COL781: Computer Graphics

 13. Ray Tracing
Last class: Local illumination

Ambient + Diffuse + Specular

$$
\begin{aligned}
L & =L_{a}+L_{d}+L_{s} \\
& =k_{a} I_{a}+\sum k_{d} I_{i} \max \left(0, \mathbf{n} \cdot \boldsymbol{l}_{i}\right)+k_{s} I_{i} \max \left(0, \mathbf{n} \cdot \mathbf{h}_{i}\right)^{p}
\end{aligned}
$$

Rasterization vs. Ray tracing

for each shape: for each sample:
get point where shape covers sample if point is closest point seen by sample: sample.colour = shade(point)
for each sample: for each shape:
get point where shape covers sample if point is closest point seen by sample: sample.colour $=$ shade(point)

Ray tracing

For each sample:
Generate eye ray
Find the closest intersection
Get shaded colour at intersection point
Set sample colour to it

Ray tracing

For each sample:

Generate eye ray

Find the closest intersection
Get shaded colour at intersection point
Set sample colour to it

Ray generation

A ray is determined by an origin \mathbf{o} and a direction \mathbf{d}.
Any point on the ray is $\mathbf{r}(\mathrm{t})=\mathbf{0}+\mathrm{td}$ for $t \geq 0$
Each image pixel corresponds to a ray going into the world

- Vertex shader:
world point \rightarrow image point
- Ray generation: image point \rightarrow world ray

Parallel projection same direction, different origins

Perspective projection same origin, different directions

Perspective camera:

- Pixel $(i, j) \rightarrow$ image plane (u, v)
- In camera space, $\mathbf{0}=(0,0,0), \mathbf{d}=(u, v,-d)$
- Transform to world space using

$$
\mathbf{M}_{\text {view }}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
\mid & \mid & \mid & \mid \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(Note: We will not assume \mathbf{d} is normalized!)

Perspective projection same origin, different directions

Supersampling is trivial: shoot multiple rays per pixel and average the results

A camera is just a device for mapping image locations (i, j) to rays $\mathbf{o}+\mathrm{td}$ Arbitrary pixel/ray mappings are possible:

Ray tracing

For each sample (x, y):
Generate eye ray $\mathbf{r}(t)=\mathbf{o}+\mathrm{td}$
Find the closest intersection
Get shaded colour at intersection point
Set sample colour to it

Ray-surface intersection

Given a ray $\mathbf{r}(t)=\mathbf{0}+\mathbf{d}$, find closest intersection i.e. minimum t
Return info needed for shading:

- Position \mathbf{p}
- Normal n
- Object ID / material properties
(Roughly the same data you would need in a fragment shader)

Wojciech Matusik

Ray-sphere intersection

Ray equation: $\mathbf{r}(t)=\mathbf{0}+\mathbf{t d}$
Sphere equation: $\|\mathbf{p}-\mathbf{c}\|^{2}=R^{2}$
Intersection point must satisfy both:

$$
\begin{gathered}
\|(\mathbf{o}-\mathbf{c})+\mathbf{t} \mathbf{d}\|^{2}=R^{2} \\
\|\mathbf{d}\|^{2} t^{2}+2 \mathbf{d} \cdot(\mathbf{o}-\mathbf{c}) t+\|\mathbf{0}-\mathbf{c}\|^{2}-R^{2}=0
\end{gathered}
$$

$\left(\right.$ Recall $\left.\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}\right)$
Quadratic equation, solve for t

3 cases:

- No solution
- One solution t_{1}
- Two solutions t_{1} and t_{2}

What do they mean geometrically?

- No solution
- One solution t_{1}
- $t_{1}<0$
- $t_{1}>0$

- Two solutions t_{1} and t_{2}
- $t_{1}<t_{2}<0$
- $t_{1}<0<t_{2}$
- $0<t_{1}<t_{2}$

In general: Find all solutions, discard those with $t<0$, take minimum of remaining

Find t of closest intersection
Then get intersection point from equation of ray:

$$
\mathbf{p}=\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}
$$

What about the surface normal?

$$
n=(p-c) /\|p-c\|
$$

Ray-plane intersection

Plane equation: $\mathbf{n} \cdot\left(\mathbf{p}-\mathbf{p}_{0}\right)=0 \quad$ any known point

$$
\begin{gathered}
\mathbf{n} \cdot\left(\mathbf{o}+t \mathbf{d}-\mathbf{p}_{0}\right)=0 \\
t=\left(\mathbf{n} \cdot\left(\mathbf{p}_{0}-\mathbf{o}\right)\right) /(\mathbf{n} \cdot \mathbf{d})
\end{gathered}
$$

Ray-triangle intersection

Intersect ray with plane, then check if it is inside triangle?

A better way: Any point on the plane is

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p}_{0}+b_{1}\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)+b_{2}\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right) \\
& =\left(1-b_{1}-b_{2}\right) \mathbf{p}_{0}+b_{1} \mathbf{p}_{1}+b_{2} \mathbf{p}_{2} \\
\mathbf{o}+t \mathbf{d} & =\mathbf{p}_{0}+b_{1}\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)+b_{2}\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)
\end{aligned}
$$

3 equations in 3 unknowns:

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
-\mathbf{d} & \mathbf{p}_{1}-\mathbf{p}_{0} & \mathbf{p}_{2}-\mathbf{p}_{0} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{c}
t \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
\mid \\
\mathbf{o}-\mathbf{p}_{0} \\
\mid
\end{array}\right]
$$

Solve to get t, b_{1}, b_{2}. For what values of b_{1}, b_{2} is the point inside the triangle?

Fastest classic method to solve: Cramer's rule

$$
\begin{aligned}
& {\left[\begin{array}{lll}
-\mathbf{d} & \mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right]\left[\begin{array}{c}
t \\
b_{1} \\
b_{2}
\end{array}\right]=\mathbf{t} } \\
\Longrightarrow\left[\begin{array}{c}
t \\
b_{1} \\
b_{2}
\end{array}\right]= & \frac{1}{\operatorname{det}\left[\begin{array}{lll}
-\mathbf{d} & \mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right]}\left[\begin{array}{lll}
\operatorname{det}\left[\begin{array}{lll}
\mathbf{t} & \mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right] \\
\operatorname{det}\left[\begin{array}{lll}
-\mathbf{d} & \mathbf{t} & \mathbf{e}_{2}
\end{array}\right] \\
\operatorname{det}\left[\begin{array}{lll}
-\mathbf{d} & \mathbf{e}_{1} & \mathbf{t}
\end{array}\right]
\end{array}\right] \\
= & \frac{1}{\mathbf{p} \cdot \mathbf{e}_{1}}\left[\begin{array}{c}
\mathbf{q} \cdot \mathbf{e}_{2} \\
\mathbf{p} \cdot \mathbf{t} \\
\mathbf{q} \cdot \mathbf{d}
\end{array}\right] \quad \text { where } \mathbf{p}=\mathbf{d} \times \mathbf{e}_{2}, \mathbf{q}=\mathbf{t} \times \mathbf{e}_{1}
\end{aligned}
$$

Ray-mesh intersection

Naïve approach: Test ray with all triangles, return the earliest hit.

Cost $=O(\#$ triangles)! Can we speed it up?
Construct a conservative bounding volume: all mesh triangles lie inside it

Super easy to reject rays that don't come close to intersecting the mesh.

Later, we will study bounding volume hierarchies to speed things up further.

What do we want from a bounding volume?

- Tight (minimize \# of false positives)
- Fast to intersect

This is a tradeoff!
BETTER BOUND, BETTER CULLING

Let's stick with axis-aligned bounding boxes (AABBs).

Fast ray-AABB test:

- $t_{x \text { min }}=\left(x_{\text {min }}-o_{x}\right) / d_{x}$
- Similarly for $t_{x m a x}, t_{y m i n}, \ldots$
- Final intersection result
$=\left[t_{x \min }, t_{x \max }\right] \cap\left[t_{y \min }, t_{y \max }\right] \cap\left[t_{z \min }, t_{z \max }\right]$
$=\left[\max \left(t_{x \min }, t_{y \min }, t_{z \min }\right), \min \left(t_{x \max }, t_{y \max }, t_{z \max }\right)\right]$

Swap the bounds first if $d_{x}<0$! What about if $d_{x}=0$?

How do we know if the ray misses the box?

Object-oriented raytracer design

We can ray trace any shape as long as it provides the following methods:

- bool hit(Ray $\mathbf{o}+t \mathbf{d}$, real $t_{\text {min }}$, real $t_{\max }$, HitRecord \&rec)
- Only consider intersections in the range $t_{\min } \leq t \leq t_{\max }$. Usually $[0, \infty]$ for eye rays
- If hit, write the position, normal, material, etc. into the HitRecord
- Box bounding_box()

- For early exit

Transformed objects

How to ray trace a transformed shape?

$$
\mathbf{p}_{\mathrm{wS}}=\mathbf{M} \mathbf{p}_{\mathrm{OS}}
$$

Just un-transform the ray into object space...

$$
\begin{aligned}
& \mathbf{O}_{\mathrm{OS}}=\mathbf{M}^{-1} \mathbf{o}_{\mathrm{WS}} \\
& \mathbf{d}_{\mathrm{OS}}=\mathbf{M}^{-1} \mathbf{d}_{\mathrm{WS}}
\end{aligned}
$$

...and do the ray-shape intersection there
(This is why it's better to not assume \mathbf{d} is normalized)

Normals don't transform like other vectors!

Incorrect
Normal
Transformation

