
17. Bézier Curves
COL781: Computer Graphics

D
av

e
C

o
le

m
an

Modeling curved shapes
With meshes we can only approximate smooth shapes, by adding lots and lots
of vertices and triangles.

How can we directly model a smooth shape?

Curves

m
ax

za
ra

d
o

zn
al

e2
.b

lo
g

sp
o

t.c
o

m

La
ss

et
er

 1
98

7

Xu et al. 2014

We will retain the same “interface” as polylines: user specifies a sequence of
points. Now we want to define a smooth curve based on them.

Usually define parametrically: x(t), y(t) where
x, y are piecewise polynomial functions a.k.a. splines

Splines in real life

Polylines as parametric curves
Given n+1 vertices p0, p1, …, pn, define

p(t) = pi + pi+1

when ti ≤ t < ti+1.

Equivalently, p(t) = φi(t) pi

Influence of each vertex:

ti+1 − t
ti+1 − ti

t − ti
ti+1 − ti

∑ p0

p1

p4

p2

p3

φ0 φ1 φ2 φ3 φ4

t0 t1 t2 t3 t4

You all probably already know one way to fit a smooth function through multiple
points: polynomial interpolation.

Hard to control: curve goes beyond the range of the control points

Very unstable for higher degrees!

Quadratic Cubic

Bézier curves
How can we guarantee the curve stays within the range of the control points?

Construct the curve by recursive interpolation: de Casteljau’s algorithm a.k.a.
“corner cutting”

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b2
0 = lerp(t, b1

0, b1
1)

Quadratic
Bézier curve

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b1
2 = lerp(t, b2, b3)

b2
0 = lerp(t, b1

0, b1
1)

b2
1 = lerp(t, b1

1, b1
2)

b3
0 = lerp(t, b2

0, b2
1)

Cubic Bézier curve

No longer interpolation but approximation: Curve is influenced by the control
points but does not pass through them

What’s the formula for this parametric curve?

b1
0 = (1 − t)b0 + tb1

b1
1 = (1 − t)b1 + tb2

b2
0 = (1 − t)b1

0 + tb1
1

= (1 − t)2b0 + 2t(1 − t)b1 + t2b2

b2
0(t) = [t2 t 1] [

1 −2 1
−2 2 0
1 0 0]

b0

b1

b2

Cubic Bézier:

Influence of each control point:

b3
0 = (1 − t)3b0 + 3t(1 − t)2b1 + 3t2(1 − t)b2 + t3b3

b3
0(t) = [t3 t2 t 1]

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

b0

b1

b2

b3

Bernstein polynomials

In general, b(t) = , where

• Nonnegative: ≥ 0 for all t ∈ [0, 1]

• Partition of unity: = 1 for all t ∈ [0, 1]

• Over t ∈ [0, 1], has a unique maximum at t = i/n

n

∑
i=0

Bn
i (t)bi

Bn
i (t) = (n

i) ti(1 − t)n−i

Bn
i (t)

∑n
i=0 Bn

i (t)

Bn
i (t)

Bernstein polynomials for n = 10

Desirable properties of Bézier curves:

• Interpolates endpoints

• Tangent to end segments

• Affine invariance: Transform curve ⇔ transform control points

• Curve lies inside convex hull of control points

Undesirable properties of Bézier curves:

• Lack of local control: moving any one control point affects the whole curve

• High-degree Bézier curves are overly smooth

Piecewise Bézier curves (Bézier splines)
Chain together multiple Bézier curves of low degree (usually cubic)

Now we have local control: each control point only affects one or two segments

Used basically everywhere (fonts, paths, Illustrator, PowerPoint, …)

How to ensure that the pieces join up smoothly?

C0 continuity: p(t) is continuous in t

• Endpoints meet

C1 continuity: dp/dt is also continuous

• Tangents (i.e. end segments) agree

C2 continuity: d2p/dt2 is also continuous

• “A-frame” construction: extrapolated
segments should coincide

Puzzle:

Why does everyone use piecewise cubic Bézier curves?

Couldn’t we get C1 continuity with just
piecewise quadratic Bézier curves?

Lots of other types of splines
we don’t have time to cover:

• Hermite

• Catmull-Rom

• B-spline

• NURBS

• …

Fr
ey

a
H

o
lm

ér

