
16. Polygon 
      Meshes

COL781: Computer Graphics



Announcements

Assignment 1 due on Moodle tonight at midnight! 

Assignment 2 has been (partially) posted: mesh processing 

Friday class needs to be rescheduled. Friday 5pm or 6pm? Saturday 11am?



Polygon meshes
A good “lowest common denominator” 
for surface geometry 

• Efficient to render 

• Flexible for topology, refinement, etc.



How to store a mesh? 

“Polygon soup” 

Redundant storage of vertices 

No connectivity information



How to store a mesh? 

Indexed polygons 

 
How do we find all the polygons adjacent to a given vertex? 
Or which polygon is across from a given edge of a polygon?



Subdivision

Filtering

Remeshing

Simplification



We need a data structure that allows us to quickly access neighbours: 

• for each degree-k vertex: k adjacent 
vertices, edges, faces 

• for each edge: 2 adjacent faces 

• for each n-gonal face: n adjacent vertices, 
edges, faces



An arbitrary polygon mesh can have weirder neighbourhoods… 

But we usually don’t want such meshes! 

How do we formalize this?



A 2D manifold is a set of points such that the neighbourhood of every point is 
topologically a 2D disk.



Puzzle: 

What conditions do you need to impose on a polygon mesh 
so that it represents a manifold surface? 

Assume the mesh itself has no self-intersections; 
points that are adjacent in space are connected in the mesh.



Manifold meshes
A polygon mesh is a manifold only if: 

• Every edge has exactly 2 adjacent faces 

• Every vertex has adjacent faces and edges in a single ring



A polygon mesh is a manifold with boundary if: 

• Boundary edges have only 1 adjacent face 

• Boundary vertices have adjacent faces and edges 
in a single chain 

• Other edges and vertices are manifold



Orientation consistency
Adjacent faces should all be oriented 
in the same direction, so they agree on 
“front” and “back” 

• Each edge should be traversed in 
opposite directions by adjacent faces 

Not all manifolds can be oriented consistently:



All these requirements are purely about connectivity, not geometry! Can be 
verified discretely by checking only indices, no floating-point arithmetic. 

Today: data structures to efficiently store and look up connectivity

Original meshSame geometry, 
different connectivity

Same connectivity, 
different geometry



Triangle neighbour data structure
Vertex { 
    Point position; 
    Triangle *triangle; 
} 

Triangle { 
    Vertex *vertices[3]; 
    Triangle *neighbors[3]; 
}





Example: Traverse all triangles adjacent to a vertex. 

Triangle* t = v->triangle; 
do { 
    // do something with t 
    int i =《index of v in t->vertices》; 
    t = t->neighbors[i]; 
} while (t != v->triangle);



Vertex { 
    Point position; 
    Edge *edge; 
} 

Edge { 
    Triangle *triangle; 
    int index; 
} 

Triangle { 
    Vertex *vertices[3]; 
    Edge *neighbors[3]; 
}

v[i]

nbr[i]



Example: Traverse all triangles adjacent to a vertex. 

Edge* e = v->edge; 
Triangle* t = e->triangle; 
int i = e->index; 
do { 
    // do something with t 
    e = t->neighbors[i]; 
    t = e->triangle; 
    i = (e->index+1) mod 3; 
} while (t != v->edge->triangle);

v[i]

nbr[i]



Half-edge data structure
HalfEdge { 
    HalfEdge *pair, *next; 
    Vertex *head; 
    Face *left; 
} 

Vertex { 
   HalfEdge *halfEdge; 
} 

Face { 
   HalfEdge *halfEdge; 
}





Example 1: Traverse all vertices of a face. 

HalfEdge *h = f->halfEdge; 
do { 
    // do something with h->head; 
    h = h->next; 
} while (h != f->halfEdge); 

Example 2: Traverse all faces adjacent to a vertex. 

HalfEdge *h = v->halfEdge; 
do { 
    // do something with h->left; 
    h = h->next->pair; 
} while (h != v->halfEdge); 



Practice problem
Using a half-edge representation of a triangle mesh, write (pseudo)code to find 
the “bending angle” at a given edge, i.e. the angle between the normals of the 
adjacent faces.

This is 180° minus the better-known dihedral angle.


