

Recap: Radiance

Radiance $L(\mathbf{p}, \boldsymbol{\omega}) =$ flux per unit area per unit solid angle

- incident radiance L_i: angular distribution of incoming light
- exitant radiance L_o: angular distribution of outgoing light (emitted / reflected / transmitted)

Constant along any ray (in a vacuum)

Radiance is what we want to compute when rendering!

At surface, incident/exitant radiance has a $cos(\theta)$ factor:

$$L(\mathbf{p}, \boldsymbol{\omega}) = \frac{\mathrm{d}E}{\mathrm{d}\boldsymbol{\omega}\cos\theta} = \frac{\mathrm{d}a}{\mathrm{d}\boldsymbol{\omega}}$$

Why? Irradiance E is per unit surface area, radiance L is per unit area normal to the ray

• Why? Because radiance is a property of the ray, not of the surface!

Radiance also spans many orders of magnitude:

- Surface of the sun: 2,000,000,000 nits (lumen/sr/m²)
- Sunlight clouds: 30,000
- Clear sky: 3,000
- Cellphone display: 500
- Overcast sky: 300
- Scene at sunrise: 30
- Scene lit by moon: 0.001
- Threshold of vision: 0.000001

Actually this is **luminance**...

Radiance is the fundamental radiometric quantity because we can get everything else by integrating it.

Irradiance on a surface:

$$E(\mathbf{p}) = \int_{H^2} L_i(\mathbf{p}, \boldsymbol{\omega}) \cos(\boldsymbol{\theta}) d\boldsymbol{\omega}$$

Irradiance due to a uniform area light source emitting radiance L:

$$E(\mathbf{p}) = \int_{H^2} L_i(\mathbf{p}, \boldsymbol{\omega}) \cos(\theta) \, d\boldsymbol{\omega}$$
$$= L \int_{\Omega} \cos(\theta) \, d\boldsymbol{\omega}$$
$$= L \Omega^{\perp}$$

For example, irradiance from an overcast sky with radiance L is just $L\pi$. (Can you see why?)

Our goal: given light sources and scene geometry, find radiance incident on camera.

To do this, we need to know how surfaces transform **incident** radiance into **exitant** radiance

Puzzle:

- An object looks white if it reflects (almost) all incident light regardless of frequency.
 - A mirror reflects (almost) all incident light (regardless of frequency).
 - So what's the difference between a white object and a mirror?

Real-Time Rendering

The BRDF

Light

`ωi

$f_r(\boldsymbol{\omega}_i \rightarrow \boldsymbol{\omega}_o) = L_o(\mathbf{x}, \boldsymbol{\omega}_o)/E(\mathbf{x})$

Computer Graphics Fundamentals of

Ford "Mystic Lacquer" paint

Red semi-gloss paint

Gold

Mirror

Lambertian (diffuse) material

Simplest possible model: BRDF is a constant!

$$L_{o}(\boldsymbol{\omega}_{o}) = \int_{H^{2}} f_{r} L_{i}(\boldsymbol{\omega}_{i}) \cos(\boldsymbol{\theta}_{i}) d\boldsymbol{\omega}_{i}$$
$$= f_{r} E_{i}$$

To conserve energy, $f_r = \rho/\pi$ where albedo ρ is ≤ 1

Why? For constant radiance L, total flux density = $L \pi$

In principle, we should specify the spectral albedo...

Andrea W /eidlich

BRDF acquisition: Gonioreflectometer

actice

Matusik et al.'s acquisition setup for isotropic BRDFs

MERL BRDF database

Microfacet models

Assume rough surface is actually perfectly specular but bumpy at microscale

Made of small flat patches ("microfacets") with normal distribution function D(h)

 $f_r(\ell \rightarrow \mathbf{v}) = D(\mathbf{h})$? Not quite...

 $f_r(\ell \rightarrow \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{v})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$

$$f_r(\boldsymbol{\ell} \rightarrow \mathbf{v}) = -$$

- $F(\ell, \mathbf{v}) \le 1$: Fresnel term
- $G(\ell, \mathbf{v}, \mathbf{h}) \leq 1$: Geometry term

 - Accounts for shadowing and masking (interreflections ignored)
- D(h): Normal distribution function

 $F(\mathbf{l}, \mathbf{v})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})$ $4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})$

Probability that microfacet with normal h is visible from both l and v

All these terms have various analytical models...

Blinn-Phong model

Cook-Torrance microfacet model

What if the microfacets are diffuse instead of specular?

Oren-Nayar model for rough diffuse surfaces

Photograph

Lambertian

Oren-Nayar

Roughness

Rendered Spheres

Image of Full Moon

Oren and Nayar

Quick survey of more complicated materials

Anisotropic roughness

NDF is anisotropic due to oriented microstructure

Surface (normals)

BRDF (fix wi, vary wo)

Layered materials

Phase function describes distribution of scattered ray directions

Wojciech Jarosz

Translucent materials

Subsurface scattering:

Light bounces around for a non-negligible distance in the material before emerging

Cannot be described by BRDF!

BRDF: $R(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o)$

BSSRDF (bidirectional surface scattering RDF): $S(\mathbf{x}_i, \boldsymbol{\omega}_i, \mathbf{x}_o, \boldsymbol{\omega}_o)$

Now exitant radiance is

$$L_{o}(\mathbf{x}_{o}, \boldsymbol{\omega}_{o}) = \int_{A} \int_{H^{2}} S(\mathbf{x}_{i}, \boldsymbol{\omega}_{o})$$

$\mathbf{\omega}_i, \mathbf{x}_o, \mathbf{\omega}_o) L_i(\mathbf{x}_i, \mathbf{\omega}_i) \cos(\theta_i) d\mathbf{\omega}_i dA$

