COL781: Computer Graphics Affine

Continuing from last class...

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Nonuniform scaling

Rotations in 3D

Rotations about the coordinate axes:

$$
\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]} & {\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]} \\
\text { Rotation about } x \text {-axis } & \text { Rotation about } y \text {-axis } \\
=\text { Rotation in yz-plane } & \text { = Rotation in zx-plane }
\end{array}
$$

Rotation about z-axis
$=$ Rotation in $x y$-plane

Are these all the possible rotations?

Rotations in 3D

Are these all possible rotations?

Not at all!

A rotation is any transformation which:

- preserves distances and angles
- preserves orientation

Equivalently, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$, and $\operatorname{det} \mathbf{R}=1$

Rodrigues' rotation formula

Rotation around an axis \mathbf{n} by angle θ :

$$
\begin{aligned}
\mathbf{R}= & \mathbf{I} \cos \theta+[\mathbf{n}]_{\times} \sin \theta+\mathbf{n} \mathbf{n}^{\top}(1-\cos \theta) \\
& \text { where }[\mathbf{n}]_{\times}=\left[\begin{array}{ccc}
0 & -n_{z} & n_{y} \\
n_{z} & 0 & -n_{x} \\
-n_{y} & n_{x} & 0
\end{array}\right]
\end{aligned}
$$

How? Hints:

- $[\mathbf{n}]_{\times}$is the "cross-product matrix": $[\mathbf{n}]_{\times} \mathbf{v}=\mathbf{n} \times \mathbf{v}$
- Assume an orthogonal basis $\mathbf{n}, \mathbf{e}_{1}, \mathbf{e}_{2}$ and see what \mathbf{R} does to it

Euler angles

Any 3D rotation can also be expressed using 3 rotations about coordinate axes:

$$
\text { e.g. } \mathbf{R}=\mathbf{R}_{z}\left(\theta_{z}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{x}\left(\theta_{x}\right)
$$

$\theta_{x}, \theta_{y}, \theta_{z}$ are called Euler angles
Also called "roll, pitch, yaw" in aircraft

Note: Order of rotation matters! Need to know which angle for which axis, and also which order to multiply them.

Other rotation representations (not covering now):

- Angle vector / exponential map

$$
\theta=\theta \mathbf{e}
$$

- Quaternions

$$
\mathbf{q}=s+i x+j y+k z
$$

- Rotors

$$
\mathbf{u v}=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \wedge \mathbf{v}
$$

Homework exercise

Given unit vectors \mathbf{u} and \mathbf{v}, find a way to construct a rotation matrix \mathbf{R} which $\operatorname{maps} \mathbf{u}$ to \mathbf{v}, i.e. $\mathbf{R u}=\mathbf{v}$. Is it unique, or are there many different such rotations?

Translations

Move all points by a constant displacement

$$
T(\mathbf{p})=\mathbf{p}+\mathbf{t}
$$

So a linear transformation followed by a translation will be of the form $T(\mathbf{p})=\mathbf{A p}+\mathbf{b}$

A bit tedious to compose:

$$
T_{2}\left(T_{1}(\mathbf{p})\right)=\mathbf{A}_{2}\left(\mathbf{A}_{1} \mathbf{p}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}=\left(\mathbf{A}_{2} \mathbf{A}_{1}\right) \mathbf{p}+\left(\mathbf{A}_{2} \mathbf{b}_{1}+\mathbf{b}_{2}\right)
$$

Suppose I have both points and directions/velocities/etc. to transform.

Original:

$$
\begin{gathered}
\mathbf{p}=(0.5,0.5) \\
\mathbf{v}=(1,0)
\end{gathered}
$$

Rotation by 45° :

$$
\begin{gathered}
\mathbf{p}=(0,0.7) \\
\mathbf{v}=(0.7,0.7)
\end{gathered}
$$

Translation by (0, 0.5):

$$
\begin{gathered}
\mathbf{p}=(0.5,1) \\
\mathbf{v}=(1,0.5) ?
\end{gathered}
$$

It seems translation should only affect some things, not others. But why?

Are points really vectors?

$$
\begin{aligned}
& \mathbf{p}_{1}+\mathbf{p}_{2}=? \\
& 5 \mathbf{p}_{3}=?
\end{aligned}
$$

How about I just choose an origin and then add the displacement vectors?

Points vs. vectors

Points form an affine space A over the vector space V.

- Point-vector addition: $A \times V \rightarrow A$
- Point subtraction: $A \times A \rightarrow V$
with the obvious properties e.g. $(\mathbf{p}+\mathbf{u})+\mathbf{v}=\mathbf{p}+(\mathbf{u}+\mathbf{v}), \mathbf{p}+(\mathbf{q}-\mathbf{p})=\mathbf{q}$, etc.

Example: midpoint of two points \mathbf{p} and \mathbf{q}

$$
m=1 / 2(p+q) ?
$$

Not allowed! But can rewrite as

$$
\mathbf{m}=\mathbf{p}+1 / 2(\mathbf{q}-\mathbf{p})=\mathbf{q}+1 / 2(\mathbf{p}-\mathbf{q})
$$

In fact it's valid to take any affine combination $w_{1} \mathbf{p}_{1}+w_{2} \mathbf{p}_{2}+\cdots+w_{n} \mathbf{p}_{n}$ as long as $w_{1}+w_{2}+\cdots+w_{n}=1$. So we will allow this too.
(Exercise: Check that this can be done using only the affine space operations)

Coordinate frames

To specify a vector numerically, we need a basis

$$
\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\cdots \quad \Leftrightarrow \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots
\end{array}\right] \text { in the basis }
$$

To specify a point numerically, we need a coordinate frame: origin and basis

$$
\mathbf{p}=p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+\mathbf{o} \quad \text { so maybe } \quad \mathbf{p}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
1
\end{array}\right] ?
$$

Write a point as an $(n+1)$-tuple $\mathbf{p}=\left[\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ 1\end{array}\right]$ to mean $\mathbf{p}=p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+\mathbf{o}$.

Linear transformations are now $\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{0} & 1\end{array}\right]$, mapping $\mathbf{e}_{i} \rightarrow \mathbf{A} \mathbf{e}_{i}$ and $\mathbf{0} \rightarrow \mathbf{0}$

$$
\text { e.g. }\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} p_{x} \\
s_{y} p_{y} \\
1
\end{array}\right]
$$

Translation by a vector $\mathbf{t}:\left[\begin{array}{ll}\mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right]$, mapping $\mathbf{e}_{i} \rightarrow \mathbf{e}_{i}$ but $\mathbf{o} \rightarrow \mathbf{o}+\mathbf{t}$
e.g. $\left[\begin{array}{ccc}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right]=\left[\begin{array}{c}p_{x}+t_{x} \\ p_{y}+t_{y} \\ 1\end{array}\right]$

What about vectors?

$$
\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\cdots+0 \mathbf{o} \quad \Leftrightarrow \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
0
\end{array}\right]
$$

Apply a translation:

$$
\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
0
\end{array}\right]=\left[\begin{array}{l}
v_{x} \\
v_{y} \\
0
\end{array}\right]
$$

Homogeneous coordinates

Add an extra coordinate w at the end.

- Points: $w=1$
- Vectors: $w=0$

Transformations become $(n+1) \times(n+1)$ matrices

- Linear transformations: $\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{0} & 1\end{array}\right]$
- Translations: $\left[\begin{array}{ll}\mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right]$

General affine transformation: $\left[\begin{array}{ll}\mathbf{A} & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right]$

- Corresponds to linearly transforming basis vectors $\mathbf{e}_{i} \rightarrow \mathbf{A} \mathbf{e}_{i}$ and translating origin $\mathbf{0} \rightarrow \mathbf{0 + t}$
- Maps parallel lines to parallel lines, but does not preserve the origin
- Composition: just matrix multiplication again.

Example: Rotate by given angle θ about given point \mathbf{p} (instead of about origin)

$$
M=T(p) R(\theta) T(-p)
$$

Given coordinates of \mathbf{p} in frame $\mathbf{1}$, what are its coordinates in frame 2 ?

$$
\mathbf{p}=p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+\mathbf{o}
$$

Write coords of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$ and \mathbf{o} in frame 2:

$$
\begin{gathered}
\mathbf{e}_{i}=\left[\begin{array}{c}
\bullet \\
\bullet \\
\vdots \\
0
\end{array}\right], \quad \mathbf{o}=\left[\begin{array}{c}
\bullet \\
\vdots \\
1
\end{array}\right] \\
\text { Then } \mathbf{p}=\left[\begin{array}{cccc}
\bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
1
\end{array}\right] \\
\mathbf{e}_{1} \\
\mathbf{e}_{2}
\end{gathered}
$$

Change of coordinates looks exactly like a transformation matrix!

Active transformation: Moves points to new locations in the same frame

Change of coordinates (passive transformation): Gives coordinates of the same point in a different frame

Matrices are the same but the meaning
 is different! You have to keep track.

$$
\begin{gathered}
\text { e.g. world_driver }=\text { world_from_car } \\
\operatorname{Vec} 3
\end{gathered} \underset{\operatorname{Mat} 3 \times 3}{\text { car_driver }}
$$

Puzzle:

- To draw a transformed polygon, I can just transform the vertices.
- To draw a shape specified by a function $f(x, y) \leq 0$, I can just test each pixel (x, y).

How can I draw a transformed version of a shape specified by a function?

