COL781: Computer Graphics

15. Introduction

So far, we know how to make crude pictures of polygonal shapes.

Eventually, we will want to make photorealistic movies of complicated shapes!

Course content

Examples of geometry

Examples of geometry

Examples of geometry

Examples of geometry

Not just surfaces

Roadmap

Next few weeks: How to work with geometry (mostly surfaces, a bit of curves, no volumes)

- Representations
- Manipulation and editing
- Geometric queries

What conditions can we impose to get a definition which matches our intuitive idea of "surface"?

How to define a unit circle in 2D?

Explicit:

$\{(\cos \theta, \sin \theta): 0 \leq \theta<2 \pi\}$

Implicit:

$$
\left\{(x, y): x^{2}+y^{2}-1=0\right\}
$$

Explicit:

$$
\{(x(t), y(t)): t \in[a, b]\}
$$

Implicit:

$$
\{(x, y): f(x, y)=0\}
$$

When is it easy to generate an arbitrary point on the curve?
When is it easy to test if a given point lies on the curve?

How to draw a curve given in one of these forms?

$$
\{(x(t), y(t)): t \in[a, b]\}
$$

Sample points at various values of t
Connect by polyline

$$
\{(x, y): f(x, y)=0\}
$$

Sample f at various points (x, y)
Draw boundary between + and - points

Representing geometry in 3D

Explicit:

- Polygon meshes
- Parametric curves and surfaces
- Subdivision surfaces
- Point clouds

Implicit:

- Algebraic surfaces, distance fields
- Constructive solid geometry
- "Blobby" surfaces
- Level sets

Implicit representations

Implicit surfaces

Defined as the zero set of a given function

$$
S=\{(x, y, z): f(x, y, z)=0\}
$$

Algebraic surface: f is a polynomial

$$
\begin{gathered}
\left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2} \\
-4 R^{2}\left(x^{2}+y^{2}\right)=0
\end{gathered}
$$

Signed distance field:

$$
f(\mathbf{p})= \begin{cases}\operatorname{dist}(\mathbf{p}, S) & \text { if } \mathbf{p} \text { is outside } S \\ -\operatorname{dist}(\mathbf{p}, S) & \text { if } \mathbf{p} \text { is inside }\end{cases}
$$

Simple formulas only exist in very special cases...

Constructive solid geometry

An implicit representation defines both a surface, $f(\mathbf{p})=0$, and its enclosed volume, $f(p) \leq 0$.

So we can do set operations on the volume:

Union

Difference

Smooth implicit modeling

Instead of a Boolean operation, blend together the implicit functions of two surfaces.
e.g.

$$
\begin{aligned}
& f_{i}(\mathbf{p})=\exp \left(-\left\|\mathbf{p}-\mathbf{c}_{i}\right\|^{2} / r_{i}^{2}\right) \\
& S=\left\{\mathbf{p}: \sum f_{i}(\mathbf{p})=0.5\right\}
\end{aligned}
$$

A.k.a. metaballs, blobbies, soft objects, ...

Choice of blending operation can give useful effects:

Level sets

Implicit representations are useful for changing topology (merging / splitting), but usually no closed form for $f(x, y, z)$

Just store sampled values on a grid!

- Surface is wherever interpolated value is 0
- Modify surface by changing values on the grid

-5.5	-4.5	-3.5	-3.0	-2.5
-3.0	-2.5	-2.0	-1.0	-1.0
-2.0	-1.5	-1.0	1.0	1.5
-0.5	1.0	0.5	2.5	3.5
1.5	2.0	2.5	5.5	6.0

Level sets

Level sets

Explicit representations

Polygon meshes

We've already seen these.

- Vertices $(x, y, z) \in \mathbb{R}^{3}$

- Triangles stored via vertex indices $(i, j, k) \in \mathbb{N}^{3}$

How would you sample an arbitrary point on the surface (not just a vertex)?

Can also allow arbitrary polygons ($i_{1}, i_{2}, i_{3}, \ldots$). But triangles and quads are most common.

Parametric surfaces

Given by a map from (some subset of) \mathbb{R}^{2} to \mathbb{R}^{3}.

$$
\begin{aligned}
& x=f(u, v), \\
& y=g(u, v), \\
& z=h(u, v)
\end{aligned}
$$

e.g. a sphere is $(\cos u \cos v, \sin u \cos v, \sin v)$

In practice, f, g, h are usually piecewise polynomial functions a.k.a. splines

Subdivision surfaces

Another way to define a smooth surface: Take a coarse polygon mesh and repeatedly subdivide and smooth it.

Various smoothing rules for triangle and polygon meshes
Widely used in practice for character animation

Point clouds

What if you just store a finite set of points (x, y, z) from the surface?
(Optionally including normals)

- Very flexible representation
- Various schemes to reconstruct surface between sampled points
- Harder to do processing, editing, simulation, ...

Homework exercise: random curves

Use a plotting tool (e.g. desmos.com) to plot

1. a random polynomial parametric curve, e.g.

$$
\begin{aligned}
& x(t)=a t^{3}+b t^{2}+c t+d \\
& y(t)=e t^{3}+f t^{2}+g t+h
\end{aligned}
$$

2. a random polynomial implicit curve, e.g.

$$
\begin{gathered}
a x^{3}+b x^{2} y+c x y^{2}+d y^{3} \\
+e x^{2}+f x y+g y^{2} \\
+h x+i y+j=0
\end{gathered}
$$

