
20. Spatial Data
 Structures

COL781: Computer Graphics

M
us

et
h

et
 a

l.
20

13

We want to render scenes containing
millions of triangles.

• Rasterization cost = O(total #pixels
covered by triangles)

• Ray tracing cost = O(#pixels ×
#triangles)?

We can do better!

San Miguel scene, 10.7M triangles

Ju
n

Ya
n

Bounding volumes
How can we speed up ray intersection with a large, complex scene?

Construct a conservative bounding volume:
all scene geometry lies inside it

Super easy to reject rays that don’t
come close to intersecting the scene.

What do we want from a bounding volume?

• Tight (minimize # of false positives)

• Fast to intersect

This is a tradeoff!

Ericson, Real-Time Collision Detection

Bounding volume hierarchy (BVH)
Leaf nodes store a small set of objects and their bounding volume.

Internal nodes store the bounding volume of the union of their children.

Note: Bounding volumes of siblings
(or other unrelated nodes) can overlap!

BVH traversal
test ray against bounding volume
if hit:
 if leaf:
 intersect ray with objects
 return earliest hit
 else:
 intersect ray with child 1
 intersect ray with child 2
 return earliest hit

…
 …
 intersect ray with child 1
 intersect ray with child 2
 return earliest hit

Smarter: find which child’s BV is hit earlier,
intersect ray with it first

• If no object hit: intersect with other child

• If hit: can you skip recursing down the other child?

• Only if the hit occurs before reaching the other child’s BV!

BVH construction
• Set root node = BV of all objects in scene

• Recursively create child nodes by splitting objects into two subsets

What’s a good way to split? And when should we stop?

Split using centroid of parent bounding volume

Split using median (equal numbers of objects)

Intuitively, this is the ideal partition:

• Minimal overlap between children

• Minimal empty space in bounding volumes

How to formalize this?

What we really want is to minimize the cost of intersecting a ray with the BVH.

• Cost of leaf = N Cisect
N = number of objects
Cisect = cost of intersecting an object

• Cost of internal node = Ctrav + pLCL + pRCR
Ctrav = cost of traversing an internal node (e.g. ray-BV intersection)
pL, pR = probability of hitting child BVs
CL, CR = cost of intersecting children

Assume CL, CR ≈ NL, NR: number of objects in subtree.

How to estimate pL, pR?

Surface area heuristic
Fact: For two convex shapes A ⊆ B, the probability that
a random ray which hits B also hits A is equal to the ratio
of their surface areas.

p(hit A | hit B) =

So, cost of internal node ≈ Ctrav + NLCisect + NRCisect

SA

SB

SL

SP

SR

SP

B
A

To split a node:

For each axis x, y, z:
 Sort objects by centroid
 For various choices of partition:
 Evaluate SAH cost
Split using partition with lowest cost

(Faster: just collect into B buckets)

Object partitioning vs. space partitioning
BVH is an object partitioning scheme:
split objects into disjoint groups

• Bounding volumes may overlap

• Each object lies in one leaf node

Space partitioning: split space into
regions (k-d trees, grids, octrees, …)

• Regions are non-overlapping

• Objects may lie in multiple regions

K-d trees
Divide space via axis-aligned split
planes

Leaf nodes store list of objects.
Internal nodes store only the split
plane.

K-d tree traversal
Keep track of interval [tmin, tmax] covered by current node.

At internal node:
intersect ray with front child in interval [tmin, tsplit]
if not hit:
 intersect ray with back child in interval [tsplit, tmax]

At leaf:
intersect ray with objects
return earliest hit in [tmin, tmax]

Unlike BVH, we can always return the hit as soon as we find it!

Why?

K-d tree construction
• Set root node = bounding box of all objects in scene

• Recursively create child nodes by choosing split planes

How to choose a split plane? Can reuse same surface area heuristic as in BVH

Other space partitioning techniques

Uniform grids Quadtrees / octrees Binary space partitioning
(BSP trees)

Uniform grids
Even simpler strategy: divide bounding box into equal sized cells.
Each cell stores list of overlapping objects.

Usually pick resolution so
#cells = O(#objects)

• Very easy to traverse,
no recursion

• Does not adapt well to
nonuniform distribution of
object locations or sizes

Good for grids:

Bad for grids:

“Teapot in a stadium” problem

• Assignment 2 updated

• No class tomorrow

All the best for the minor exam!!

Post any doubts on Moodle soon, I will not reply after I go on holiday :)

