COL781: Computer Graphics

10. The Rasterization
Pipeline

vertex array

® ® uniform stcte 10 element array
® 20 30 0, 2,3),
o © —— i
50 60 2.9
70

' v
;—) vertex shader

v
o
o o
o
o o
Q
v

triangle assembly
W

4

rasterization
v

v
> fragment shader
hd

v
testing ang blending

!” \ {
. , A
‘ AEpic Games

framebuffer

‘-

Joe Groff, duriansoftware.com

Transformations

Interpolation

exture mapping

....

-
L v

.....
\'

Rasterization

Visibility

o1 5 L
5 " Input: vertices in 3D space
. i °2 |
VerteX prOCGSSIr']g ;,'.'E
- o Vertices in NDC

@ Triangles in screen space
D% %ﬂ Fragments
D% E‘ Shaded fragments

Per-sample operations

Output: image in framebufter

Inputs to the pipeline

For each object, we have two streams:

® \/ertices with various (position,
colour, texture coordinates, etc.)

® |ndices of triangles (or other primitives)

Why? Each vertex is shared between many primitives
(on average ~6 triangles!)

We also have

® Transformation matrices, texture images, etc.

ERTICE

ICES
1 40,
1, 1
1
1

J

o

Umw><

R
: (
(-
: (1,
(=11,
TRIANGLES
EHF, GFH,

GHC, DCH,
HED, ADE,

’ l)_l)
’ la_l)
l)_l)

N =
N N NN\
I G T m
N~ —~
i

|
-

|
-
~

FGB, CBG,
ABD, CDB,
EFA, BAF

data, common to all vertices/triangles of an object:

Primitives

O O < : \>3 O 6
® \
1@ . 1 2 1 2 1 2
GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP

0 ° 4 0 ° 4 1 ° 4
V ~ W @3
1 3 5 1 3 5 0 5

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

Vertex processing

Every vertex is subject to
the same operations:

® Modelling transformation:
object space — world space

® \iewing transformation: world space = camera space
® Projection transformation: camera space = normalized device coordinates
This stage is programmable, done by programmer-specitied vertex shader

Output: transformed position in NDC (before division)

Triangle processing

For each triangle (i, j, k):

® Get transtormed positions pj, p;, p« of
corresponding vertices

® Clip against the canonical view volume
=1, 1P

® Divide by w and transform to pixel
coordinates

Output: clipped triangle(s) in screen space

draw i i

: ; don’t draw

Rasterization

.....
-,

For each triangle, we will produce |z
a set of sample points that it covers.

But also: interpolate the vertex
attributes (colour, texture coordinates, etc.) to each covered sample.

We will need these in the next stage!

Output: stream of fragments, i.e. sample-sized pieces of triangle with
interpolated attributes

Fragment processing

We may want to do some computation
to decide the colour of a fragment, e.qg.

® Texture lookup
® | ighting computation (next class)
This stage is also programmable: fragment shader

Output: fragment colour as a 4-tuple: red, green, blue, alpha (opacity)

Per-sample operations

® Test each sample’s depth vs. z-buffer

® Blend with existing colour in framebufter
using alpha

Once all this is done for all objects in the scene, the tframebufter contains the
final rendered image.

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

o . Input: vertices in 3

D space

°4

y (with attributes)
o Vertices in NDC
] (betore division)

Clipped triangles
in screen space

D% %ﬂ Fragments
. (with interpolated attributes)

D% ?_ Shaded fragm
. (with RGBA colour a

ents

nd depth)

Output: image in framebufter

Programmer’s view

Initialization:

Vertex processing

® Compile vertex and fragment shaders

® Send uniform variables (transtormation matrices, Triangle processing

texture images, etc.) to GPU

® For each object: send vertex attributes, triangle indices

Per frame, for each object:

Fragment processing

® Update uniform variables

® Request draw Per-sample operations

Assignment 1

o You will implement most of this...
Initialization:

Vertex processing

® Compile vertex and fragment shaders

® Send unitorm variables (transtormation matrices, Triangle processing

texture images, etc.) to GPU

Rasterization

® For each object: send vertex attributes, triangle indices

Per frame, for each object:

Fragment processing

® Update uniform variables

...not this! Per-sample operations

® Request draw
(Well, you will do a little of this too)

Assignment 1

Implement a software rasterization library that plays the role of the GPU,
so that the example programs we provide can run

® Call programmer-defined vertex and fragment shaders

® Imp\ement screen-space transformation, rasterization, barycentric
interpolation

® Add support for supersampling, z-buftering
® Optional: TBA

® For 1-person groups: 1BA

Shaders

re-vertex-shaderapplies medellingviewingprojection Vertices in 3D space

The vertex shader is an arbitrary function that can do
whatever you want to compute the NDC positionl = [

Runs on each vertex independently
® Can't pass information to other vertices

® Can't have side-effects (e.g. no writing to global

memory, no print statements)
Vertices in NDC

Inputs: attributes of current vertex, uniform variables

Outputs: vertex position in NDC, other attributes to interpolate to fragments

Fragments

The fragment shader is another arbitrary tfunction.

't can do anything (e.g. texture lookup, lighting
computation, etc.) to compute the fragment colour.

Again, runs on each fragment independently

Inputs: attributes interpolated from vertex shader
output, uniform variables

Outputs: fragment colour (RGBA), .
optional: modified fragment depth Shaded fragments

Fragment shader can change fragment depth but not fragment position! (\Why?)

Other programmable stages

Modern GPUs have a few more stages we won't cover:
® Tessellation shaders: subdivide primitives into smaller pieces

® Geometry shader: create new geometry from given primitives

Vertex
Daa

Blencding

Y Y Y

e I e
Bk el Bvalugion ' 5| |
% Stider J \ Sr:der '

Pixel |5 Tedre
Daa Shore ‘

\ J \ J Angel and Shreiner 2012

GPUs

Modern graphics processing units (GPUs)
orovide a highly parallelized implementation

of the rasterization pipeline

® Many SIMD cores tor running vertex ana
fragment shaders in parallel

® | ots of fixed-function hardware for non-
programmable stages (clipping,

rasterization, texture sampling, z-buftering,

etc.)

Processor -
Graphics g

Memory Controller |1/O

System | 5

Agent & r

] - : X
) .- » .
= ‘:" ") ; ” ’
! e 1
3 1 .
e W .:,- o T 5
“lve “iwe 1“"0 : .'
Eadt: (Hpte s ' 3 . '
- I. . 2 - ‘ ol . « i :
" e JTEY % ey & . 'l' mncludin .
".i‘_’ 2 d . J4 : - q ' h 4 ie - | 8
:i;.' .l - . £ R B § : ‘ ¥ . ‘ ¢ - .
l ‘ r
- ’ —
1 Shared L3 Cache** & i
-. - oy

' g @ |
T
- ' !
.~
§ - .
T - g . '

Tessellate Tessellate

Tessellate Tessellate
Clip/Cull Clip/Cull GPU
Rasterize ~ Rasterize Memory

clipcul ‘ Clipicul

Scheduler / Work Distributor |

Homework problems

1. Figure out a way to draw a disk with radius r centered at a point
(x,y) in 2D.

Hint: Send a single quad (4 vertices and 2 triangles), and do the point-in-disk test
inside the fragment shader.

2. Figure out a way to draw a pixel-pertect disk with radius rin centered at
the of a 3D point (x,y,2).

Hint: Set all 4 vertices’ position to (x,y,2), but use an extra attribute to move them
to the right corners in the vertex shader.

3. Assignment 1 will be out tonight! Keep an eye out on the course webpage.

