
23. The Rendering
 Equation

COL781: Computer Graphics

Ja
m

es
 K

aj
iy

a

Ray tracing
For each sample:

Cast a ray into the scene

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

H
enrik W

ann Jensen

Ray tracing

H
enrik W

ann Jensen

Global illumination

Global illumination

Ritschel et al. 2012

Ray tracing revisited
For each sample:

Cast a ray into the scene

Find the closest intersection

Get exitant radiance at intersection point

Set sample colour to it

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi∫H2

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi

• How to evaluate incident radiance from
any direction (not just light sources)?

• How to compute the integral over
a hemisphere?

∫H2

What is Li (p, ωi)? Simply exitant radiance from somewhere else!

Define tr(p, ω) as the first surface point hit by the ray p + tω.

Li (p, ωi) = Lo (tr(p, ωi), −ωi)

p

tr(p, ω)

K
eenan C

rane

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Lo (tr(p, ωi), −ωi) cos(θi) dωi

This is an integral equation!
Unknown quantity Lo on both sides

Like ray tracing, we’ll evaluate it recursively

∫H2

Numerical integration

 f(x) dx

If I know how to compute f(x), how can I compute its integral?

• Analytical / symbolic

• Numerical quadrature

• Monte Carlo methods

∫
b

a

Analytical integration

Closed-form formulas only possible in very special cases.

In rendering, integrand is very complicated! Depends on visibility, texture, BRDF, …
No chance of analytical solution.

∫ x3 dx =
1
4

x4 ∫ x cos x dx = x sin x + cos x

∫ e−x2 dx = ? ∫ ⌈sin x2⌉ dx = ?

Numerical quadrature
Sample function at various points, estimate integral as weighted sum

e.g. trapezoidal rule:

If integrand is smooth, error decreases as O(n−2)

Many higher-order accurate methods
e.g. Gaussian quadrature, Simpson’s rule, etc.

∫
b

a
f(x) dx ≈

n

∑
i=1

(f(xi−1) + f(xi)
2) Δxi

Why not use quadrature?

• Integrand is not smooth! e.g. incident radiance from area light

Error might decrease at only O(n−1)

• Integral is high-dimensional! e.g. k-bounce illumination
requires integral over k hemispheres

If n samples per hemisphere,
computational cost increases as O(nk).
Error still decreasing at same rate w.r.t. n

Example: area of a disk
Suppose you want to estimate π by computing the area of the region {(x, y): x2 + y2 ≤ 1}.

With trapezoidal rule:

• O(n) samples in x and y each → N = O(n2) total samples

• Discontinuous integrand → error decreases slowly

What about finding the volume of a k-dimensional ball? 😬

f(x, y) = {1 if x2 + y2 ≤ 1,
0 otherwise.

A = ∫
1

−1 ∫
1

−1
f(x, y) dx dy

A randomized algorithm
Pick N random points uniformly distributed in [−1, 1]2, count how many land in the disk.

Let M = number of points with x2 + y2 ≤ 1.

• Probability of a point landing in the disk = A/4

• Expected number of points: E[M] = NA/4

So, estimated area = 4M/N.

What is the likely error in the estimate?

Quick probability recap
If X is a random variable with probability distribution p(x), its expected value or
expectation is

E[X] = xi pi

E[X] = x p(x) dx

Expectation is linear:

• E[X1 + X2] = E[X1] + E[X2]

• E[aX] = a E[X]

∑

∫
(discrete)

(continuous)

Variance = average squared deviation from expected value

V[X] = E[(X − E[X])2] = E[X2] − E[X]2

Variance is not linear, but it is additive for independent random variables:

• If X1 and X2 are independent, then V[X1 + X2] = V[X1] + V[X2]

• V[aX] = a2 V[X]

So if I take the mean of N i.i.d. random variables,

V [1
N ∑ Xi] =

1
N2

V [∑ Xi] =
1

N2 ∑ V[Xi] =
1
N

V[X]

Randomized area estimation
Pick N random points Xi independently and uniformly distributed in [−1, 1]2.

Let Yi = f(Xi), so number of points in disk is M = Yi.

• What are E[Yi] and E[M]?

• What are V[Yi] and V[M]?

Variance of estimated area = O(N−1)

What about in k dimensions? Estimated volume = 2k M/N, variance still O(N−1)!

∑

The basic Monte Carlo method
If X is uniformly distributed in [a, b], then

So, if I take N independent samples of X,

E[f(X)] =
1

b − a ∫
b

a
f(x) dx

1
N

N

∑
i=1

f(xi) ≈ E[f(X)] =
1

b − a ∫
b

a
f(x) dx

∫
b

a
f(x) dx ≈

b − a
N

N

∑
i=1

f(xi) Interpretation:

Integral = average value × domain size

Basic Monte Carlo estimation of an integral :

where Xi ~ U(a, b) with probability density p(x) = 1/(b − a).

• FN is an unbiased estimator: E[FN] = for any N.

• Variance decreases linearly: V[FN] = V[f(X)]

• Standard deviation = = O(N−1/2)

∫
b

a
f(x) dx

FN =
b − a

N

N

∑
i=1

f(Xi)

∫
b

a
f(x) dx

(b − a)2

N

V[FN]

Back to rendering

Monte Carlo rendering

We need to estimate the reflectance integral fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi

With Monte Carlo, it’s easy:

• Uniformly sample hemisphere of
incident directions: Xi ~ U(H2),
probability density p(ω) = 1/(2π)

• Evaluate integrand
Yi = fr (p, Xi → ωo) Li (p, Xi) cos(θi)

• MC estimator is simply FN = 2π/N Yi

∫H2

∑

incidentRadiance(x, ω):

p = intersectScene(x, ω)

L = p.emittedLight(−ω)

for i = 1, …, N:

ωi = sampleDirection(p.normal)

L += incidentRadiance(p, ωi) * p.BRDF(ωi, −ω) * cos_θi * 2π / N

return L

Two problems:

• Exponential increase in #samples: after k bounces, we’re tracing Nk rays

• Don’t know when/how to stop recursion

Light

Blocker

Light

100 samples per pixel

Blocker

CMU 15-462/662

Incident lighting estimator uses different
random directions in each pixel. Some of those
directions point towards the light, others do not.

(Estimator is a random variable)

K
eenan C

rane

Three problems:

• Exponential increase in #samples: after k bounces, we’re tracing Nk rays

• Don’t know when/how to stop recursion

• Results are noisy!

