
10. The Rasterization
 Pipeline

COL781: Computer Graphics

Today: Putting it all together

Joe Groff, duriansoftware.com

Epic Games

Transformations Projection Rasterization

Interpolation Texture mapping Visibility

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

Input: vertices in 3D space

Vertices in NDC

Triangles in screen space

Fragments

Shaded fragments

Output: image in framebuffer

Inputs to the pipeline
For each object, we have two streams:

• Vertices with various attributes (position,
colour, texture coordinates, etc.)

• Indices of triangles (or other primitives)

Why? Each vertex is shared between many primitives
(on average ~6 triangles!)

We also have uniform data, common to all vertices/triangles of an object:

• Transformation matrices, texture images, etc.

VERTICES
A:(1, 1, 1) E:(1, 1,-1)
B:(-1, 1, 1) F:(-1, 1,-1)
C:(1,-1, 1) G:(1,-1,-1)
D:(-1,-1, 1) H:(-1,-1,-1)

TRIANGLES
EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

Primitives

Vertex processing
Every vertex is subject to
the same operations:

• Modelling transformation:
object space → world space

• Viewing transformation: world space → camera space

• Projection transformation: camera space → normalized device coordinates

This stage is programmable, done by programmer-specified vertex shader

Output: transformed position in NDC (before division)

Triangle processing
For each triangle (i, j, k):

• Get transformed positions pi, pj, pk of
corresponding vertices

• Clip against the canonical view volume
[−1, 1]3

• Divide by w and transform to pixel
coordinates

Output: clipped triangle(s) in screen space

Rasterization
For each triangle, we will produce
a set of sample points that it covers.

But also: interpolate the vertex
attributes (colour, texture coordinates, etc.) to each covered sample.

We will need these in the next stage!

Output: stream of fragments, i.e. sample-sized pieces of triangle with
interpolated attributes

Fragment processing
We may want to do some computation
to decide the colour of a fragment, e.g.

• Texture lookup

• Lighting computation (next class)

This stage is also programmable: fragment shader

Output: fragment colour as a 4-tuple: red, green, blue, alpha (opacity)

Per-sample operations
• Test each sample’s depth vs. z-buffer

• Blend with existing colour in framebuffer
using alpha

Once all this is done for all objects in the scene, the framebuffer contains the
final rendered image.

Input: vertices in 3D space
(with attributes)

Vertices in NDC
(before division)

Clipped triangles
in screen space

Fragments
(with interpolated attributes)

Shaded fragments
(with RGBA colour and depth)

Output: image in framebuffer

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

Programmer’s view
Initialization:

• Compile vertex and fragment shaders

• Send uniform variables (transformation matrices,
texture images, etc.) to GPU

• For each object: send vertex attributes, triangle indices

Per frame, for each object:

• Update uniform variables

• Request draw

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

Assignment 1
Initialization:

• Compile vertex and fragment shaders

• Send uniform variables (transformation matrices,
texture images, etc.) to GPU

• For each object: send vertex attributes, triangle indices

Per frame, for each object:

• Update uniform variables

• Request draw

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

You will implement most of this…

…not this!
(Well, you will do a little of this too)

Assignment 1
Implement a software rasterization library that plays the role of the GPU,
so that the example programs we provide can run

• Call programmer-defined vertex and fragment shaders

• Implement screen-space transformation, rasterization, barycentric
interpolation

• Add support for supersampling, z-buffering

• Optional: TBA

• For 1-person groups: TBA

Shaders

The vertex shader applies modelling, viewing, projection
transformations to compute the NDC position

The vertex shader is an arbitrary function that can do
whatever you want to compute the NDC position!

Runs on each vertex independently

• Can’t pass information to other vertices

• Can’t have side-effects (e.g. no writing to global
memory, no print statements)

Inputs: attributes of current vertex, uniform variables

Outputs: vertex position in NDC, other attributes to interpolate to fragments

Vertex shader

Vertices in 3D space

Vertices in NDC

The fragment shader is another arbitrary function.

It can do anything (e.g. texture lookup, lighting
computation, etc.) to compute the fragment colour.

Again, runs on each fragment independently

Inputs: attributes interpolated from vertex shader
output, uniform variables

Outputs: fragment colour (RGBA),
optional: modified fragment depth

Fragment shader can change fragment depth but not fragment position! (Why?)

Fragment shader

Shaded fragments

Fragments

Other programmable stages
Modern GPUs have a few more stages we won’t cover:

• Tessellation shaders: subdivide primitives into smaller pieces

• Geometry shader: create new geometry from given primitives

Angel and Shreiner 2012

GPUs
Modern graphics processing units (GPUs)
provide a highly parallelized implementation
of the rasterization pipeline

• Many SIMD cores for running vertex and
fragment shaders in parallel

• Lots of fixed-function hardware for non-
programmable stages (clipping,
rasterization, texture sampling, z-buffering,
etc.)

Discrete GPU card

Integrated GPU (part of CPU die)

Homework problems
1. Figure out a way to draw a pixel-perfect disk with radius r centered at a point

(x,y) in 2D.

Hint: Send a single quad (4 vertices and 2 triangles), and do the point-in-disk test
inside the fragment shader.

2. Figure out a way to draw a pixel-perfect disk with radius r in pixels centered at
the projected location of a 3D point (x,y,z).

Hint: Set all 4 vertices’ position to (x,y,z), but use an extra attribute to move them
to the right corners in the vertex shader.

3. Assignment 1 will be out tonight! Keep an eye out on the course webpage.

