ICS

r Gra P "

COL/81

Announcements

Assignment 1 due on Moodle tonight at midnight!

Assignment 2 has been (partially) posted: mesh processing

Friday class needs to be rescheduled. Friday Spm or 6pm? Saturday 11am?

Polygon meshes

A good “lowest common denominator”
for surtace geometry

® [fficient to render

® Flexible for topology, retinement, etc.

AN
N\

-

N
AN
AN
A\ [\

o

e
et P o T

P e S

A

-~

How to store a mesh?

"Polygon soup”

Vertex O Vertex 1 Vertex 2
0| (a, a,, a, | (b, by, b, | (c, Cys c,)
1| (b, by, b,) (d,, dy, d,) | (c, Cys c,)
2 | (apapa,) | (dyd,d) | by by, b))

Redundant storage of vertices

No connectivity information

How to store a mesh?

Indexed polygons

Triangles Vertices
; — d
Vertices Position

7 #
O (O,]., 2) 0 (ax) A az) a
1(1,3,2) |1 (byb,,b)
2 1(0,3,1) 2| (epcypcy)
3 | (4, d,,d)

How do we find all the polygons adjacent to a given vertex?
Or which polygon is across from a given edge of a polygon?

FAVAVAVAN
WWAVAVAYY)

AV AVAVAVATAY
ALY AYAVATAY) 4
*‘E&uuuuui
A S

S

FAVAYAYA

AVAVAVAY:

|
e
‘k’ ‘ *1 ",__.a'-" e
ﬁ:‘;@ r';'/r
ST,

'r’

= ‘&

SVANAY
SO T B k|

A A AV AVAV Ly -
KL AR A K

: 1 -h_ £ 7'1’_.‘\?;“:

YAV
PaYd

YAV
AVA
7

Aﬂa -q;'

vy,

YOG
Vi 4%

SR,

B

SPopis
Ay
o

[
ATTATAY

i

g

)
»;
oK)

VA
VA
AV

v
VAvAYAYE S

4
r WAVAVAYA
NN AV,

O

i

Subdivision

implification

We need a data structure that allows us to quickly access

® for each degree-k vertex: k adjacent
vertices, edges, faces

® for each edge: 2 adjacent faces

® for each n-gonal face: n adjacent vertices,
edges, faces

An arbitrary polygon mesh can have weirder neighbourhoods...

<
/ Q?
//

Z///

But we usually don’t want such meshes!

How do we formalize this?

A 2D manifold is a set of points such that the neighbourhood of every point is
topologically a 2D disk.

Puzzle:

What conditions do you need to impose on a polygon mesh
so that it represents a manitold surface?

Assume the mesh itselt has no self-intersections:
points that are adjacent in space are connected in the mesh.

X

Manifold meshes

A polygon mesh is a manifold only it:

® Every edge has exactly 2 adjacent faces

® Every vertex has adjacent faces and edges in a single ring

9 X

A polygon mesh is a manitold with boundary if:
® Boundary edges have only 1 adjacent face
® Boundary vertices have adjacent faces and edges

in a single chain

® Other edges and vertices are manifold

X

Orientation consistency

C
Adjacent faces should all be oriented
in the same direction, so they agree on D
“tfront” and “back”
® Fach edge should be traversed in B A B A

opposite directions by adjacent faces

Not all manifolds can be oriented consistently:

All these requirements are purely about connectivity, not geometry! Can be
verified discretely by checking only indices, no floating-point arithmetic.

Same geometry, Original mesh ~ Same connectivity,

different connectivity ditferent geometry

Today: data structures to efficiently store and look up connectivity

Triangle neighbour data structure

Vertex {
Point position;
Triangle *xtriangle;

}

Triangle {
Vertex *vertices[3];
Triangle *neighbors([3];

tNbr

Example: Traverse all triangles adjacent to a vertex.

Trianglex t = v->triangle;
do {
// do something with t

int i = {index of v in t->vertices) ;
t = t->neighbors[i]; :
} while (t != v->triangle);

Vertex {
Point position;
Edge *edge;

}

Edge {
Triangle *triangle;
int 1ndex;

}

Triangle {
Vertex *vertices[3];
Edge *neighbors|[3];

norli]

Example: Traverse all triangles adjacent to a vertex.

Edgex e = v->edge;
Trianglex t = e->triangle;
int 1 = e->1ndex;

do {

// do something with t
t->neighbors[1];
e->triangle;

(e->1ndex+1) mod 3;
} while (t != v->edge->triangle);

e
t .
; norli]

Half-edge data structure

HalfEdge {
HalfEdge *pair, *next;
Vertex *head;
Face xleft;

}
Vertex { .
HalfEdge *halfEdge; "N
\ |
P
Face { -

HalfEdge xhalfEdge;
}

Pair Next

Example 1: Traverse all vertices of a tace.

HalfEdge *h = f->halfEdge;

do {
// do something with h->head;
h = h->next;

} while (h != f->halfEdge);

Example 2: Traverse all faces adjacent to a vertex.

HalfEdge xh = v->halfEdge;

do {
// do something with h->left;
h = h->next->pair;

} while (h !'= v->halfEdge);

Next
Left @ <«

p Pairg

Practice problem

Using a half-edge representation of a triangle mesh, write (pseudo)code to fina
the " " at a given edge, i.e. the angle between the normals of the
adjacent faces.

