
7. Perspective
 and Visibility

COL781: Computer Graphics

Re
ne

 M
ag

rit
te

, T
he

 B
la

nk
 S

ig
na

tu
re

• Object space → world space

• World space → camera space

• Camera space → projection plane
(division by z)

• Projection plane → NDC

• NDC → screen coordinates

Two problems:

• Every step is a matrix, except
perspective division.

• Final result has lost depth information
(the z coordinate): don’t know which
points are in front of which

Perspective projection:
(x,y,z) → (xd/z, yd/z)

What about just (xd/z, yd/z, z)?
−z

x,y

d

q = (u,v,d)

Scene point
p = (x,y,z)

Image plane

Homogeneous coordinates revisited

Recall points vs. vectors: p = , v =

Let’s generalize: points can have any w ≠ 0

[
x
y
1] [

x
y
0]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Any point in homogeneous coordinates p̂ = with w ≠ 0

corresponds to the 2D point p = (x/w, y/w)
[

x
y
w]

The main idea: Points in 2D correspond to lines through
the origin in 3D!

All points p̂ = on a line represent the same point

p = (x, y) where the line meets the plane w = 1

Analogy: Various tuples (2,4), (−1,−2), (5,10), … all
represent the same rational number ½

Linear and affine transformations still work as before!
[Worked example on whiteboard…]

[
cx
cy
c]

Perspective projection: (x,y,z) → (xd/z, yd/z)

With homogeneous coordinates:

 → ~

Corresponding matrix:

Hang on, we’ve still lost depth information.

x
y
z
1

x
y
z

z/d

xd/z
yd/z

d

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

−z

x,y

d

q = (u,v,d)

Scene point
p = (x,y,z)

Image plane

LearnOpenGL.com

LearnOpenGL.com

Visibility a.k.a. hidden surface removal
Which surfaces are visible? Those that are not hidden by nearer surfaces.

Triangles drawn without
considering depth / visibility

Correct result

To retain depth information, let’s copy w into the z-coordinate:

 → ~ → ~

Matrix:

x
y
z
1

x
y
z

z/d

xd/z
yd/z

d

x
y
z
1

x
y

1/d
z/d

xd/z
yd/z
1/z

1 0 0 0
0 1 0 0
0 0 0 1/d
0 0 1/d 0

Scene in camera space
(x, y, z)

−z

x

After perspective transformation
(xd/z, yd/z, 1/z)

−z′

x′

The view frustum
In theory, horizontal and vertical angles
of view define an infinite view cone

In practice, cut off at near and far
“clipping planes”: view frustum

Why?

• Exclude objects behind the camera

• Finite precision of depth coordinate
(we’ll see why shortly)

Angel & Shreiner, Interactive Computer Graphics

Marschner & Shirley, Fundamentals of Computer Graphics

M =

2 |n |
r − l 0 r + l

r − l 0

0 2 |n |
t − b

t + b
t − b 0

0 0 |n | + | f |
|n | − | f |

2 |n | | f |
|n | − | f |

0 0 −1 0

perspective
transformation

affine
transformation

M

(ℓ,b,−n)

(r,t,−n)

(−1,−1,−1)

(1,1,1)

z = −f

z = −n

Normalized
device coordinates

(for real this time)

Clipping

• Discard triangles outside view frustum

• Clip triangles partially intersecting view frustum

Usually implemented in homogeneous coordinates (before division)

Keenan Crane

OK, so how do we actually use z (or 1/z) to handle visibility?

Painter’s algorithm
Draw objects in “depth order” from farthest to nearest.
Nearer objects overwrite pixels painted by farther ones.

Can such a depth ordering always be found?

No:

OK, what if we do the ordering per triangle instead of per object?

The Lord of the Rings: The Fellowship of the Ring Stockbusters

The painter’s algorithm cannot handle occlusion cycles without splitting at least
one of the triangles.

Marschner & Shirley, Fundamentals of Computer Graphics

Practical visibility testing
Evidently we need to make visibility decisions per sample, not per triangle!

One way:

for each sample:
 for each triangle that covers it:
 if triangle is closest surface seen so far:
 set sample.colour to triangle.colour

This is the basic idea behind ray tracing
(covered later in the course)

Another way, more compatible with the rasterization pipeline:

for each triangle:
 for each sample that it covers:
 if triangle is closest surface seen by sample so far:
 set sample.colour to triangle.colour

This is what’s actually done on the GPU!

Each sample needs to remember the closest depth it has seen, until the entire
scene is rendered.

Z-buffering
Framebuffer now contains a colour buffer and a depth buffer (a.k.a. z-buffer)

Grand Theft Auto V
via Adrian Courrèges

Colour Depth

drawSample(x,y,z, rgb):
 if z < zbuffer[x,y]:
 color[x,y] = rgb
 zbuffer[x,y] = z
 else:
 # do nothing

Z-buffer can only store depth up to finite precision!

Different surfaces can map to same (rounded) depth:“z-fighting”

songho.ca

Rasterization starter code

Modify it to draw a triangle!

Warm-up for Assignment 1 (end of this
week)

