
13. Ray Tracing
COL781: Computer Graphics

Turner Whitted

Last class: Local illumination

L = La + Ld + Ls
 = ka 𝐼a + kd 𝐼i max(0, n · ℓi) + ks 𝐼i max(0, n · hi)∑

p

Ambient Diffuse Specular+ +

Rasterization vs. Ray tracing
for each shape:
 for each sample:
 get point where shape covers sample
 if point is closest point seen by sample:
 sample.colour = shade(point)

for each sample:
 for each shape:
 get point where shape covers sample
 if point is closest point seen by sample:
 sample.colour = shade(point)

Ray tracing

For each sample:

Generate eye ray

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray tracing

For each sample:

Generate eye ray

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray generation
A ray is determined by an origin o and a direction d.
Any point on the ray is r(t) = o + td for t ≥ 0

Each image pixel corresponds to a ray going into the world

• Vertex shader:
world point → image point

• Ray generation:
image point → world ray

Perspective camera:

• Pixel (i, j) → image plane (u, v)

• In camera space, o = (0, 0, 0), d = (u, v, −d)

• Transform to world space using

(Note: We will not assume d is normalized!)

Mview =

| | | |
u v w e
| | | |
0 0 0 1

Supersampling is trivial: shoot multiple rays per pixel and average the results

Pa
ul

 B
o

ur
ke

A camera is just a device for mapping image locations (i, j) to rays o + td

Arbitrary pixel/ray mappings are possible:

Seitz and Kim 2003

Ray tracing

For each sample (x, y):

Generate eye ray r(t) = o + td

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray-surface intersection
Given a ray r(t) = o + td, find closest intersection i.e. minimum t

Return info needed for shading:

• Position p

• Normal n

• Object ID / material properties

(Roughly the same data you would
need in a fragment shader)

Wojciech Matusik

Ray-sphere intersection
Ray equation: r(t) = o + td

Sphere equation: ||p − c||2 = R2

Intersection point must satisfy both:

||(o − c) + td||2 = R2

||d||2 t2 + 2d · (o − c) t + ||o − c||2 − R2 = 0

(Recall ||v||2 = v · v)

Quadratic equation, solve for t

3 cases:

• No solution

• One solution t1

• Two solutions t1 and t2

What do they mean geometrically?

• No solution

• One solution t1

• t1 < 0

• t1 > 0

• Two solutions t1 and t2

• t1 < t2 < 0

• t1 < 0 < t2

• 0 < t1 < t2

In general: Find all solutions, discard those with t < 0, take minimum of remaining

Find t of closest intersection

Then get intersection point from equation of ray:

p = r(t) = o + td

What about the surface normal?

n = (p − c)/||p − c||

Ray-plane intersection

Plane equation: n · (p − p0) = 0

n · (o + td − p0) = 0

t = (n · (p0 − o))/(n · d)

Ray-triangle intersection

Intersect ray with plane, then check if it is inside triangle?

any known point
on the plane

A better way: Any point on the plane is

p = p0 + b1(p1 − p0) + b2(p2 − p0)
 = (1−b1−b2)p0 + b1p1 + b2p2

o + td = p0 + b1(p1 − p0) + b2(p2 − p0)

3 equations in 3 unknowns:

Solve to get t, b1, b2. For what values of b1, b2 is the point inside the triangle?

| | |
−d p1 − p0 p2 − p0

| | |

t
b1

b2

=
|

o − p0

|

p0

p1

p2

Fastest classic method to solve: Cramer’s rule

 where p = d × e2, q = t × e1

[−d e1 e2]
t

b1

b2

= t

⟹
t

b1

b2

=
1

det [−d e1 e2]

det [t e1 e2]
det [−d t e2]
det [−d e1 t]

=
1

p ⋅ e1

q ⋅ e2
p ⋅ t
q ⋅ d

Ray-mesh intersection
Naïve approach: Test ray with all triangles,
return the earliest hit.

Cost = O(#triangles)! Can we speed it up?

Construct a conservative bounding volume:
all mesh triangles lie inside it

Super easy to reject rays that don’t
come close to intersecting the mesh.

Later, we will study bounding volume hierarchies to speed things up further.

What do we want from a bounding volume?

• Tight (minimize # of false positives)

• Fast to intersect

This is a tradeoff!

Ericson, Real-Time Collision Detection

Let’s stick with axis-aligned bounding boxes (AABBs).

Fast ray-AABB test:

• txmin = (xmin − ox)/dx

• Similarly for txmax, tymin, …

• Final intersection result
= [txmin, txmax] ∩ [tymin, tymax] ∩ [tzmin, tzmax]
= [max(txmin, tymin, tzmin), min(txmax, tymax, tzmax)]

Swap the bounds first if dx < 0! What about if dx = 0?

How do we know if the ray misses the box?

o

d

Object-oriented raytracer design
We can ray trace any shape as long as it provides the following methods:

• bool hit(Ray o + td, real tmin, real tmax, HitRecord &rec)

• Only consider intersections in the range tmin ≤ t ≤ tmax.
Usually [0, ∞] for eye rays

• If hit, write the position, normal, material, etc.
into the HitRecord

• Box bounding_box()

• For early exit

Transformed objects
How to ray trace a transformed shape?

pWS = M pOS

Just un-transform the ray into object space…

oOS = M−1 oWS
dOS = M−1 dWS

…and do the ray-shape intersection there

(This is why it’s better to not assume d is normalized)

W
o

jc
ie

ch
 M

at
us

ik

Normals don’t transform like other vectors!

W
o

jc
ie

ch
 M

at
us

ik

