
6. Perspective
 Projection

COL781: Computer Graphics

Blender manualLuciano Testoni

Last class’s homework
Given unit vectors u and v, find a way to construct a rotation matrix R which
maps u to v, i.e. Ru = v. Is it unique, or are there many different such rotations?

u

v

R = ?

Hierarchical transformations
hip

chest
head
left upper arm

left lower arm
left hand

right upper arm
right lower arm

right hand
left upper leg

…
…

Hierarchical transformations
hip

chest
head
left upper arm

left lower arm
left hand

right upper arm
right lower arm

right hand
left upper leg

…
…

Shapes are specified in the corresponding part’s
local coordinate frame

Each part’s transformation is relative to its parent

Given point in left hand frame,

Vec3 world_point
 = world_from_hip * hip_from_chest
 * chest_from_ularm * uarm_from_llarm
 * llarm_from_lhand * lhand_point

or simply

Mat3x3 world_from_lhand
 = world_from_hip * hip_from_chest
 * chest_from_ularm * uarm_from_llarm
 * llarm_from_lhand

Mat3x3 world_from_lhand
 = world_from_hip * hip_from_chest
 * chest_from_ularm * uarm_from_llarm
 * llarm_from_lhand

Mat3x3 world_from_lhand
 = world_from_llarm * llarm_from_lhand

Going down the tree:

Push parent’s matrix on stack

Multiply child’s matrix on right

Going back up: Pop parent’s matrix from stack

hip
chest

head
left upper arm

left lower arm
left hand

right upper arm
right lower arm

right hand
left upper leg

…
…

Scene graph
Usually the entire scene is represented
as a tree / DAG!

Nodes may contain geometry or other content

Edges contain transformations

Why a DAG? So we can reuse the same
geometry multiple times: instancing

Scene

Camera LightsCar ⋯

Door Wheel

Handle

So far we know:

• How to draw 2D shapes

• How to transform 2D and 3D shapes

Today: How to draw 3D shapes on a 2D screen?

Parallel projection

Easy way: Just drop one of the coordinates lol

• Useful for engineering drawings

• Doesn’t match how eyes and cameras
actually see things!

Angel & Shreiner, Interactive Computer Graphics

Perspective

Jeff Lynch

Algorithmic drawing
in the 1500s

Albrecht Dürer

A point is drawn where the ray from
the viewpoint meets the image plane.

Pinhole camera model
3D object

camera / eye / etc.

sensor / retina aperture
/ pupil

Assume camera is at the origin,
pointing in the direction −z.

Where is the point p projected to?

Similarly v = yd/z

(W.l.o.g., let’s take d = −1)

x
z

=
u
d

u =
xd
z

−z

x,y

d

q = (u,v,d)

Scene point
p = (x,y,z)

Image plane

What if the camera is not at the origin and/or not looking along −z?

Just change to a coordinate system in which it is.

Viewing transformation
Usually, user specifies:

• center of projection c

• target point t or view vector v = (t−c)/‖t−c‖

• “up vector” u

Construct orthonormal basis

e2 = (v×u)/‖v×u‖
e1 = v×e2
e3 = −v

Camera → world: M = [e1 e2 e3 c]

World → camera: M−1

Once point is in camera space, projected point = [xd/z
yd/z]

Object space

World space

Camera space

Canon EF Lens Work III

Ren NgCS184/284A

Perspective Composition

16 mm (110°)

Up close and zoomed wide
with short focal length

Ren Ng

Ren NgCS184/284A

Perspective Composition

200 mm (12°)

Walk back and zoom in
with long focal length

Ren Ng

Choose transformation so that points in field of view fall inside [−1,1] × [−1,1]

(ℓ,b)
(r,b)

(ℓ,t)
(r,t)

−1

−1

1

1

“Normalized
device coordinates”

Coordinates after
perspective division

(Actually there’s a bit more in NDC… Will correct later!)

Puzzle:

What is the maximum possible angle of view in perspective projection?

Why does no graphics application or game let you set
your angle of view to anything remotely close to it?

Wouter van Oortmerssen

Angle of view: 90°

Wouter van Oortmerssen

Angle of view: 120°

Wouter van Oortmerssen

Angle of view: 150°

Wouter van Oortmerssen

Angle of view: 170°

90°

120°

150°

170°

The human visual system is actually quite good at compensating
for differences in angle of view… but only up to a point.

Movie shot with
small angle of view

Front row
seats :(

And finally, we can rasterize our triangles!

−1

−1

1

1 (0,0) W

H
(W,H)

Normalized
device coordinates

Screen coordinates
(locations of pixels)

• Object space → world space

• World space → camera space

• Camera space → projection plane
(division by z)

• Projection plane → NDC

• NDC → screen coordinates

Two problems:

• Every step is a matrix, except
perspective division.

• Final result has lost depth information
(the z coordinate): don’t know which
points are in front of which

Homework exercise: DIY 3D GFX
Draw a cube! (manually, or with Excel,
or using a plotting library)

Start with vertices at (±1,±1,±1),
translate somewhere along −z, maybe
apply some rotation, then draw the
projected points and join them with
edges.

Keenan Crane

Translated by (2,3,−5),
no rotation

