
19. Mesh Editing 
      and Querying

COL781: Computer Graphics



Practice problem
Using a half-edge representation of a triangle mesh, write (pseudo)code to find 
the “bending angle” at a given edge, i.e. the angle between the normals of the 
adjacent faces.

This is 180° minus the better-known dihedral angle.



Subdivision

Filtering

Remeshing

Simplification



Mesh editing
Atomic mesh operations that preserve surface topology (i.e. don’t create holes 
or new connections)



How to implement: 

• Insert/delete elements 

• Reassign pointers (carefully!) 
to maintain connectivity data 

Need to assign positions, texture coordinates, etc. of new vertices 

Other data, e.g. normals, of all neighbours may need to be recomputed 



Recall the manifold-ness criteria: 

• Every edge has exactly 2 adjacent faces 

• Every vertex has adjacent faces and edges 
in a single ring 

Do these operations 
always maintain them? 



Most high-level mesh editing operations 
are implemented in terms of these! 

Oversimplified summary: 

• Subdivision: split all edges 

• Simplification: collapse unimportant 
edges 

• Regularization: split long edges, 
collapse short edges 

…So why do we need edge flips?



Let’s subdivide this triangle by splitting all three edges… 

Resulting mesh doesn’t look so good until we flip one edge: 

 
In general, edge flips are almost always necessary to obtain 
a “nice” triangulation.



When is a mesh “nice”?
Various desirable properties: 

• Well-shaped polygons: triangles close 
to equilateral, not long and skinny 

• Vertex degrees close to regular: 6 for 
triangle meshes, 4 for quad meshes 

• Surface close to original (smooth) shape 

Often this is a tradeoff!



Example: Isotropic remeshing [Botsch & Kobbelt 2004]

1. Split all edges longer than 4/3× desired length 

2. Collapse all edges shorter than 4/5× desired 
length (unless this will create a long edge) 

3. Flip edges to bring vertex degrees closer to 6 

4. Move vertices tangentially towards average of 
neighbours 

5. Repeat steps 1-4 several times



Example: Mesh simplification [Garland & Heckbert 1997]

Define cost of collapsing an edge ≈ 
deviation of new vertex from original surface 

1. Collapse edge with lowest cost 

2. Repeat until desired number of 
vertices remain 

Simple, greedy, works really well! 

The trick: how to estimate deviation 
from surface efficiently?



For each face f, error of a point p = dist(p, plane(f))2 = (n · (p − p0))2 

For each vertex, “quadric error” Q(p) = dist(p, plane(fi))2 is quadratic in p 

Cost of collapsing edge (vi, vj) to new vertex v̅ :̅ Qi(v̅ )̅ + Qj(v̅ )̅ 
where v̅  ̅is chosen to give the minimum cost.

∑
adj. face fi



Geometric queries



Once we have modeled a shape, we will still want to answer questions like: 

• Given a point p, what is the closest point on the shape? 

• Is the point p inside or outside the shape? 

• Given a ray o + td, where does the ray intersect the shape? 

• Given two shapes S1 and S2, what are the pair of points in closest proximity? 
Do the two shapes intersect each other?



Ray tracing

Mesh booleans

Collision detection Mesh repair



Inside/outside test
Given a point p, is it inside or outside the mesh? 

Trace a ray to infinity in an arbitrary direction 
and count the number of intersections. 

Odd = inside, even = outside. 

Of course, the mesh has to be closed 
for this to make sense… 



Closest point on a line
The line between a and b is the set of points {a + t(b − a) : t ∈ ℝ}. 

Let e = b − a, . 

Closest point to p on the line: 

q = a + (ê · (p − a))ê 

Equivalently… q = a + te where 

t = 

̂e = e/∥e∥

e ⋅ (p − a)
∥e∥2
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Closest point on a line segment
The line segment is the set of points {a + te : 0 ≤ t ≤ 1}. 

Closest point to p on line segment: 

• Project p to the line by computing t as before. 

• Project q again to the line segment: 

• If t < 0: set t = 0 

• If t > 1: set t = 1

e
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Closest point on a triangle
A triangle is the set of points {p0 + b1e1 + b2e2 : 0 ≤ b1, b2, 1−b1−b2 ≤ 1} 
where e1 = p1 − p0, e2 = p2 − p0. 

Closest point to p on triangle: 

• Solve (p0 + b1e1 + b2e2) + hn = p for b1, b2, h. 
q = p0 + b1e1 + b2e2 is the closest point on the plane. 
Let b3 = 1−b1−b2. 

• If 0 ≤ b1, b2, b3 ≤ 1: closest point is q. 

• If bi < 0: find closest point on opposite edge.

ppi

q



Closest point on a triangle mesh
Naïve algorithm: 

• For each triangle, find the closest point qi 
and its distance ||p − qi|| 

• Return the qi with the lowest distance 

Not scalable to high-resolution meshes!



We have the same problem in ray tracing: 

• Intersect each triangle with the ray and return the earliest? 

and mesh-mesh intersection: 

• Test each pair of triangles with each other and see if they intersect? 

Next class: spatial data structures for accelerating such queries.



Other announcements
Rest of Assignment 2 will be posted soon (today or tomorrow) 

I am on leave from 15th to 27th 

• Thursday lecture: Probably online or recorded 

• Friday lecture: No class 

• Minor exam: Substitute invigilator


