COL781: Computer Graphics 5. Affine Transformations

m

Continuing from last class...

Rotations in 3D

Rotations about the coordinate axes:

Are these all the possible rotations?

Rotations in 3D

Are these all possible rotations?

Not at all!

A rotation is any transformation which:

- preserves distances and angles
- preserves orientation

Equivalently, $\mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I}$, and det $\mathbf{R} = 1$

Rodrigues' rotation formula

Rotation around an axis **n** by angle θ :

How? Hints:

- $[\mathbf{n}]_{\times}$ is the "cross-product matrix": $[\mathbf{n}]_{\times} \mathbf{v} = \mathbf{n} \times \mathbf{v}$
- Assume an orthogonal basis **n**, **e**₁, **e**₂ and see what **R** does to it

Euler angles

 θ_x , θ_y , θ_z are called Euler angles

Also called "roll, pitch, yaw" in aircraft

Note: Order of rotation matters! Need to know which angle for which axis, and also which order to multiply them.

Other rotation representations (not covering now):

• Angle vector / exponential map

• Rotors

Homework exercise

Given unit vectors **u** and **v**, find a way to construct a rotation matrix **R** which maps u to v, i.e. Ru = v. Is it unique, or are there many different such rotations?

Translations

Move all points by a constant displacement

So a linear transformation followed by a translation will be of the form $T(\mathbf{p}) = \mathbf{A}\mathbf{p} + \mathbf{b}$

A bit tedious to compose:

 $T_2(T_1(\mathbf{p})) = \mathbf{A}_2(\mathbf{A}_1\mathbf{p} + \mathbf{b}_1) + \mathbf{b}_2 = (\mathbf{A}_2\mathbf{A}_1)\mathbf{p} + (\mathbf{A}_2\mathbf{b}_1 + \mathbf{b}_2)$

Suppose I have both points and directions/velocities/etc. to transform.

It seems translation should only affect some things, not others. But why?

Translation by (0, 0.5): $\mathbf{p} = (0.5, 1)$ $\mathbf{v} = (1, 0.5)?$

Are points really vectors?

$p_1 + p_2 = ?$ $5p_3 = ?$

How about I just choose an origin and then add the displacement vectors?

Points vs. vectors

Points form an affine space A over the vector space V.

- Point-vector addition: $A \times V \rightarrow A$
- Point subtraction: $A \times A \rightarrow V$

with the obvious properties e.g. $(\mathbf{p} + \mathbf{u}) + \mathbf{v} = \mathbf{p} + (\mathbf{u} + \mathbf{v}), \mathbf{p} + (\mathbf{q} - \mathbf{p}) = \mathbf{q}$, etc.

Example: midpoint of two points **p** and **q**

Not allowed! But can rewrite as

In fact it's valid to take any affine combination $w_1\mathbf{p}_1 + w_2\mathbf{p}_2 + \cdots + w_n\mathbf{p}_n$ as long as $w_1 + w_2 + \cdots + w_n = 1$. So we will allow this too.

(Exercise: Check that this can be done using only the affine space operations)

$m = p + \frac{1}{2}(q - p) = q + \frac{1}{2}(p - q)$

Coordinate frames

To specify a vector numerically, we need a basis

To specify a point numerically, we need a coordinate frame: origin and basis

 $p = p_1 e_1 + p_2 e_2 + \dots + o$ so n

maybe
$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ 1 \end{bmatrix}$$
?

e.g. $\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x p_x \\ s_y p_y \\ 1 \end{bmatrix}$

Translation by a vector **t**: $\begin{vmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{vmatrix}$, mapping $\mathbf{e}_i \rightarrow \mathbf{e}_i$ but $\mathbf{o} \rightarrow \mathbf{o} + \mathbf{t}$ e.g. $\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ 1 \end{bmatrix}$$

What about vectors?

Apply a translation:

$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + 0 \mathbf{o} \quad \Leftrightarrow \quad \mathbf{v} = \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \end{vmatrix}$

 $\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix}$

Homogeneous coordinates

Add an extra coordinate w at the end.

- Points: w = 1
- Vectors: w = 0

Transformations become $(n+1)\times(n+1)$ matrices

- Linear transformations: $\begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$
- Translations:
 I t
 0 1

General affine transformation: $\begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix}$

- Corresponds to linearly transforming basis vectors $\mathbf{e}_i \rightarrow \mathbf{A}\mathbf{e}_i$ and translating origin $\mathbf{o} \rightarrow \mathbf{o} + \mathbf{t}$
- Maps parallel lines to parallel lines, but does not preserve the origin
- Composition: just matrix multiplication again.

 $\begin{bmatrix} I \\ J \end{bmatrix}$

Example: Rotate by given angle θ about given point **p** (instead of about origin)

Translate by -**p**

 $\mathbf{M} = \mathbf{T}(\mathbf{p}) \ \mathbf{R}(\boldsymbol{\theta}) \ \mathbf{T}(-\mathbf{p})$

Rotate by θ about origin

Translate by **p**

Given coordinates of **p** in frame 1, what are its coordinates in frame 2?

 $p = p_1 e_1 + p_2 e_2 + \cdots + o$

Write coords of e_1 , e_2 , ... and o in frame 2:

Change of coordinates looks exactly like a transformation matrix!

Active transformation: Moves points to new locations in the same frame

Change of coordinates (passive transformation): Gives coordinates of the same point in a different frame

Matrices are the same but the meaning is different! You have to keep track.

e.g. world_driver = world_from_car * car_driver Vec3 Mat3x3

Vec3

Puzzle:

- To draw a transformed polygon, I can just transform the vertices.

How can I draw a transformed version of a shape specified by a function?

• To draw a shape specified by a function $f(x,y) \leq 0$, I can just test each pixel (x,y).

