
17. Bézier Curves
COL781: Computer Graphics
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Modeling curved shapes
With meshes we can only approximate smooth shapes, by adding lots and lots 
of vertices and triangles. 

How can we directly model a smooth shape?



Curves
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We will retain the same “interface” as polylines: user specifies a sequence of 
points. Now we want to define a smooth curve based on them. 

Usually define parametrically: x(t), y(t) where 
x, y are piecewise polynomial functions a.k.a. splines



Splines in real life



Polylines as parametric curves
Given n+1 vertices p0, p1, …, pn, define 

p(t) =  pi +  pi+1 

when ti ≤ t < ti+1. 

Equivalently, p(t) =  φi(t) pi 

 
Influence of each vertex:

ti+1 − t
ti+1 − ti

t − ti
ti+1 − ti

∑ p0

p1

p4

p2

p3

φ0 φ1 φ2 φ3 φ4

t0 t1 t2 t3 t4



You all probably already know one way to fit a smooth function through multiple 
points: polynomial interpolation. 

 
Hard to control: curve goes beyond the range of the control points 

 
Very unstable for higher degrees!

Quadratic Cubic



Bézier curves
How can we guarantee the curve stays within the range of the control points? 

Construct the curve by recursive interpolation: de Casteljau’s algorithm a.k.a. 
“corner cutting” 

 

 

 

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b2
0 = lerp(t, b1

0, b1
1)

Quadratic 
Bézier curve



 

 

 

 

 

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b1
2 = lerp(t, b2, b3)

b2
0 = lerp(t, b1

0, b1
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b2
1 = lerp(t, b1

1, b1
2)

b3
0 = lerp(t, b2

0, b2
1)

Cubic Bézier curve





 
No longer interpolation but approximation: Curve is influenced by the control 
points but does not pass through them



What’s the formula for this parametric curve? 

 

 

 

b1
0 = (1 − t)b0 + tb1

b1
1 = (1 − t)b1 + tb2

b2
0 = (1 − t)b1

0 + tb1
1

= (1 − t)2b0 + 2t(1 − t)b1 + t2b2

b2
0(t) = [t2 t 1] [

1 −2 1
−2 2 0
1 0 0]

b0

b1

b2



Cubic Bézier: 

 

 

 
Influence of each control point: 

b3
0 = (1 − t)3b0 + 3t(1 − t)2b1 + 3t2(1 − t)b2 + t3b3

b3
0(t) = [t3 t2 t 1]

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

b0

b1

b2

b3



Bernstein polynomials

In general, b(t) = , where 

 

• Nonnegative:  ≥ 0 for all t ∈ [0, 1] 

• Partition of unity:  = 1 for all t ∈ [0, 1] 

• Over t ∈ [0, 1],  has a unique maximum at t = i/n

n

∑
i=0

Bn
i (t)bi

Bn
i (t) = (n

i ) ti(1 − t)n−i

Bn
i (t)

∑n
i=0 Bn

i (t)

Bn
i (t)

Bernstein polynomials for n = 10



Desirable properties of Bézier curves: 

• Interpolates endpoints 

• Tangent to end segments 

• Affine invariance: Transform curve ⇔ transform control points 

• Curve lies inside convex hull of control points



Undesirable properties of Bézier curves: 

• Lack of local control: moving any one control point affects the whole curve 

• High-degree Bézier curves are overly smooth



Piecewise Bézier curves (Bézier splines)
Chain together multiple Bézier curves of low degree (usually cubic) 

Now we have local control: each control point only affects one or two segments 

Used basically everywhere (fonts, paths, Illustrator, PowerPoint, …)



How to ensure that the pieces join up smoothly? 

C0 continuity: p(t) is continuous in t 

• Endpoints meet 

C1 continuity: dp/dt is also continuous 

• Tangents (i.e. end segments) agree 

C2 continuity: d2p/dt2 is also continuous 

• “A-frame” construction: extrapolated 
segments should coincide



Puzzle: 

Why does everyone use piecewise cubic Bézier curves? 

Couldn’t we get C1 continuity with just 
piecewise quadratic Bézier curves? 



Lots of other types of splines 
we don’t have time to cover: 

• Hermite 

• Catmull-Rom 

• B-spline 

• NURBS 

• …
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