COL781: Computer Graphics

- Object space \rightarrow world space
- World space \rightarrow camera space
- Camera space \rightarrow projection plane (division by z)
- Projection plane \rightarrow NDC
- NDC \rightarrow screen coordinates

Two problems:

- Every step is a matrix, except perspective division.
- Final result has lost depth information (the z coordinate): don't know which points are in front of which

Perspective projection:
$(x, y, z) \rightarrow(x d / z, y d / z)$
What about just ($x d / z, y d / z, z$)?

Homogeneous coordinates revisited

Recall points vs. vectors: $\mathbf{p}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]$
Let's generalize: points can have any $w \neq 0$

Any point in homogeneous coordinates $\hat{\mathbf{p}}=\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$ with $w \neq 0$ corresponds to the 2 D point $\mathbf{p}=(x / w, y / w)$

The main idea: Points in 2D correspond to lines through
 the origin in 3D!

All points $\hat{\mathbf{p}}=\left[\begin{array}{c}c x \\ c y \\ c\end{array}\right]$ on a line represent the same point
$\mathbf{p}=(x, y)$ where the line meets the plane $w=1$
Analogy: Various tuples $(2,4),(-1,-2),(5,10), \ldots$ all represent the same rational number $1 / 2$

Linear and affine transformations still work as before! [Worked example on whiteboard...]
Perspective projection: $(x, y, z) \rightarrow(x d / z, y d / z)$
With homogeneous coordinates:
$\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}x \\ y \\ z \\ z / d\end{array}\right] \sim\left[\begin{array}{c}x d / z \\ y d / z \\ d\end{array}\right]$
Corresponding matrix: $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 / d & 0\end{array}\right]$

Hang on, we've still lost depth information.

目

Visibility a.k.a. hidden surface removal

Which surfaces are visible? Those that are not hidden by nearer surfaces.

Triangles drawn without considering depth / visibility

Correct result

To retain depth information, let's copy w into the z-coordinate:

$$
\left.\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \stackrel{[}{x} \begin{array}{c}
y \\
1 / d \\
z / d
\end{array}\right] \sim\left[\begin{array}{c}
x d / z \\
y d / z \\
1 / z
\end{array}\right]
$$

Matrix:
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 / d \\ 0 & 0 & 1 / d & 0\end{array}\right]$

The view frustum

In theory, horizontal and vertical angles of view define an infinite view cone

In practice, cut off at near and far "clipping planes": view frustum

Why?

- Exclude objects behind the camera
- Finite precision of depth coordinate (we'll see why shortly)

Marschner \& Shirley, Fundamentals of Computer Graphics

Clipping

Keenan Crane

- Discard triangles outside view frustum
- Clip triangles partially intersecting view frustum Usually implemented in homogeneous coordinates (before division)

OK, so how do we actually use z (or $1 / z$) to handle visibility?

Painter's algorithm

Draw objects in "depth order" from farthest to nearest.
Nearer objects overwrite pixels painted by farther ones.

Can such a depth ordering always be found?

No:

OK, what if we do the ordering per triangle instead of per object?

The painter's algorithm cannot handle occlusion cycles without splitting at least one of the triangles.

Practical visibility testing

Evidently we need to make visibility decisions per sample, not per triangle!
One way:
for each sample: for each triangle that covers it:
if triangle is closest surface seen so far: set sample.colour to triangle.colour

This is the basic idea behind ray tracing (covered later in the course)

Another way, more compatible with the rasterization pipeline:

for each triangle:

\longrightarrow for each sample that it covers:

if triangle is closest surface seen by sample so far: set sample.colour to triangle.colour

This is what's actually done on the GPU!
Each sample needs to remember the closest depth it has seen, until the entire scene is rendered.

Z-buffering

Framebuffer now contains a colour buffer and a depth buffer (a.k.a. z-buffer)


```
drawSample(x,y,z, rgb):
    if z < zbuffer[x,y]:
        color[x,y] = rgb
        zbuffer[x,y] = z
    else:
        # do nothing
```


Z-buffer can only store depth up to finite precision!

Different surfaces can map to same (rounded) depth:"z-fighting"

Rasterization starter code

Modify it to draw a triangle!
Warm-up for Assignment 1 (end of this week)

