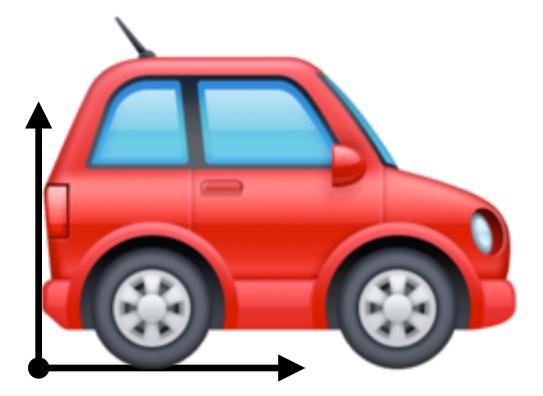
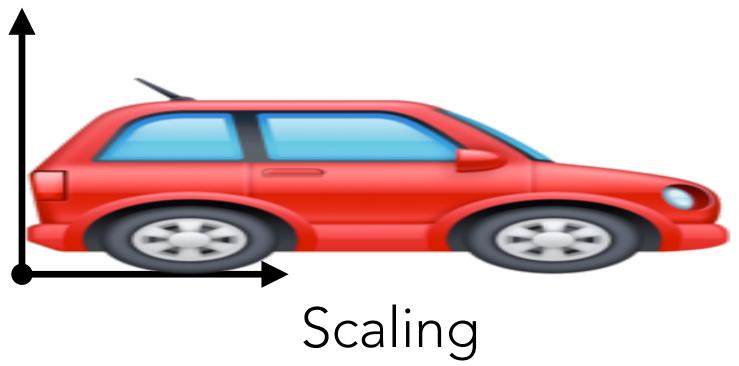
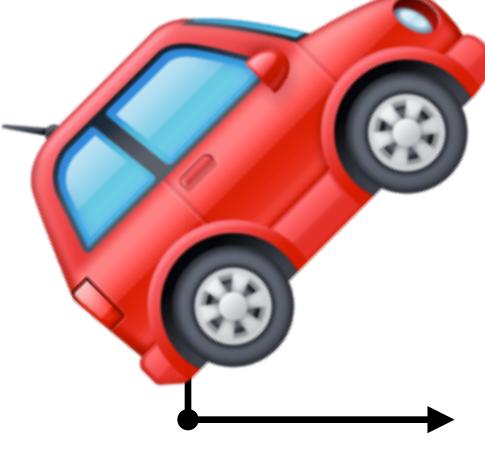


Transformations

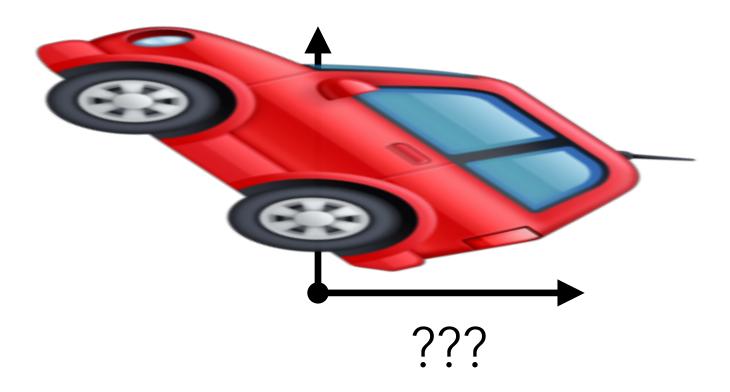






Translation

Rotation



Applications: Instancing

Star Wars: Episode II – Attack of the Clones (2002)

Applications: Posing

Transformation matrices

As you probably know, we can represent many transformations by matrices:

$$\mathbf{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} \qquad \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

and similarly in 3D:

$$\mathbf{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

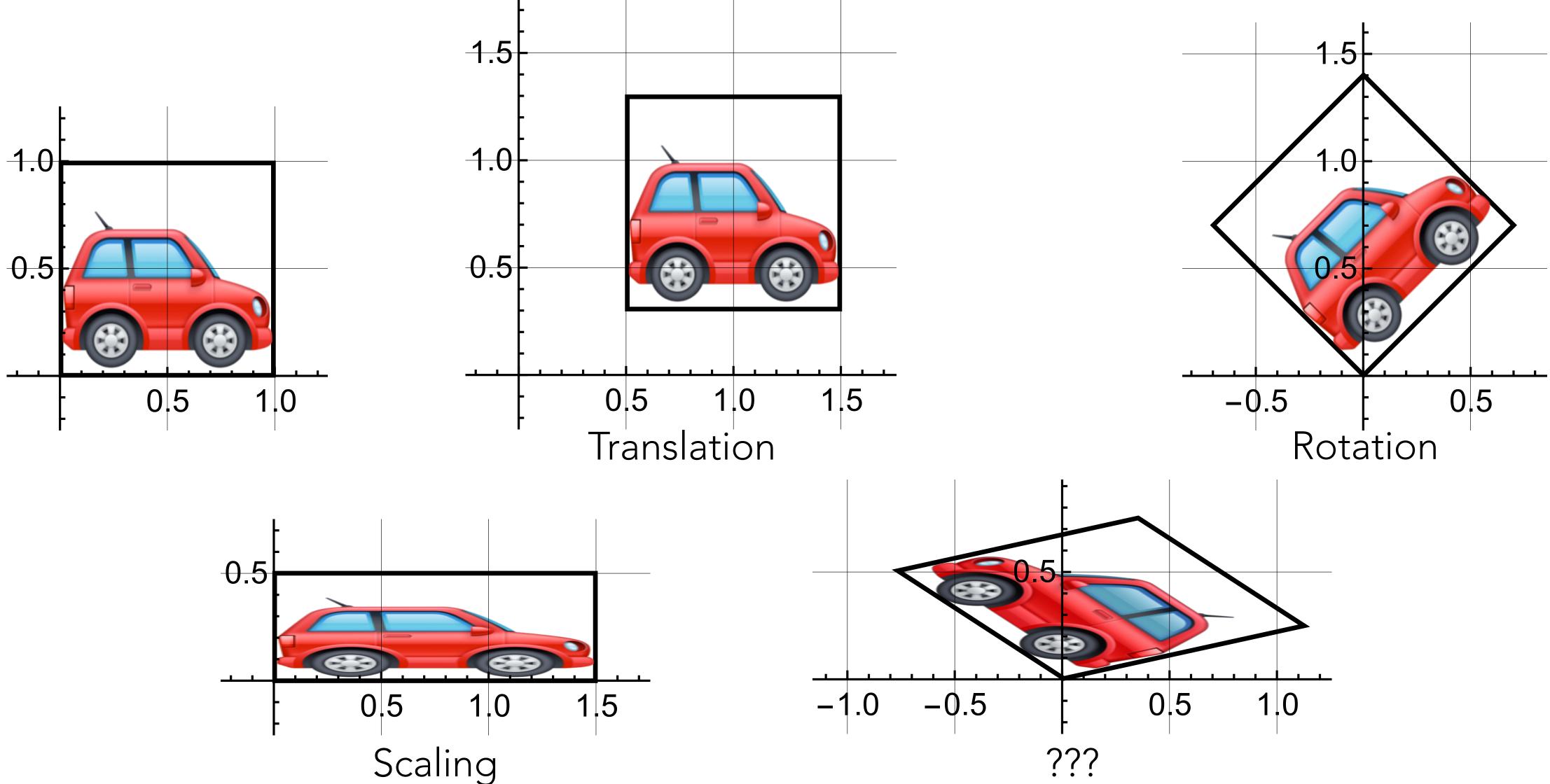
$$\mathbf{Av} = \begin{bmatrix} a_{11}v_x + a_{12}v_y \\ a_{21}v_x + a_{22}v_y \end{bmatrix}$$

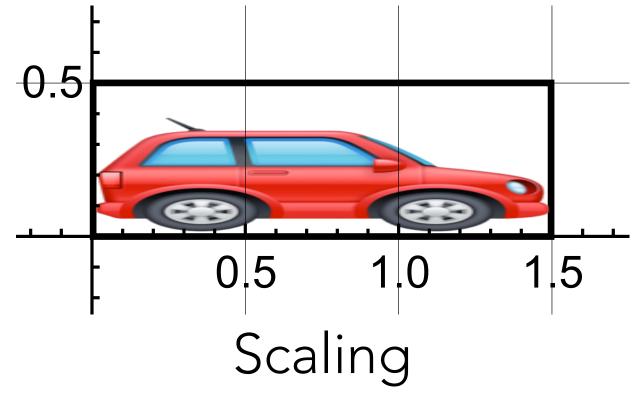
$$a_{13}$$

 a_{23}
 a_{33}

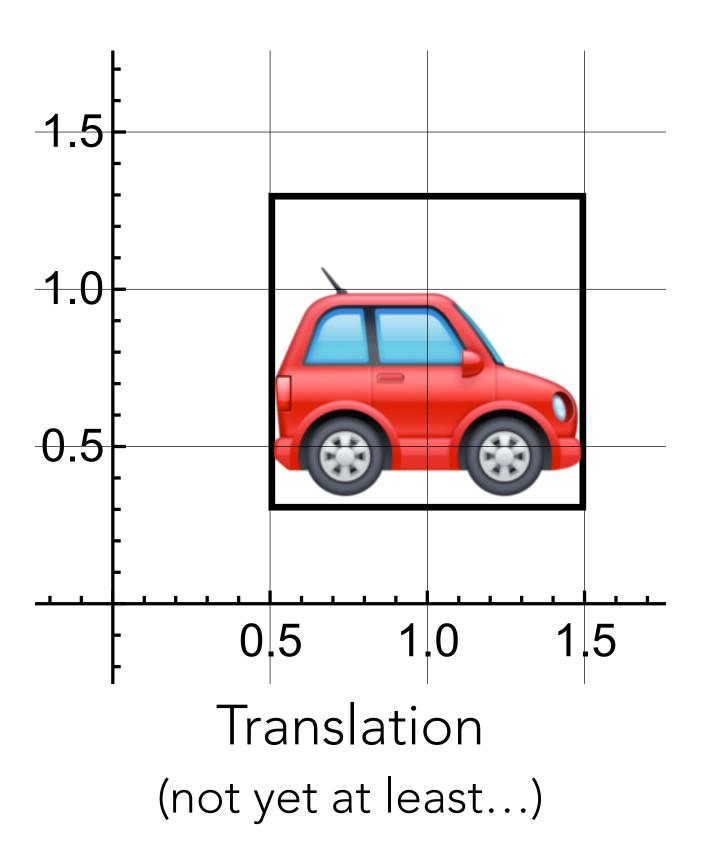
$$\mathbf{Av} = \begin{bmatrix} a_{11}v_x + a_{12}v_y + a_{13}v_z \\ a_{21}v_x + a_{22}v_y + a_{23}v_z \\ a_{31}v_x + a_{32}v_y + a_{33}v_y \end{bmatrix}$$

What are the matrices for these transformations?

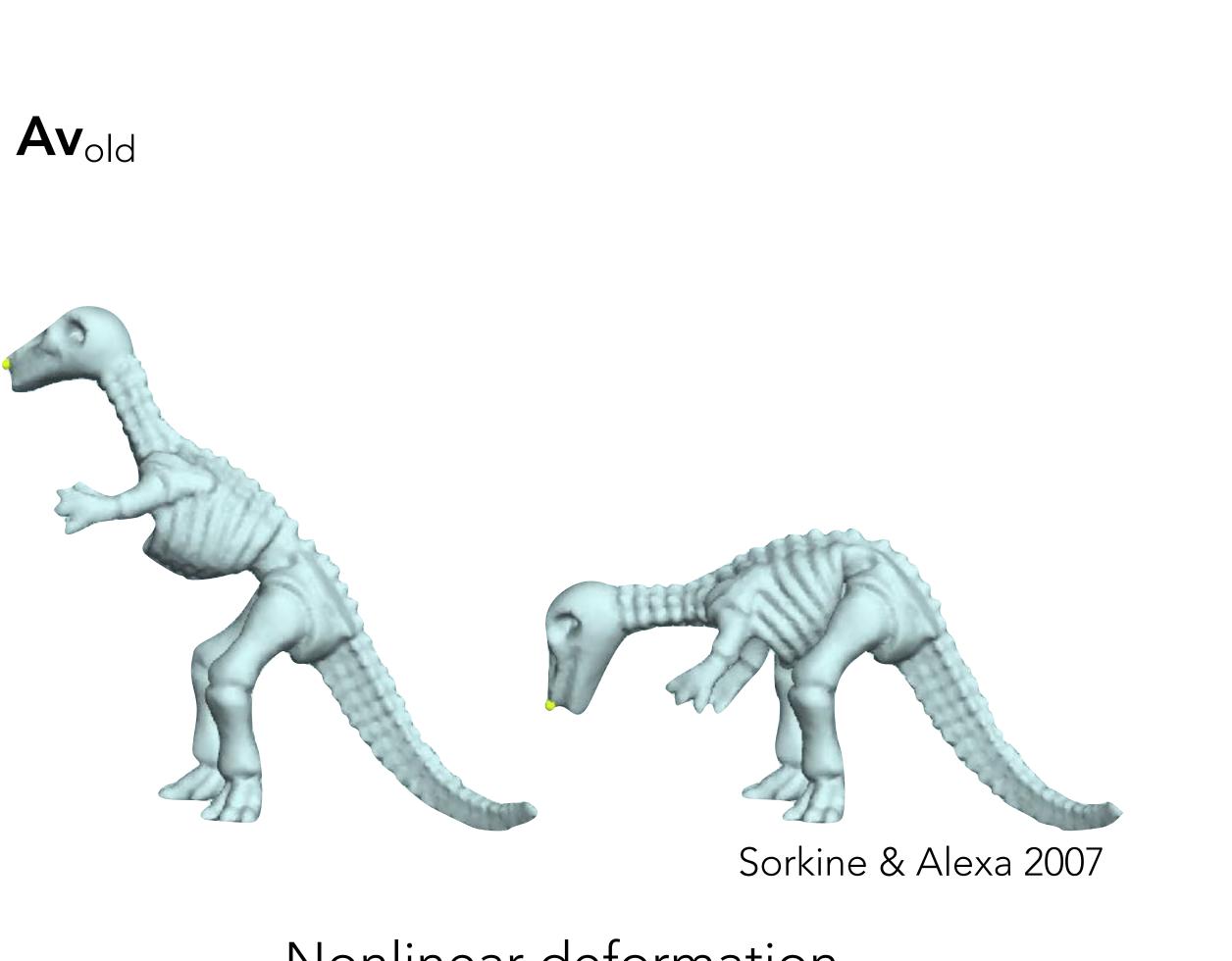




What can't matrices do?



$\mathbf{v}_{new} \neq \mathbf{A}\mathbf{v}_{old}$



Nonlinear deformation

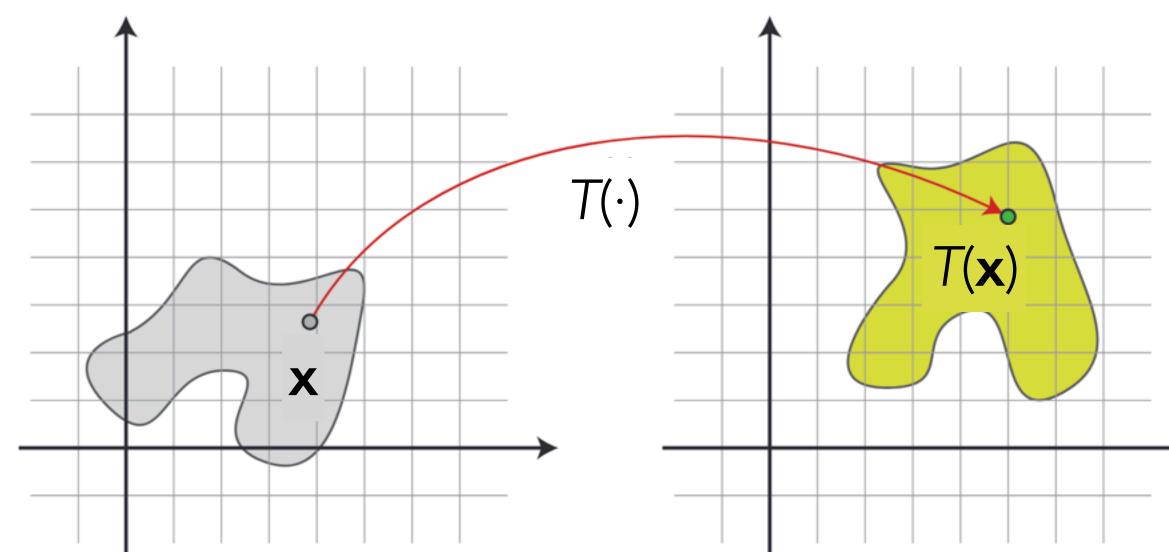
Transformations

Transformations are just functions that map points to points

Today: linear transformations (easy to represent with matrices)

Next class: affine transformations (linear transformations + translation)

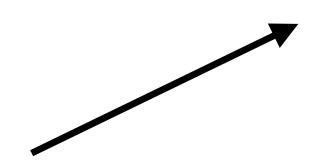
 $T: \mathbb{R}^n \to \mathbb{R}^n$



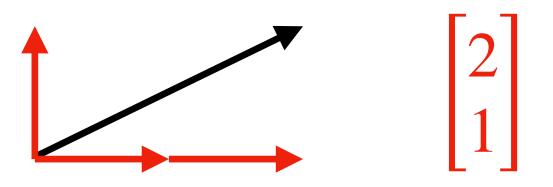
Linear algebra

Linear algebra

Linear algebra is not about little lists of numbers!

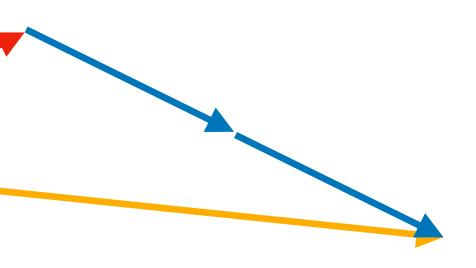


A vector only has coordinates once you make an (arbitrary) choice of basis



Outcomes of operations should be independent of arbitrary choices!

Though, to compute anything we will always need a basis in the end...



What are vectors, really?

- A vector is an element of a vector space.
- A vector space over \mathbb{R} is any set V equipped with two operations:
- scalar multiplication: $\mathbb{R} \times V \rightarrow V$
- vector addition: $V \times V \rightarrow V$
- satisfying various identities, e.g. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$, etc.

To do geometry, we also need a third operation:

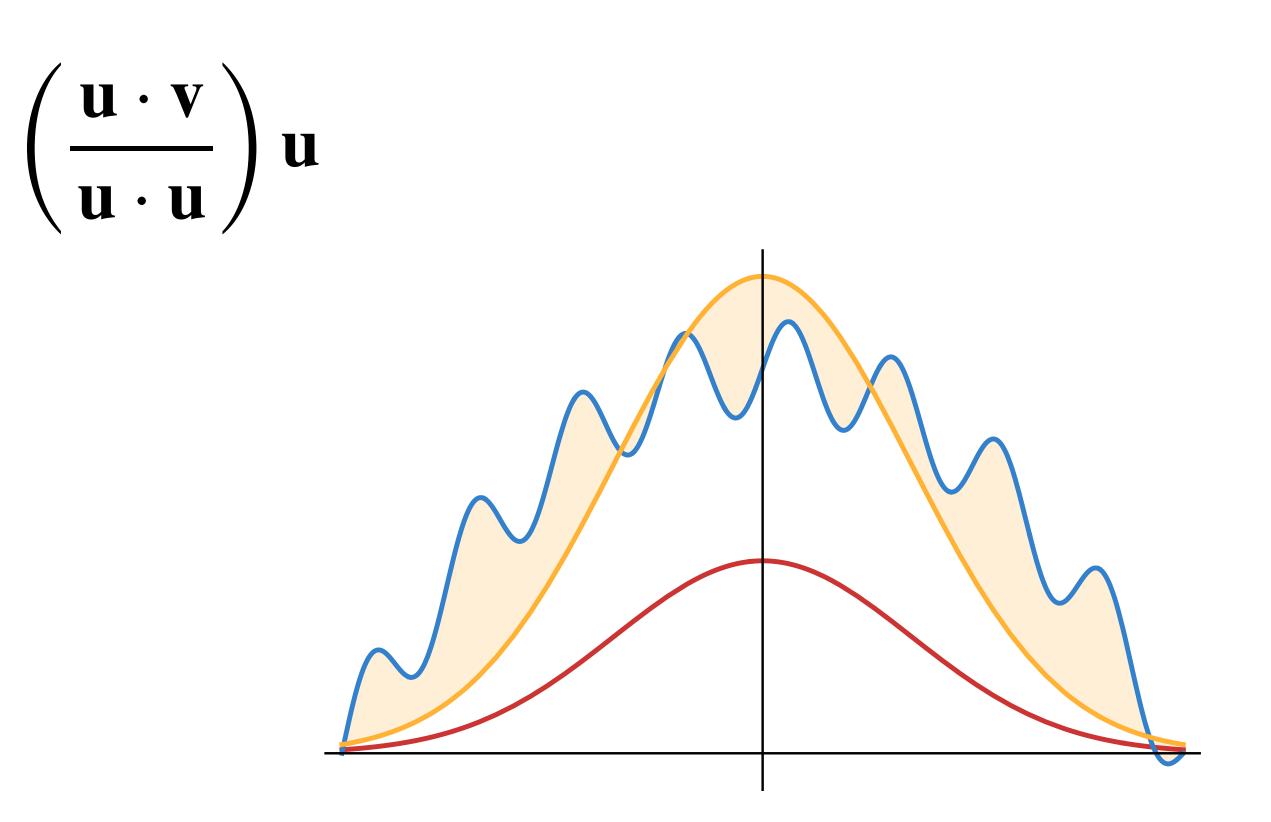
• dot product / inner product: $V \times V \rightarrow \mathbb{R}$ satisfying identities like $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$, $(a\mathbf{u} + b\mathbf{v}) \cdot \mathbf{w} = a(\mathbf{u} \cdot \mathbf{w}) + b(\mathbf{v} \cdot \mathbf{w})$, etc.

and in any *n* dimensions!

(It will also work for other vector spaces: functions, images, etc. ...)

- Think of these three operations as the "public API" of the vector data type.
- Write your algorithm and code in terms of these, and it will work in 2D, in 3D,

Example: Find the multiple of **u** that minimizes distance to **v**.



Bases

A basis is just a set of vectors $\{e_1, e_2, ...\}$ such that any vector can be written uniquely as a linear combination of them.

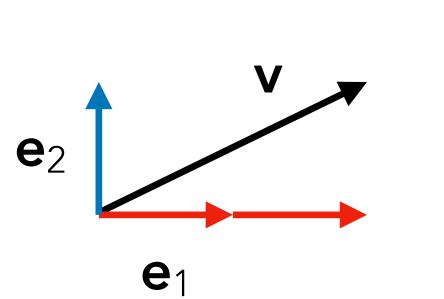
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} \text{ in this basis } \Leftrightarrow \mathbf{v} = v_1 \mathbf{e}_1$$

What happens when you apply a matrix **A** to the basis vectors?

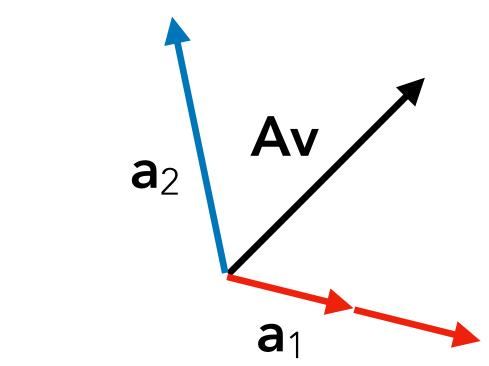
$$\mathbf{Ae}_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \end{bmatrix} = 1 \text{ st column of } \mathbf{A}$$

This determines the action of **A** on all other vectors!

 $Av = A(v_1e_1 + v_2e_2 + \cdots) = v_1(Ae_1) + v_2(Ae_2) + \cdots = v_1a_1 + v_2a_2 + \cdots$



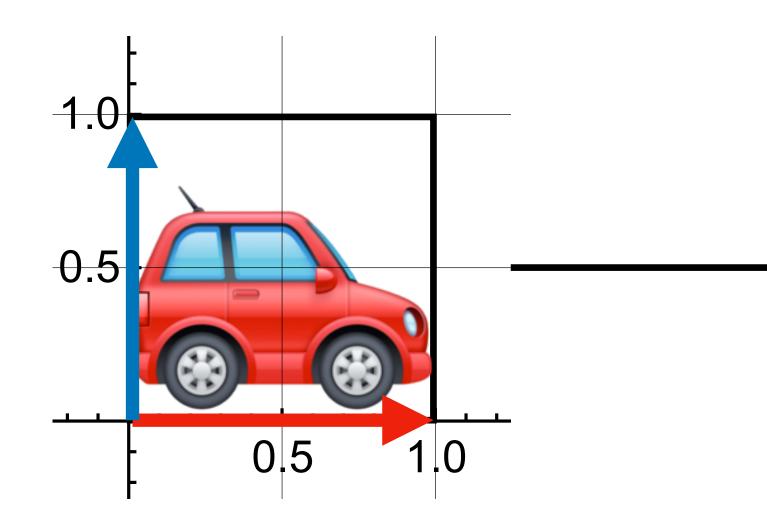
- other vectors follow.
- Interpretation 2: Matrix-vector multiplication Av produces a linear



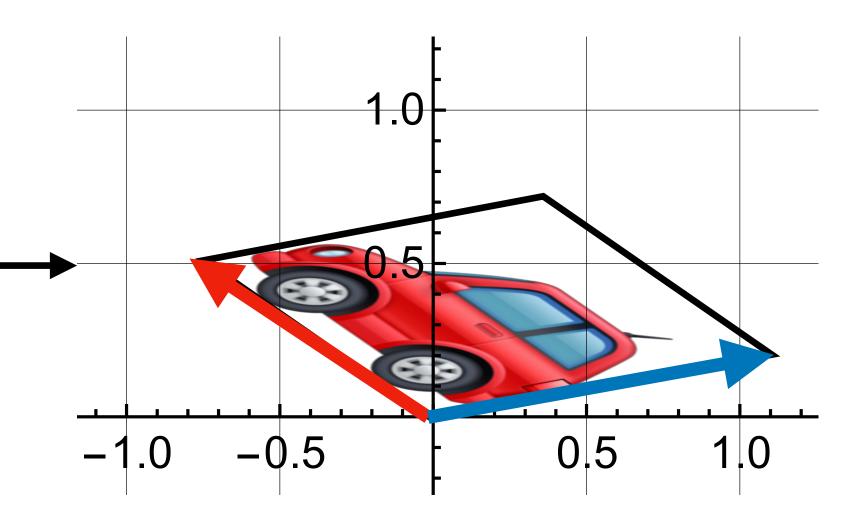
• Interpretation 1: A matrix transforms the basis vectors to its columns; all

combination of the columns of A, weighted by the components v_1 , v_2 , ...

Now, what is the matrix for this transformation?

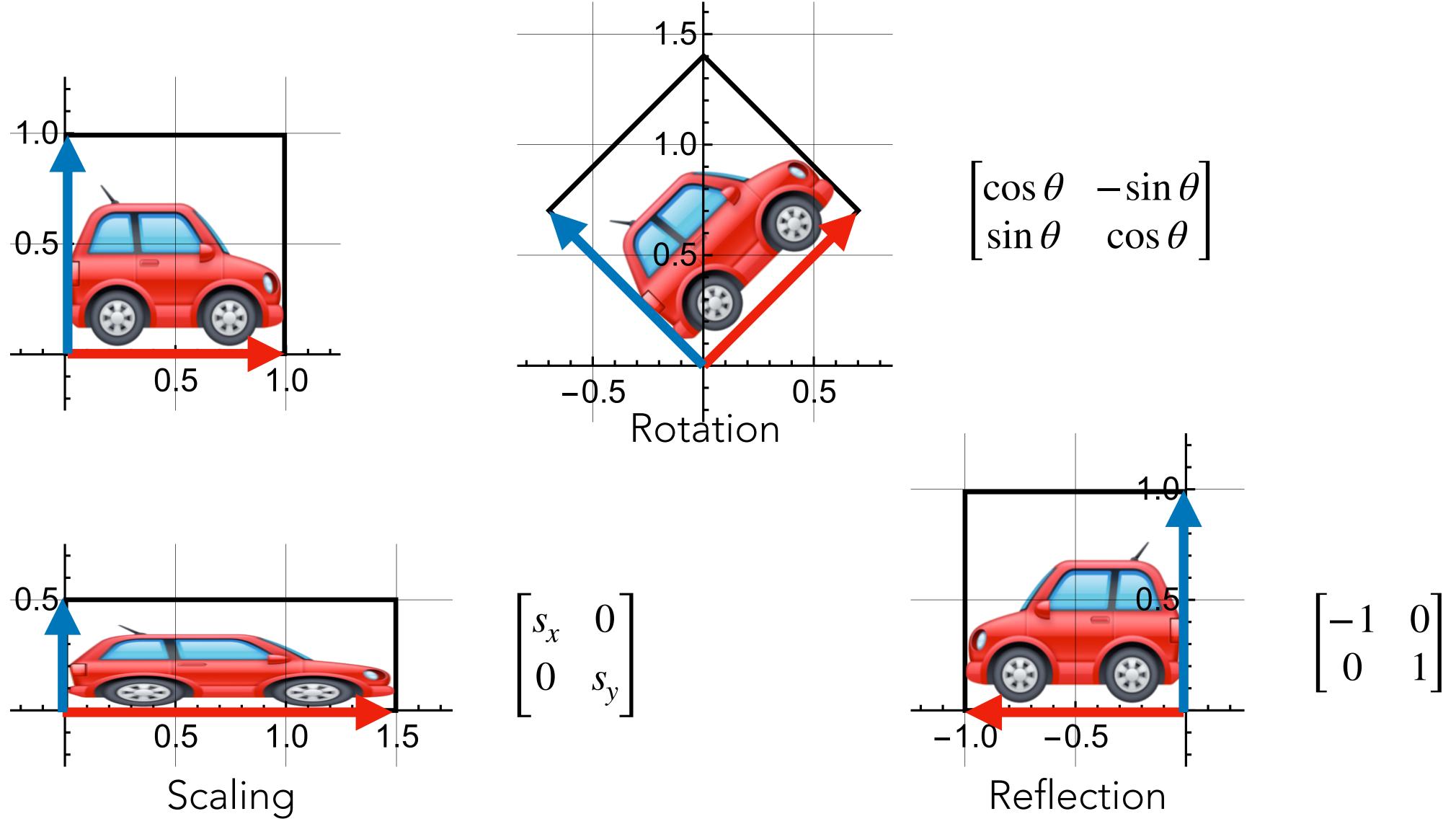


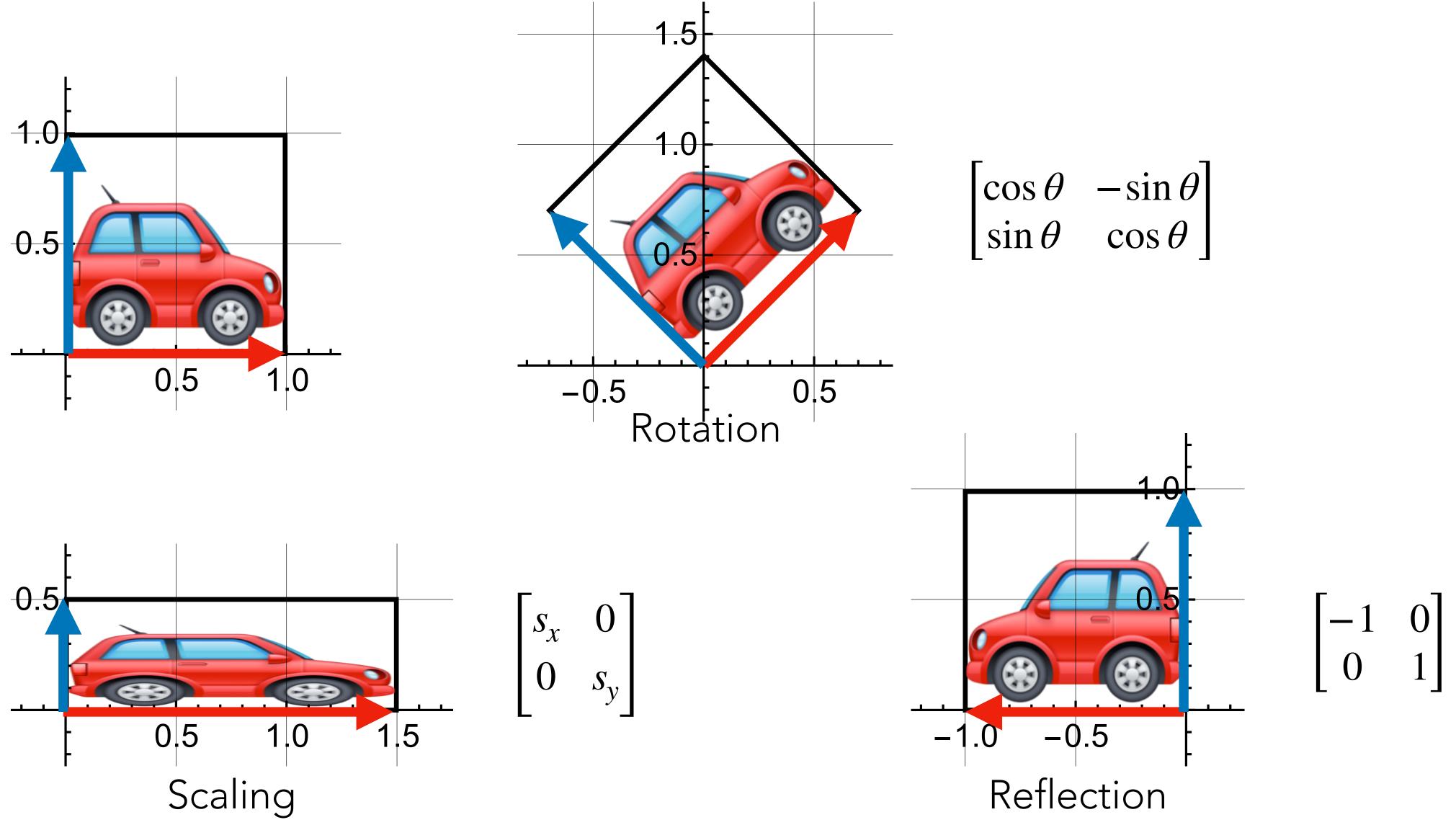
 $\mathbf{a}_1 = \text{image of } \mathbf{e}_1 \approx \begin{bmatrix} -0.8 \\ 0.5 \end{bmatrix}$



8],
$$\mathbf{a}_2 = \text{image of } \mathbf{e}_2 \approx \begin{bmatrix} 1.1 \\ 0.2 \end{bmatrix}$$

 $\mathbf{A} \approx \begin{bmatrix} -0.8 & 1.1 \\ 0.5 & 0.2 \end{bmatrix}$





Puzzle:

So why do video players show black bars instead of scaling the image to fill the screen?

It's just as easy to scale x and y by different amounts as it is to scale by the same amount.

Invariants

Different types of transformations preserve different quantities:

- **Rotations**: distances, angles, orientation
- **Reflections**: distances, angles
- Uniform scaling ($s_x = s_y$): relative distances, angles, directions
- Nonuniform scaling $(s_x \neq s_y)$: ?

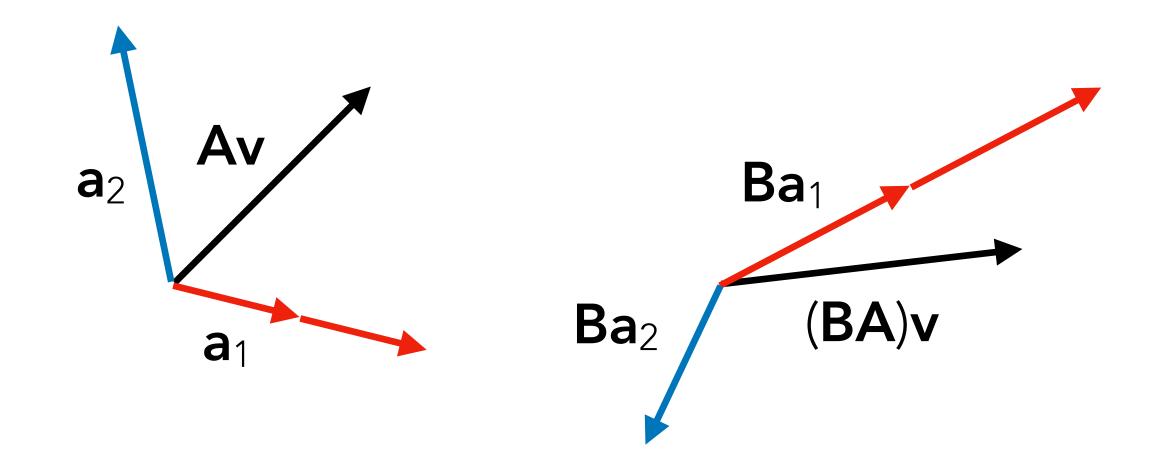
Composition of transformations

Apply transformation **A** then transformation **B**:

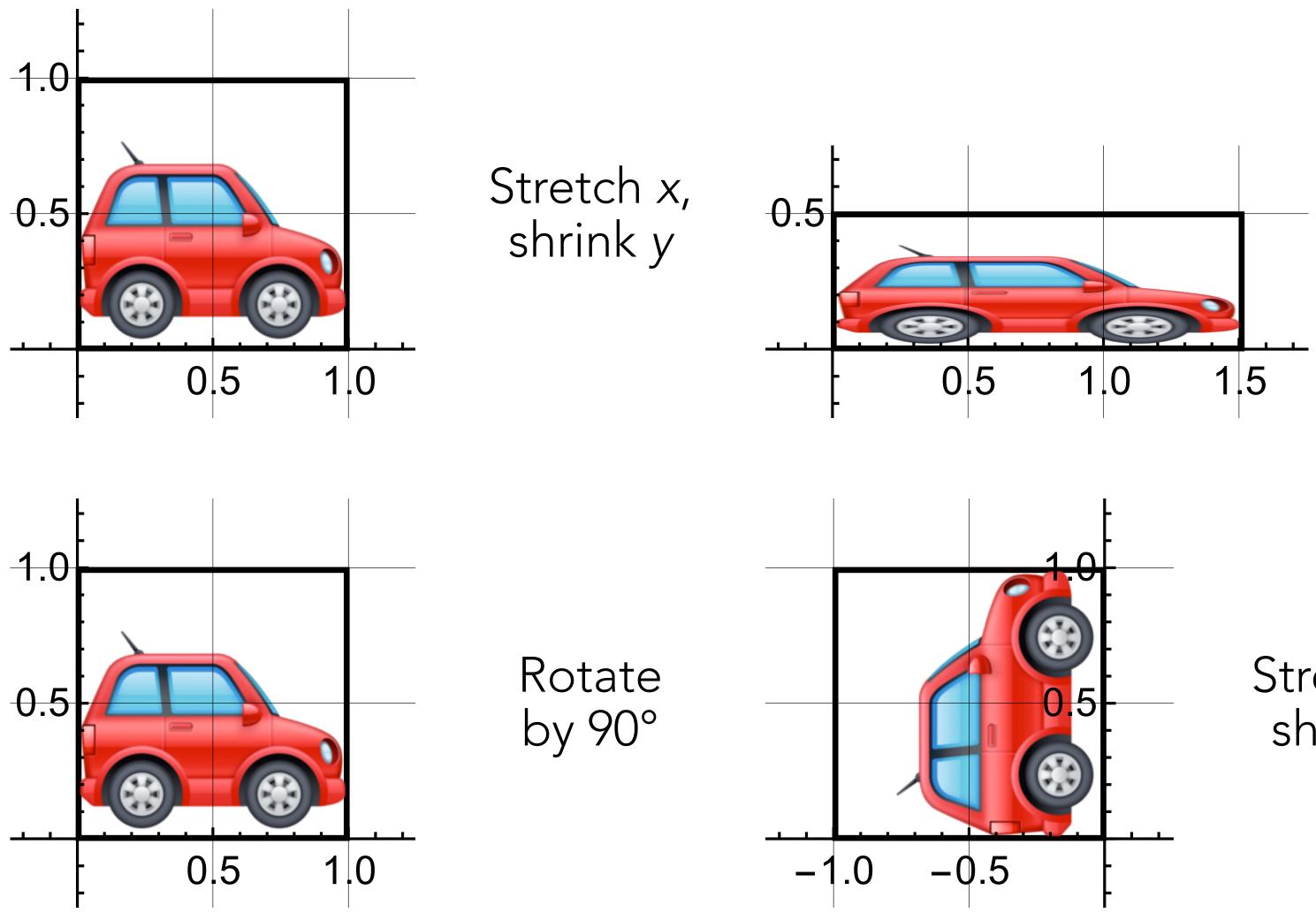
Column interpretation:

 $\mathbf{B}[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots] = \begin{bmatrix} \mathbf{B}\mathbf{a}_1 \ \mathbf{B}\mathbf{a}_2 \ \cdots \end{bmatrix}$

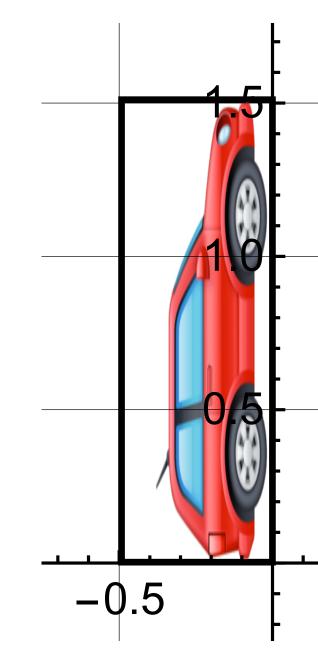
- $\mathbf{v} \rightarrow \mathbf{A}\mathbf{v} \rightarrow \mathbf{B}(\mathbf{A}\mathbf{v}) = (\mathbf{B}\mathbf{A})\mathbf{v}$



Often, want to apply a sequence of *n* transformations on millions of vertices. Just compute the product: then only 1 matrix-vector multiplication per vertex.



 $AB \neq BA$



Stretch x, shrink y

