
5. Affine
 Transformations

COL781: Computer Graphics

B
le

nd
er

 m
an

ua
l

Continuing from last class…

Rotation

Nonuniform scaling

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

[cos θ −sin θ
sin θ cos θ]

[
sx 0
0 sy]

Arbitrary linear transformation

[a11 a12
a21 a22]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Rotations in 3D

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

cos θ −sin θ 0
sin θ cos θ 0

0 0 1
Rotation about x-axis
= Rotation in yz-plane

Rotation about y-axis
= Rotation in zx-plane

Rotation about z-axis
= Rotation in xy-plane

x

y

z

Rotation
about x-axis

Rotations about the coordinate axes:

Are these all the possible rotations?

Rotations in 3D
Are these all possible rotations?

Not at all!

A rotation is any transformation which:

• preserves distances and angles

• preserves orientation

Equivalently, RTR = 𝐈, and det R = 1

Rodrigues’ rotation formula
Rotation around an axis n by angle θ:

R = 𝐈 cos θ + [n]× sin θ + n nT (1 − cos θ)

where [n]× =

How? Hints:

• [n]× is the “cross-product matrix”: [n]× v = n × v

• Assume an orthogonal basis n, e1, e2 and see what R does to it

0 −nz ny

nz 0 −nx

−ny nx 0

semath.info

Euler angles
Any 3D rotation can also be expressed using 3 rotations about coordinate axes:

e.g. R = Rz(θz) Ry(θy) Rx(θx)

θx, θy, θz are called Euler angles

Also called “roll, pitch, yaw” in aircraft

Note: Order of rotation matters! Need to
know which angle for which axis, and also
which order to multiply them. roll pitch

yaw

Tannous 2018

Other rotation representations (not covering now):

• Angle vector / exponential map

θ = θe

• Quaternions

q = s + ix + jy + kz

• Rotors

uv = u · v + u ∧ v

Homework exercise
Given unit vectors u and v, find a way to construct a rotation matrix R which
maps u to v, i.e. Ru = v. Is it unique, or are there many different such rotations?

u

v

R = ?

Translations
Move all points by a constant displacement

T(p) = p + t

So a linear transformation followed by a translation
will be of the form T(p) = Ap + b

A bit tedious to compose:

T2(T1(p)) = A2(A1p + b1) + b2 = (A2A1)p + (A2b1 + b2)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

t

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Suppose I have both points and directions/velocities/etc. to transform.

Original:
p = (0.5, 0.5)

v = (1, 0)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Rotation by 45°:
p = (0, 0.7)

v = (0.7, 0.7)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p v?

Translation by (0, 0.5):
p = (0.5, 1)
v = (1, 0.5)?

It seems translation should only affect some things, not others. But why?

Are points really vectors?

p1 + p2 = ?

5p3 = ?

How about I just choose an origin and
then add the displacement vectors?

p1

p2p3

Points vs. vectors
Points form an affine space A over the vector space V.

• Point-vector addition: A × V → A

• Point subtraction: A × A → V

with the obvious properties e.g. (p + u) + v = p + (u + v), p + (q − p) = q, etc.

Example: midpoint of two points p and q

m = ½(p + q)?

Not allowed! But can rewrite as

m = p + ½(q − p) = q + ½(p − q)

In fact it’s valid to take any affine combination w1p1 + w2p2 + ⋯ + wnpn
as long as w1 + w2 + ⋯ + wn = 1. So we will allow this too.

(Exercise: Check that this can be done using only the affine space operations)

p

q

m

Coordinate frames
To specify a vector numerically, we need a basis

v = v1e1 + v2e2 + ⋯ ⇔ v = in the basis

To specify a point numerically, we need a coordinate frame: origin and basis

p = p1e1 + p2e2 + ⋯ + o so maybe p = ?

v1
v2
⋮

p1
p2
⋮
1

v

e1

e2

p

e1

e2

o

Write a point as an (n+1)-tuple p = to mean p = p1e1 + p2e2 + ⋯ + o.

Linear transformations are now , mapping ei → Aei and o → o

e.g.

p1
p2
⋮
1

[A 0
0 1]

sx 0 0
0 sy 0
0 0 1

px
py

1
=

sxpx
sypy

1

Translation by a vector t: , mapping ei → ei but o → o + t

e.g.

[I t
0 1]

1 0 tx
0 1 ty
0 0 1

px
py

1
=

px + tx
py + ty

1

What about vectors?

v = v1e1 + v2e2 + ⋯ + 0o ⇔ v =

Apply a translation:

v1
v2
⋮
0

1 0 tx
0 1 ty
0 0 1

vx
vy

0
=

vx
vy

0

w = 1

x

y

w = 1

x

y

px
py

1

vx
vy

0

Homogeneous coordinates
Add an extra coordinate w at the end.

• Points: w = 1

• Vectors: w = 0

Transformations become (n+1)×(n+1) matrices

• Linear transformations:

• Translations:

[A 0
0 1]

[I t
0 1]

General affine transformation:

• Corresponds to linearly transforming basis vectors ei → Aei
and translating origin o → o + t

• Maps parallel lines to parallel lines, but does not preserve the origin

• Composition: just matrix multiplication again.

[A t
0 1]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

Example: Rotate by given angle θ about given point p (instead of about origin)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Translate by −p

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Rotate by θ
about origin

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Translate by p

M = T(p) R(θ) T(−p)

Given coordinates of p in frame 1, what are its coordinates in frame 2?

p = p1e1 + p2e2 + ⋯ + o

Write coords of e1, e2, … and o in frame 2:

Then p =

ei =

∙
∙
⋮
0

, o =

∙
∙
⋮
1

∙ ∙ ⋯ ∙
∙ ∙ ⋯ ∙
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

p1
p2
⋮
1

p

e1 e2 o

Change of coordinates looks
exactly like a transformation matrix!

Active transformation: Moves points
to new locations in the same frame

Change of coordinates (passive
transformation): Gives coordinates
of the same point in a different frame

Matrices are the same but the meaning
is different! You have to keep track.

e.g. world_driver = world_from_car * car_driver
Vec3 Mat3x3 Vec3

Puzzle:

• To draw a transformed polygon, I can just transform the vertices.

• To draw a shape specified by a function f (x,y) ≤ 0, I can just test each pixel (x,y).

How can I draw a transformed version of a shape specified by a function?

x2 + y2 ≤ r2

M

