

Recap: Bézier curves

 $\mathbf{b}_{0}^{1} = \text{lerp}(t, \mathbf{b}_{0}, \mathbf{b}_{1})$

• • •

$$\mathbf{b}(t) = \text{lerp}(t, \mathbf{b}_0^{n-1}, \mathbf{b}_1^{n-1})$$

Procedural form (De Casteljau's corner cutting algorithm)

Analytical form (linear combination of Bernstein polynomials)

Bézier patches

Parametric surface **p**(*u*, *v*) made of Bézier curves

- Treat each row as a Bézier curve
- Evaluate at *u* to get one point per row
- Treat as control points of a Bézier curve
- Evaluate at v to get point $\mathbf{p}(u, v)$ on surface

Algebraically:

$$\mathbf{p}(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{n} B_i^3(u) B_j^3(v) \mathbf{p}_{ij}$$
$$= \sum_{0 \le i,j \le n} B_{ij}(u, v) \mathbf{p}_{ij}$$

Basis functions B_{ij} are "tensor" products" of Bernstein polynomials:

$$(f \otimes g)(x, y) = f(x) g(y)$$

Keenan Crane

Ed Catmull's "Gumbo" model

The Utah teapot, modeled by Martin Newell

Continuity

Boundary points agree

Continuity is now determined along each boundary edge between two patches.

Adjacent edges equal

A-frames

C⁰ continuity

 C^1 continuity

 C^2 continuity

Continuity is easy to ensure only when

- All patches are quads
- Every corner has 4 adjacent patches
- This can be too restrictive!

Subdivision

Another strategy to create smooth shapes from a coarse mesh of control points: subdivision

- Split each element by inserting new vertices
- Update positions of all vertices by local averaging
- Repeat...

The desired shape is what we converge to in the limit.

Subdivision curves

Subdivision surfaces

Connectivity of surfaces is more complicated. Many different subdivision schemes are possible:

- General polygon meshes: Catmull-Clark, Doo-Sabin, mid-edge [Peters & Reif], ...
- Triangle meshes: Loop, modified butterfly [Zorin et al.], Sqrt(3) [Kobbelt], ...

Sqrt(3)

Catmull-Clark subdivision

- Split each *n*-sided face into *n* quads
- Update vertex positions by averaging:
- New face point = average of old face vertices
- New edge point = average of 2 old vertices and 2 new face points
- Updated vertex = $\frac{1}{n}(Q + 2R + (n-3)S)$ where Q = average of n new face points, R = average of n new edge points, S = old vertex

After 1 iteration: All faces are quads **After 2 iterations:** All new vertices are degree-4

Limit surface has C² continuity except at "extraordinary" vertices" (with degree \neq 4).

Still C¹ at extraordinary vertices

Also possible to directly evaluate limiting position of any point on the surface without recursion! [Stam 1998] Outside the scope of this course :)

Examples

Loop subdivision (Nam

Split each triangle into 4 triangles

Update vertex positions by averaging:

(Named after its inventor, Charles T. Loop)

where
$$u = \begin{cases} 3/16 & \text{if } n = 3, \\ 3/(8n) & \text{otherwise} \end{cases}$$

Examples

ĺ

Can also mark creases on the control mesh

Simple: Just use curve subdivision rules for vertices & edges lying on crease

Homework problem

Show that the Lane-Riesenfeld algorithm gives a curve with local control: the limiting position of a vertex depends only on a few adjacent vertices.

Hard mode: For k = 3, find a closed-form expression for its limiting position!