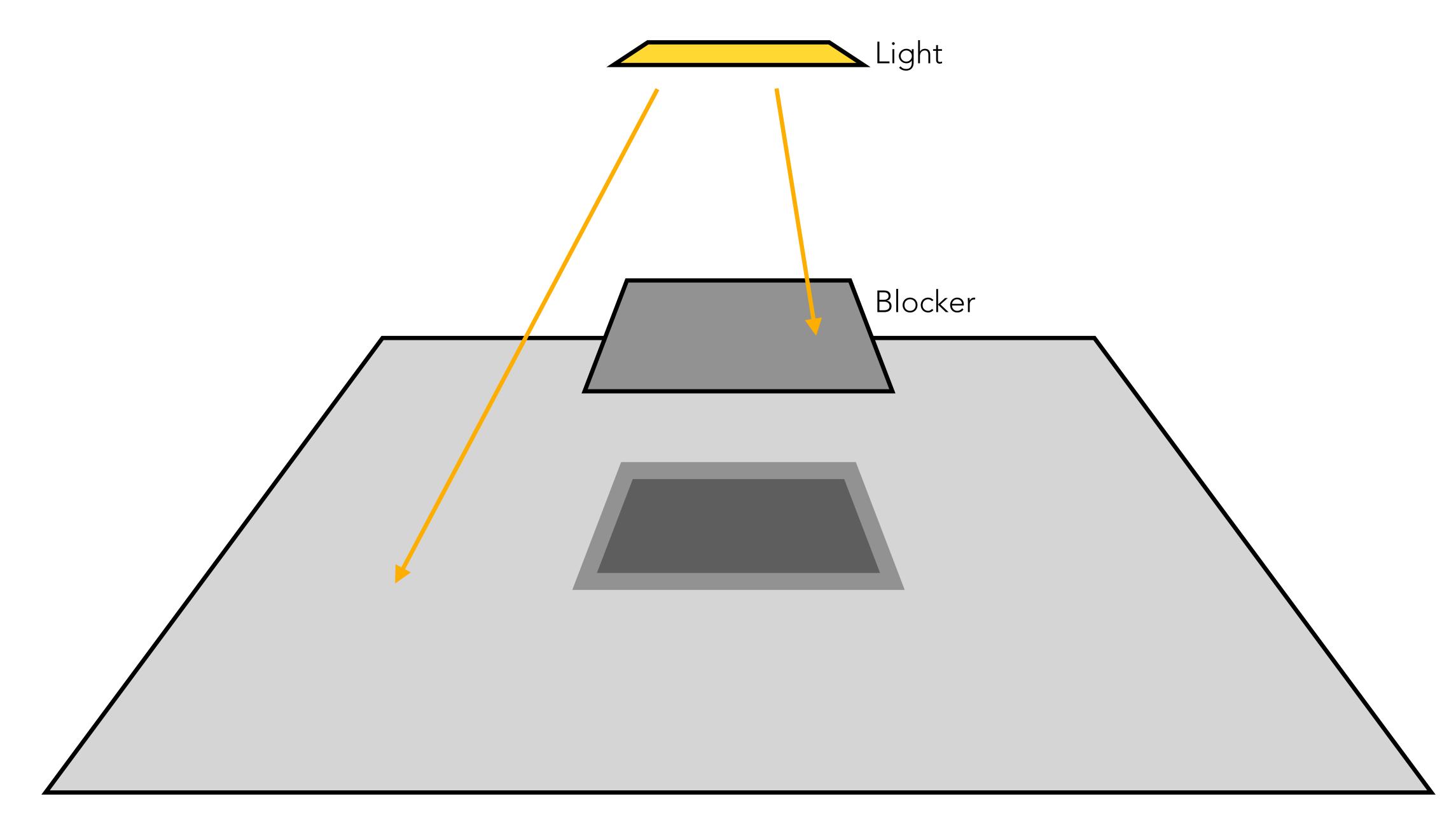
for i = 1, ..., N:

 $\boldsymbol{\omega}i = \text{sampleDirection}(\mathbf{p}.\text{normal})$

L += incidentRadiance($\mathbf{p}, \boldsymbol{\omega}i$) * \mathbf{p} .BRDF($\boldsymbol{\omega}i, -\boldsymbol{\omega}$) * cos_ θi * $2\pi / N$ return L

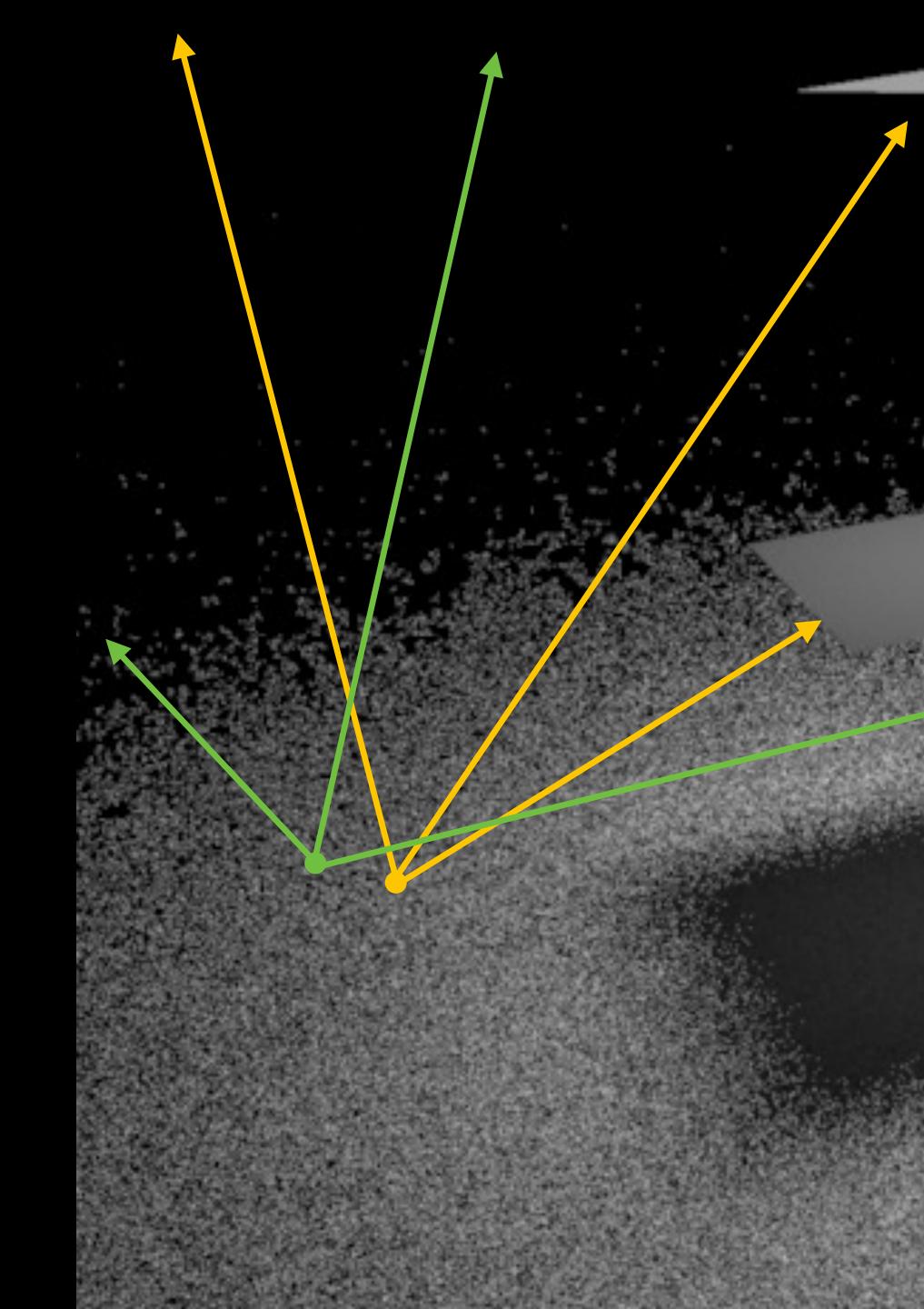
Two problems:

- Exponential increase in #samples: after k bounces, we're tracing N^k rays
- Don't know when/how to stop recursion



Blocker

Light



Incident lighting estimator uses different random directions in each pixel. Some of those directions point towards the light, others do not.

(Estimator is a random variable)

Keenan Crane

Three problems:

- Exponential increase in #samples: after k bounces, we're tracing N^k rays
- Don't know when/how to stop recursion
- Results are noisy!