
5. Affine 
    Transformations
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B
le

nd
er

 m
an

ua
l



Continuing from last class…

Rotation

Nonuniform scaling
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[cos θ −sin θ
sin θ cos θ ]

[
sx 0
0 sy]

Arbitrary linear transformation

[a11 a12
a21 a22]
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Rotations in 3D

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

cos θ −sin θ 0
sin θ cos θ 0

0 0 1
Rotation about x-axis 
= Rotation in yz-plane

Rotation about y-axis 
= Rotation in zx-plane

Rotation about z-axis 
= Rotation in xy-plane

x

y

z

Rotation 
about x-axis

Rotations about the coordinate axes:

Are these all the possible rotations?



Rotations in 3D
Are these all possible rotations? 

Not at all! 

 
A rotation is any transformation which: 

• preserves distances and angles 

• preserves orientation 

Equivalently, RTR = 𝐈, and det R = 1



Rodrigues’ rotation formula
Rotation around an axis n by angle θ: 

R = 𝐈 cos θ + [n]× sin θ + n nT (1 − cos θ) 

where [n]× =  

How? Hints: 

• [n]× is the “cross-product matrix”: [n]× v = n × v 

• Assume an orthogonal basis n, e1, e2 and see what R does to it

0 −nz ny

nz 0 −nx

−ny nx 0

semath.info



Euler angles
Any 3D rotation can also be expressed using 3 rotations about coordinate axes: 

e.g. R = Rz(θz) Ry(θy) Rx(θx) 

θx, θy, θz are called Euler angles 

Also called “roll, pitch, yaw” in aircraft 

Note: Order of rotation matters! Need to 
know which angle for which axis, and also 
which order to multiply them. roll pitch

yaw

Tannous 2018



Other rotation representations (not covering now): 

• Angle vector / exponential map 

θ = θe 

• Quaternions 

q = s + ix + jy + kz 

• Rotors 

uv = u · v + u ∧ v



Homework exercise
Given unit vectors u and v, find a way to construct a rotation matrix R which 
maps u to v, i.e. Ru = v. Is it unique, or are there many different such rotations?

u

v

R = ?



Translations
Move all points by a constant displacement 

T(p) = p + t 

So a linear transformation followed by a translation 
will be of the form T(p) = Ap + b 

A bit tedious to compose: 

T2(T1(p)) = A2(A1p + b1) + b2 = (A2A1)p + (A2b1 + b2)
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Suppose I have both points and directions/velocities/etc. to transform.

Original: 
p = (0.5, 0.5) 

v = (1, 0)
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Rotation by 45°: 
p = (0, 0.7) 

v = (0.7, 0.7)
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p v?

Translation by (0, 0.5): 
p = (0.5, 1) 
v = (1, 0.5)?

It seems translation should only affect some things, not others. But why?



Are points really vectors?

p1 + p2 = ? 

5p3 = ? 

How about I just choose an origin and 
then add the displacement vectors?

p1

p2p3



Points vs. vectors
Points form an affine space A over the vector space V. 

• Point-vector addition: A × V → A 

• Point subtraction: A × A → V 

with the obvious properties e.g. (p + u) + v = p + (u + v), p + (q − p) = q, etc.



Example: midpoint of two points p and q 

m = ½(p + q)? 

Not allowed! But can rewrite as 

m = p + ½(q − p) = q + ½(p − q) 

In fact it’s valid to take any affine combination w1p1 + w2p2 + ⋯ + wnpn 
as long as w1 + w2 + ⋯ + wn = 1. So we will allow this too. 

(Exercise: Check that this can be done using only the affine space operations)

p 

q 

m 



Coordinate frames
To specify a vector numerically, we need a basis 

v = v1e1 + v2e2 + ⋯    ⇔    v =  in the basis 

To specify a point numerically, we need a coordinate frame: origin and basis 

p = p1e1 + p2e2 + ⋯ + o    so maybe    p = ?

v1
v2
⋮

p1
p2
⋮
1

v

e1

e2

p

e1

e2

o



Write a point as an (n+1)-tuple p =  to mean p = p1e1 + p2e2 + ⋯ + o. 

Linear transformations are now , mapping ei → Aei and o → o 

e.g. 

p1
p2
⋮
1

[A 0
0 1]

sx 0 0
0 sy 0
0 0 1

px
py

1
=

sxpx
sypy

1



Translation by a vector t: , mapping ei → ei but o → o + t 

e.g. 

[I t
0 1]

1 0 tx
0 1 ty
0 0 1

px
py

1
=

px + tx
py + ty

1



What about vectors? 

v = v1e1 + v2e2 + ⋯ + 0o    ⇔    v =  

Apply a translation: 

v1
v2
⋮
0

1 0 tx
0 1 ty
0 0 1

vx
vy

0
=

vx
vy

0



w = 1

x

y

w = 1

x

y

px
py

1

vx
vy

0



Homogeneous coordinates
Add an extra coordinate w at the end. 

• Points: w = 1 

• Vectors: w = 0 

Transformations become (n+1)×(n+1) matrices 

• Linear transformations:  

• Translations: 

[A 0
0 1]

[I t
0 1]



General affine transformation:  

• Corresponds to linearly transforming basis vectors ei → Aei 
and translating origin o → o + t 

• Maps parallel lines to parallel lines, but does not preserve the origin 

• Composition: just matrix multiplication again.

[A t
0 1]
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Example: Rotate by given angle θ about given point p (instead of about origin)
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Translate by −p
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Rotate by θ 
about origin
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Translate by p

M = T(p) R(θ) T(−p)



Given coordinates of p in frame 1, what are its coordinates in frame 2? 

p = p1e1 + p2e2 + ⋯ + o 

Write coords of e1, e2, … and o in frame 2: 

 

Then p = 

ei =

∙
∙
⋮
0

, o =

∙
∙
⋮
1

∙ ∙ ⋯ ∙
∙ ∙ ⋯ ∙
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

p1
p2
⋮
1

p

e1 e2 o

Change of coordinates looks 
exactly like a transformation matrix!



Active transformation: Moves points 
to new locations in the same frame 

Change of coordinates (passive 
transformation): Gives coordinates 
of the same point in a different frame 

Matrices are the same but the meaning 
is different! You have to keep track. 

e.g.  world_driver = world_from_car * car_driver
Vec3 Mat3x3 Vec3



Puzzle: 

• To draw a transformed polygon, I can just transform the vertices. 

• To draw a shape specified by a function f (x,y) ≤ 0, I can just test each pixel (x,y). 

How can I draw a transformed version of a shape specified by a function?

x2 + y2 ≤ r2

M


