
16. Polygon
 Meshes

COL781: Computer Graphics

Announcements

Assignment 1 due on Moodle tonight at midnight!

Assignment 2 has been (partially) posted: mesh processing

Friday class needs to be rescheduled. Friday 5pm or 6pm? Saturday 11am?

Polygon meshes
A good “lowest common denominator”
for surface geometry

• Efficient to render

• Flexible for topology, refinement, etc.

How to store a mesh?

“Polygon soup”

Redundant storage of vertices

No connectivity information

How to store a mesh?

Indexed polygons

How do we find all the polygons adjacent to a given vertex?
Or which polygon is across from a given edge of a polygon?

Subdivision

Filtering

Remeshing

Simplification

We need a data structure that allows us to quickly access neighbours:

• for each degree-k vertex: k adjacent
vertices, edges, faces

• for each edge: 2 adjacent faces

• for each n-gonal face: n adjacent vertices,
edges, faces

An arbitrary polygon mesh can have weirder neighbourhoods…

But we usually don’t want such meshes!

How do we formalize this?

A 2D manifold is a set of points such that the neighbourhood of every point is
topologically a 2D disk.

Puzzle:

What conditions do you need to impose on a polygon mesh
so that it represents a manifold surface?

Assume the mesh itself has no self-intersections;
points that are adjacent in space are connected in the mesh.

Manifold meshes
A polygon mesh is a manifold only if:

• Every edge has exactly 2 adjacent faces

• Every vertex has adjacent faces and edges in a single ring

A polygon mesh is a manifold with boundary if:

• Boundary edges have only 1 adjacent face

• Boundary vertices have adjacent faces and edges
in a single chain

• Other edges and vertices are manifold

Orientation consistency
Adjacent faces should all be oriented
in the same direction, so they agree on
“front” and “back”

• Each edge should be traversed in
opposite directions by adjacent faces

Not all manifolds can be oriented consistently:

All these requirements are purely about connectivity, not geometry! Can be
verified discretely by checking only indices, no floating-point arithmetic.

Today: data structures to efficiently store and look up connectivity

Original meshSame geometry,
different connectivity

Same connectivity,
different geometry

Triangle neighbour data structure
Vertex {
 Point position;
 Triangle *triangle;
}

Triangle {
 Vertex *vertices[3];
 Triangle *neighbors[3];
}

Example: Traverse all triangles adjacent to a vertex.

Triangle* t = v->triangle;
do {
 // do something with t
 int i =《index of v in t->vertices》;
 t = t->neighbors[i];
} while (t != v->triangle);

Vertex {
 Point position;
 Edge *edge;
}

Edge {
 Triangle *triangle;
 int index;
}

Triangle {
 Vertex *vertices[3];
 Edge *neighbors[3];
}

v[i]

nbr[i]

Example: Traverse all triangles adjacent to a vertex.

Edge* e = v->edge;
Triangle* t = e->triangle;
int i = e->index;
do {
 // do something with t
 e = t->neighbors[i];
 t = e->triangle;
 i = (e->index+1) mod 3;
} while (t != v->edge->triangle);

v[i]

nbr[i]

Half-edge data structure
HalfEdge {
 HalfEdge *pair, *next;
 Vertex *head;
 Face *left;
}

Vertex {
 HalfEdge *halfEdge;
}

Face {
 HalfEdge *halfEdge;
}

Example 1: Traverse all vertices of a face.

HalfEdge *h = f->halfEdge;
do {
 // do something with h->head;
 h = h->next;
} while (h != f->halfEdge);

Example 2: Traverse all faces adjacent to a vertex.

HalfEdge *h = v->halfEdge;
do {
 // do something with h->left;
 h = h->next->pair;
} while (h != v->halfEdge);

Practice problem
Using a half-edge representation of a triangle mesh, write (pseudo)code to find
the “bending angle” at a given edge, i.e. the angle between the normals of the
adjacent faces.

This is 180° minus the better-known dihedral angle.

