CO1781: Computer Graphics

12. Shading and

Recap: a very simple shading model

Diffuse reflection: Lambertian model

Assume the surface scatters the received light equally in all directions, i.e. the shaded colour is independent of view direction \mathbf{v}.

But how much light is received? Light per unit area $\propto \cos \theta=\mathbf{n} \cdot \boldsymbol{\ell}$

So, reflected light:

Both k_{d} and I can (should!) be RGB colours: multiplied componentwise

Specular reflection: Blinn-Phong model

Perfect mirror: Reflection is bright if and only if \mathbf{v} is exactly "opposite" to $\boldsymbol{\ell}$
$\operatorname{bisector}(\mathbf{v}, \boldsymbol{\ell})=\mathbf{n}$
Shiny surface: Reflection is bright if \mathbf{v} is close to being opposite to ℓ

Light is coming from the right. Why isn't the left side totally black?

Light is coming from the right. Why isn't the left side totally black?

Ambient light

Light bounced around the scene is nonlocal: can't compute from $\mathbf{v}, \mathbf{n}, \boldsymbol{\ell}$ only
Instead, just assume there is a constant amount of indirect lighting everywhere

$$
L_{a}=k_{a} I_{a}
$$

Without ambient light

With ambient light

$$
\begin{aligned}
L & =L_{a}+L_{d}+L_{s} \\
& =k_{a} I_{a}+k_{d} I \max (0, \mathbf{n} \cdot \boldsymbol{\ell})+k_{s} I \max (0, \mathbf{n} \cdot \mathbf{h})^{p}
\end{aligned}
$$

k_{a}, k_{d}, k_{s} (colours) and p (scalar) control the material's appearance
If multiple lights I_{1}, I_{2}, \ldots : add up diffuse and specular terms for each light

What phenomena are not captured?

Colour

What is colour?

Emission spectra

Daylight

Halogen

Incandescent

Cool White LED

Fluorescent

Warm White LED

Admesy, via Ren Ng

Absorption spectra

Incandescent

Tristimulus values

The human eye

Human Eye Anatomy

Cone cells

Three types of cone cells: sensitive to long, medium, and short wavelengths
(not red, green, and blue!)
P.

Metamers

Brian Wandell

Colours are entirely a product of the human visual system!
Physically, only spectra exist.

Colour matching experiments

(B)

Colour spaces

A colour space is a choice of coordinate system for the 3D space of colours.
CIE 1931 XYZ colour space:
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{lll}0.49000 & 0.31000 & 0.20000 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00000 & 0.01000 & 0.99000\end{array}\right]\left[\begin{array}{l}R \\ G \\ B\end{array}\right]$

Chromaticity diagram
vs. $(x, y)=\frac{(X, Y)}{X+Y+Z}$

sRGB

Standard colour space for most monitors, printers, and the web

$$
\left[\begin{array}{c}
R_{\text {lin }} \\
G_{\text {lin }} \\
B_{\text {lin }}
\end{array}\right]=\left[\begin{array}{lll}
+3.2406 & -1.5372 & -0.4986 \\
-0.9689 & +1.8758 & +0.0415 \\
+0.0557 & -0.2040 & +1.0570
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Then for $C=R, G, B$:
$C= \begin{cases}12.92 C_{\text {lin }}, & C_{\operatorname{lin}} \leq 0.0031308 \\ 1.055 C_{\text {lin }}^{12.4}-0.055, & C_{\text {lin }}>0.0031308\end{cases}$

$$
C= \begin{cases}12.92 C_{\operatorname{lin}}, & C_{\operatorname{lin}} \leq 0.0031308 \\ 1.055 C_{\operatorname{lin}}^{1 / 2.4}-0.055, & C_{\operatorname{lin}}>0.0031308\end{cases}
$$

- Historical reason: Compensate for CRT displays' nonlinear response to input voltage
- Current reason: Better quantization of dark values

$$
\text { Linear encoding } V_{S}=0.00 .1
$$

What does this mean for graphics?

- Colours from user input, texture images, etc. are in "gamma space" C
- Shading computations should be done in linear space $C_{\text {lin }} \approx C^{\gamma}$
- Output image should store colours in gamma space again, $C \approx C_{\text {lin }}^{1 / \gamma}$

Linear Space

Gamma Space

Unity

Colour blindness

Reduced or no functionality in one (or more) of the three types of cones

Normal vision

Deuteranopia

Tritanopia

Next week: Ray tracing

