COL781: Computer Graphics

20. Spatial Data
Structures

We want to render scenes containing
millions of triangles.

® Rasterization cost = O(total #pixels
covered by triangles)

® Ray tracing cost = O(#pixels x
#triangles)?

We can do better!

2 vE;

San Miguel scene, 10.7M triangles

Bounding volumes

How can we speed up ray intersection with a large, complex scene?

Construct a conservative bounding volume:
all scene geometry lies inside it

e s, C
)

PN AV

Super easy to reject rays that don't
come close to intersecting the scene.

\

q,::vev e

» 2,

What do we want from a bounding volume?

® Tight (minimize # of talse positives)

® [ast to Intersect

This is a tradeoff! -
BETTER BOUND., BETTER CULLING

FASTER TEST, LESS MEMORY

A3 6

SPHERE AABB 8-DOP CONVEX HULL

Ericson, Real-Time Collision Detection

Bounding volume hierarchy (BVH)

Leaft nodes store a small set of objects and their bounding volume.

Internal nodes store the bounding volume of the union of their children.

Note: Bounding volumes of siblings
(or other unrelated nodes) can overlap!

BVH traversal

test ray against bounding volume
it hit:
it leaf:
intersect ray with objects
return earliest hit
else:
intersect ray with child 1
intersect ray with child 2
return earliest hit

intersect ray with child 1
intersect ray with child 2
return earliest hit

Smarter: find which child’s BV is hit earlier,
intersect ray with it first

® |f no object hit: intersect with other child
® |f hit: can you skip recursing down the other child?

® Only if the hit occurs before reaching the other child’'s BV!

BVH construction

® Set root node = BV of all objects in scene
® Recursively create child nodes by splitting objects into two subsets

What's a good way to split? And when should we stop?

b

<%\< e

_—

s

——

Split using centroid of parent bounding volume

Split using median (equal numbers of objects)

Y =

Intuitively, this is the ideal partition:
® Minimal overlap between children
® Minimal empty space in bounding volumes

How to formalize this?

What we really want is to minimize the with the BVH.

® Cost of leat = N Cigect
N = number of objects

Cisect = cost of intersecting an object

® Cost of internal node = Gy + pCL + prCr
Ciav = cost of traversing an internal node (e.g. ray-BV intersection)
oL, Pr = probability of hitting child BVs
C., Cg = cost of intersecting children

Assume C;, Cr = Ni, Ng: number of objects in subtree.

How to estimate pi, pr?

Surface area heuristic

Fact: For two convex shapes A € B, the probability that

a random ray which hits B also hits A is equal to the ratio
of their surface areas.

° [] SA
p(hit Al hit B) = —
5B

So, cost of internal node = Ciay N Cisoct NrCisect

Sp Sp

To split a node:

For each axis X, y, z:
Sort objects by centroid (Faster: just collect into B buckets)
For various choices of partition:
Evaluate SAH cost
Split using partition with lowest cost

Object partitioning vs. space partitioning
BVH is an object partitioning scheme: Space partitioning: split space into
split objects into disjoint groups regions (k-d trees, grids, octrees, ...)
® Bounding volumes may overlap ® Regions are non-overlapping

® Each object lies in one leaf node ® Objects may lie in multiple regions

K-d trees

Divide space via axis-aligned split

D
planes '
Leat nodes store list of objects. ‘

" N

>

Internal nodes store only the split
plane.

K-d tree traversal

Keep track of interval [tmin, tmax] COvered by current node.

At internal node:
intersect ray with front child in interval [tmin, tsplit]
it not hit: N

intersect ray with back child in interval [tspiit, tmax]

At leaf: §D
intersect ray with obiects 7

A
return earliest hit'in [tmin, tmax] : F

Unlike BVH, we can always return the hit as soon as we find it!

4
-

A

K-d tree construction

® Set root node = bounding box of all objects in scene
® Recursively create child nodes by choosing split planes

How to choose a split plane? Can reuse same surface area heuristic as in BVH

/N < — -

Other space partitioning techniques

Uniform grids Quadtrees / octrees Binary space partitioning
(BSP trees)

Uniform grids

Even simpler strategy: divide bounding box into equal sized cells.
Each cell stores list of overlapping objects.

Usually pick resolution so v
#cells = Offobjects \@\\;
® \ery easy to traverse, ~/
NO recursion s &
\\
® Does not adapt well to
nonuniform distribution of V / V
object locations or sizes i /1
J v

Y SR . L

s ?‘\‘_'A‘L‘

Good for grids:

Bad for grids:

"Teapot in a stadium” problem

® Assignment 2 updated

® No class tomorrow

All the best for the minor exam!!

Post any doubts on Moodle soon, | will not reply after | go on holiday :)

