COL781: Computer Graphics
 18. Bézier and Subdivision Surfaces

Recap: Bézier curves

$\mathbf{b}_{0}^{1}=\operatorname{lerp}\left(t, \mathbf{b}_{0}, \mathbf{b}_{1}\right)$
$\mathbf{b}(t)=\operatorname{lerp}\left(t, \mathbf{b}_{0}^{n-1}, \mathbf{b}_{1}^{n-1}\right)$
Procedural form (De Casteljau's corner cutting algorithm)

$$
\begin{aligned}
& B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} \\
& \mathbf{b}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{b}_{i}
\end{aligned}
$$

Analytical form (linear combination of Bernstein polynomials)

Bézier patches

Parametric surface $\mathbf{p}(u, v)$ made of Bézier curves

- Treat each row as a Bézier curve
- Evaluate at u to get one point per row
- Treat as control points of a Bézier curve
- Evaluate at v to get point $\mathbf{p}(u, v)$ on surface

Algebraically:

$$
\begin{aligned}
\mathbf{p}(u, v) & =\sum_{i=0}^{n} \sum_{j=0}^{n} B_{i}^{3}(u) B_{j}^{3}(v) \mathbf{p}_{i j} \\
& =\sum_{0 \leq i, j \leq n} B_{i j}(u, v) \mathbf{p}_{i j}
\end{aligned}
$$

Basis functions $B_{i j}$ are "tensor products" of Bernstein polynomials:

$$
(f \otimes g)(x, y)=f(x) g(y)
$$

əue» ueuəə>

Ed Catmull's "Gumbo" model

The Utah teapot, modeled by Martin Newell

Continuity

Continuity is now determined along each boundary edge between two patches.

C^{0} continuity:
Boundary points agree

C^{1} continuity:
Adjacent edges equal

C^{2} continuity:
A-frames

Continuity is easy to ensure only when

- All patches are quads
- Every corner has 4 adjacent patches

This can be too restrictive!

Subdivision

Another strategy to create smooth shapes from a coarse mesh of control points: subdivision

- Split each element by inserting new vertices
- Update positions of all vertices by local averaging
- Repeat...

The desired shape is what we converge to in the limit.

Subdivision curves

One possible method: Lane-Riesenfeld

- Insert midpoint of each edge
- Repeat k-1 times: Average adjacent vertices Limit is a degree- k B-spline!

Keenan Crane

Subdivision surfaces

Connectivity of surfaces is more complicated. Many different subdivision schemes are possible:

- General polygon meshes: CatmullClark, Doo-Sabin, mid-edge [Peters \& Reif], ...

Doo-Sabin

mid-edge

- Triangle meshes: Loop, modified butterfly [Zorin et al.], Sqrt(3) [Kobbelt], ...

Catmull-Clark subdivision

Split each n-sided face into n quads

Update vertex positions by averaging:

- New face point = average of old face vertices
- New edge point $=$ average of 2 old vertices and 2 new face points
- Updated vertex $=\frac{1}{n}(Q+2 R+(n-3) S)$ where $Q=$ average of n new face points, $R=$ average of n new edge points, $S=$ old vertex

After 1 iteration: All faces are quads
After 2 iterations: All new vertices are degree-4

Limit surface has C^{2} continuity except at "extraordinary vertices" (with degree $\neq 4$).

Still C^{1} at extraordinary vertices

Also possible to directly evaluate limiting position of any point on the surface without recursion! [Stam 1998]

Examples

Loop subdivision

Split each triangle into 4 triangles
Update vertex positions by averaging:

$$
\text { where } u= \begin{cases}3 / 16 & \text { if } n=3 \\ 3 /(8 n) & \text { otherwise }\end{cases}
$$

Examples

Can also mark creases on the control mesh
Simple: Just use curve subdivision rules for vertices \& edges lying on crease

Homework problem

Show that the Lane-Riesenfeld algorithm gives a curve with local control: the limiting position of a vertex depends only on a few adjacent vertices.

Hard mode: For $k=3$, find a closed-form expression for its limiting position!

