
9. Texture Filtering
COL781: Computer Graphics

Olano et al. 2001

Texture mapping

Drawing textured triangles
Inputs: (i) mesh with vertex positions (x,y,z) and texture coordinates (u,v),
(ii) texture image

Naïve algorithm:

for each triangle (i,j,k):
 for each rasterized sample:
 (u,v) = interpolate (ui,vi), (uj,vj), (uk,vk)
 texColor = sample texture at (u,v)
 sample.color = texcolor

High-res reference (1280×1280) Point sampling (256×256)

“Easy, just do supersampling”

Yes, but:

• Higher frequencies, finer detail ⇒

need more samples to avoid aliasing

• Perspective projection creates
arbitrarily high frequencies!

• Texture sampling can be expensive
(memory latency)

Can we antialias textures more
efficiently?Supersampling (256×256, 512 spp)

Texture mapping creates a very irregular sampling pattern!

• Some regions are magnified: multiple screen samples per texture pixel (texel)

• Some regions are “minified”: multiple texels per sample

Marschner and Shirley

Magnification
Easy case, no aliasing. Just need to “look up”
texture value at non-integer location (u,v)

Signal reconstruction ≈ interpolation

Simple and crude: nearest neighbour

(u,v)

(u,v)

Bilinear interpolation
If sample point lay exactly on a row, we could do
linear interpolation:

f (u,v) = lerp(s, f00, f10)
 = (1−s) f00 + s f10

In general position:

f (u,v) = lerp(t, lerp(s, f00, f10),
 lerp(s, f01, f11))

 = (1−s)(1−t) f00 + s (1−t) f10 + (1−s) t f01 + s t f01

(u,v)

s

f00 f10

f01 f11

(u,v)

t

f00 f10

f01 f11

Minification: How to find a pixel’s “footprint”?

Evaluated for each sample while rasterizing the triangle
(analytically… or just take differences with adjacent pixels)

M
ar

sc
hn

er
 a

nd
 S

hi
rle

y

To start, let’s assume the footprint is square with side D

⇒ Need to compute (weighted?) average of D2 texels!

Solution:

• Precompute filtered (blurred) version of texture

• For each sample, look up just 1 texel in filtered image

But D will be different for different pixels…

Mipmaps
Store pre-filtered versions of texture image
for many different filter sizes

(Basically the same as image pyramids
in image processing / computer vision)

Compute recursively by averaging
and downsampling

Proposed by Lance Williams in 1983.
MIP = multum in parvo (“much in little”)

mipmap level (k)

Level 0 (128×128) Level 1 (64×64) Level 2 (32×32) Level 3 (16×16)

Level 4 (8×8) Level 5 (4×4) Level 6 (2×2) Level 7 (1×1)

Ren Ng

Everything at level 0 (no filtering)

Everything at level 2 (downsampled by 4x)

Everything at level 4 (downsampled by 16x)

Using the mipmap
1 texel at level k ≈ square of width 2k texels in original texture

So if pixel footprint is square of width D, look up mipmap at level k = log2 D

How to compute “width” in general?

D = max()

D = max(,

)

(Why max and not min or average?)

|du/dx | , |dv/dx | , |du/dy | , |dv/dy |

(du/dx)2 + (dv/dx)2

(du/dy)2 + (dv/dy)2

Visualization of mipmap level

Mipmap level k = log2 D rounded to nearest integer

Mipmapped textures

Visualization of mipmap level

Continuous mipmap level k = log2 D

Basic mipmapping produces
discontinuous “jumps” in texture detail

Trilinear filtering: interpolate
between results of two adjacent
mipmap levels

• Bilinear interpolation at level ⌊k⌋

• Bilinear interpolation at level ⌊k⌋+1

• Linear interpolation between them

Point sampling (256×256)Supersampled reference (256×256, 512 spp)

Supersampled reference (256×256, 512 spp) Mipmap with trilinear filtering

At grazing angles, pixel footprint is very stretched out!

Mipmaps only allow isotropic filtering (same in all directions)

Supersampled reference (256×256, 512 spp) Elliptical weighted average (EWA)

Anisotropic filtering
Treat pixel as circular (e.g. Gaussian kernel)
→ maps to ellipse in texture space
→ approximate as line of blobs

Choose mipmap level using minor axis

Take multiple samples along major axis

This is what GPUs do when they say e.g. “16x anisotropic filtering”

[Original idea by Greene and Heckbert 1986, faster approximation using mipmaps by
McCormack et al. 1999]

Not on the exam :)

McCormack et al. 1999

Ruslan

No filtering Mipmapping Anisotropic filtering

Homework
Modify the starter code to draw this:

vertices = {
 (-0.8, 0.0, 0.0, 1.0),
 (-0.4, -0.8, 0.0, 1.0),
 (0.8, 0.8, 0.0, 1.0),
 (-0.4, -0.4, 0.0, 1.0)
};
indices[] = {
 (0, 1, 3),
 (1, 2, 3)
};

