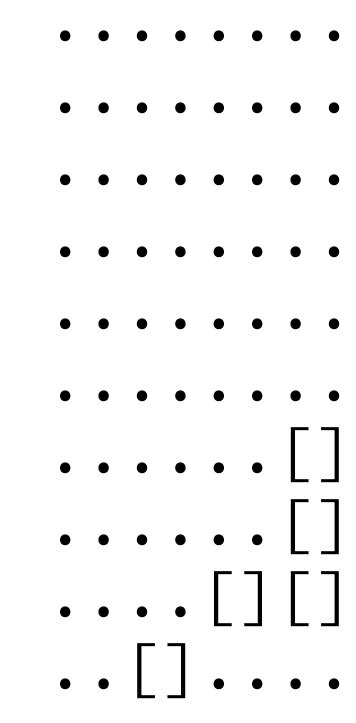
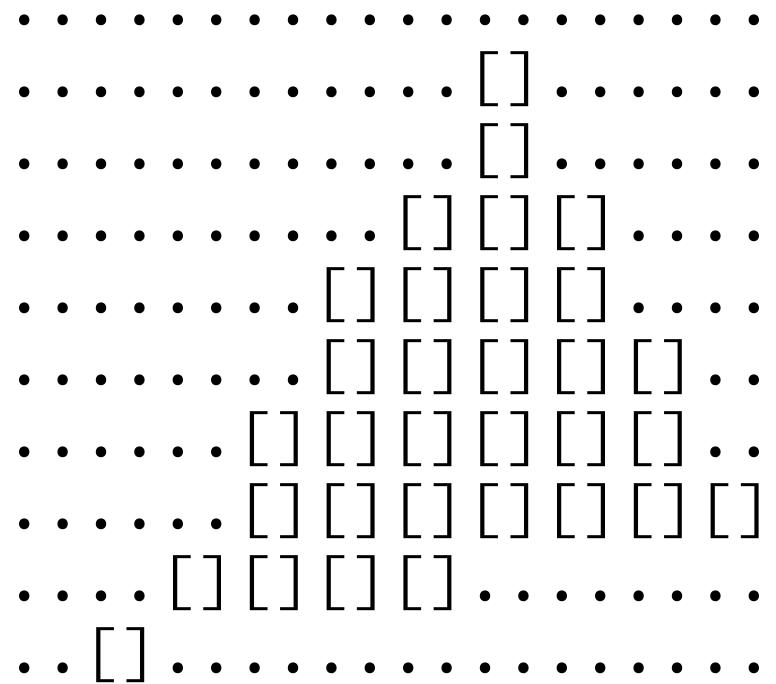
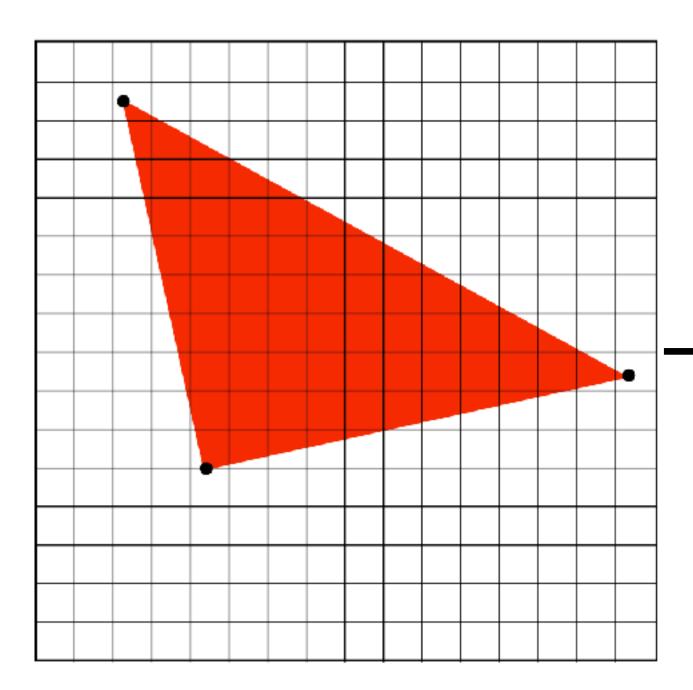


Last class's homework



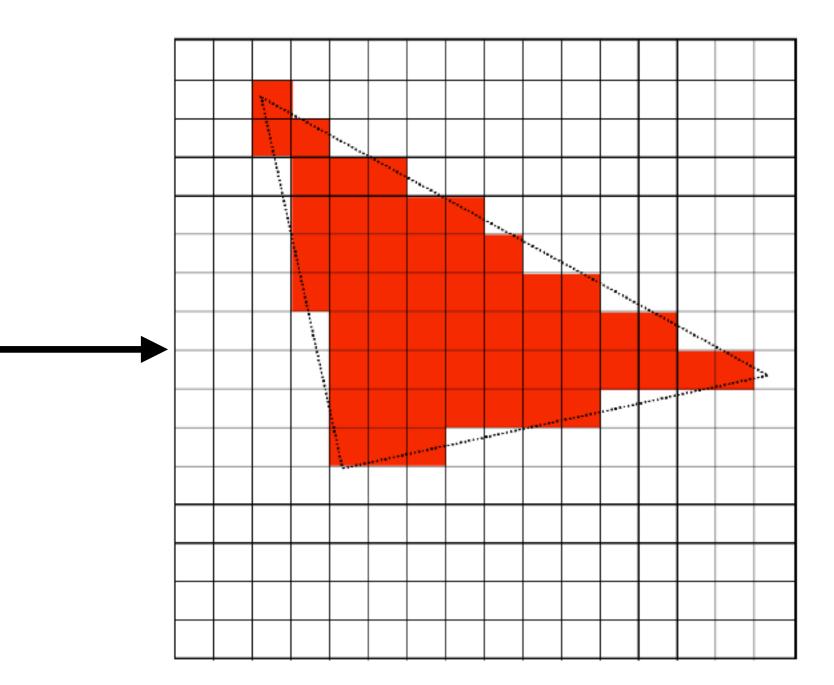


"Jaggies"

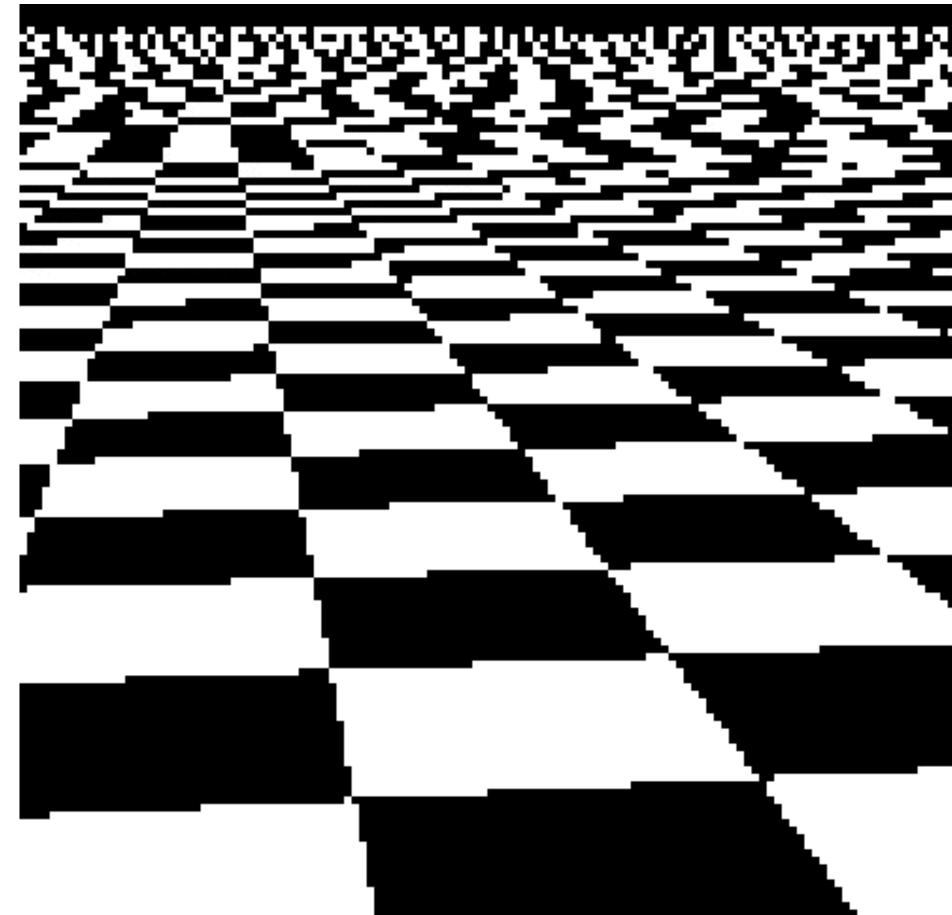


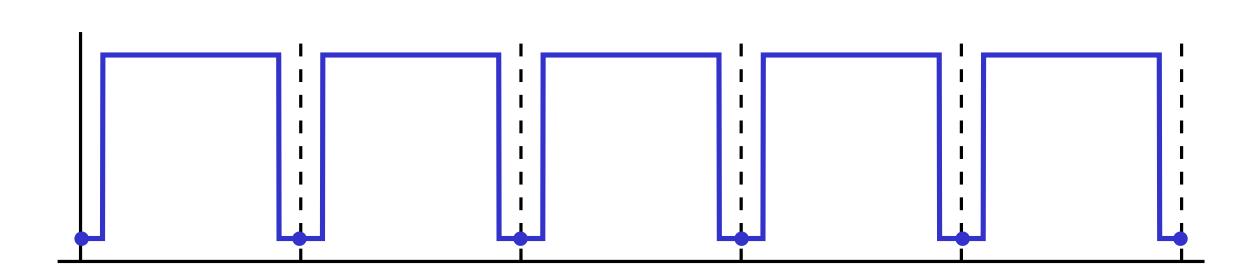
Is this a problem?

Can we do better?

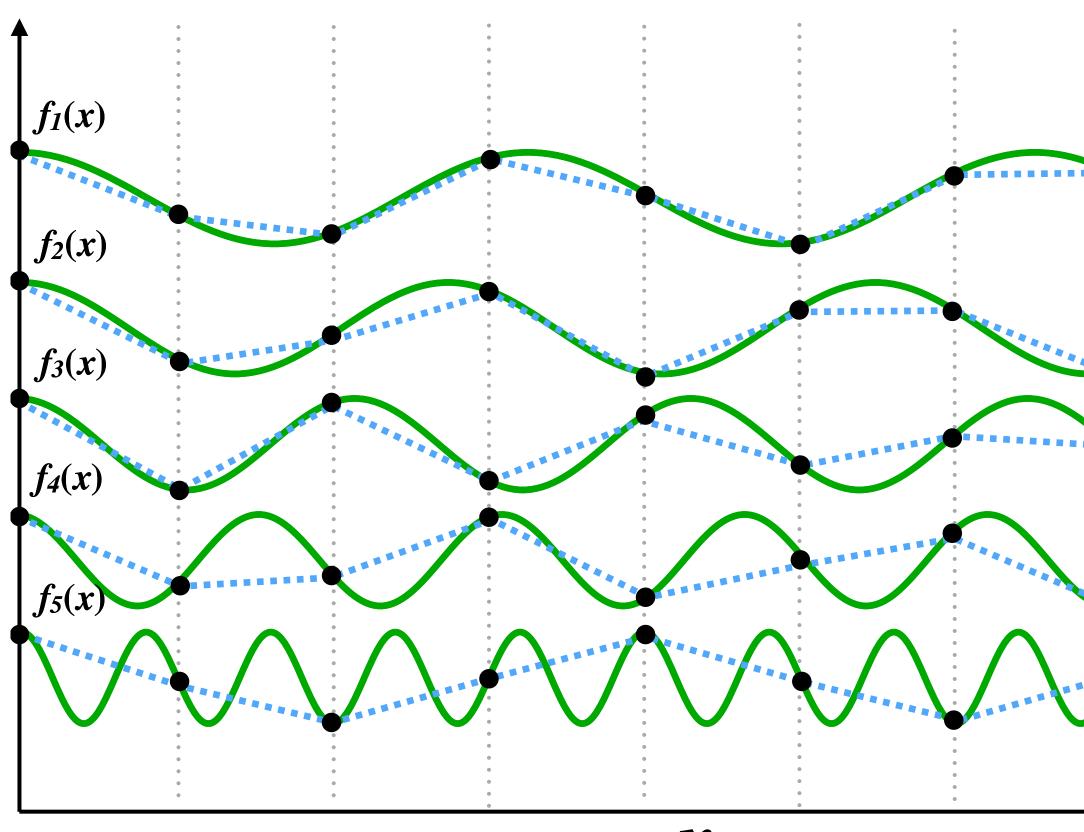


•									
	10170017	•	•	•	•	•	•		
	V	·		V	·		V	•	
			÷					•	
-									Nerheim-Wolfe et al. 1993





TO MET THE GLOW FOR LIFTOR PALS

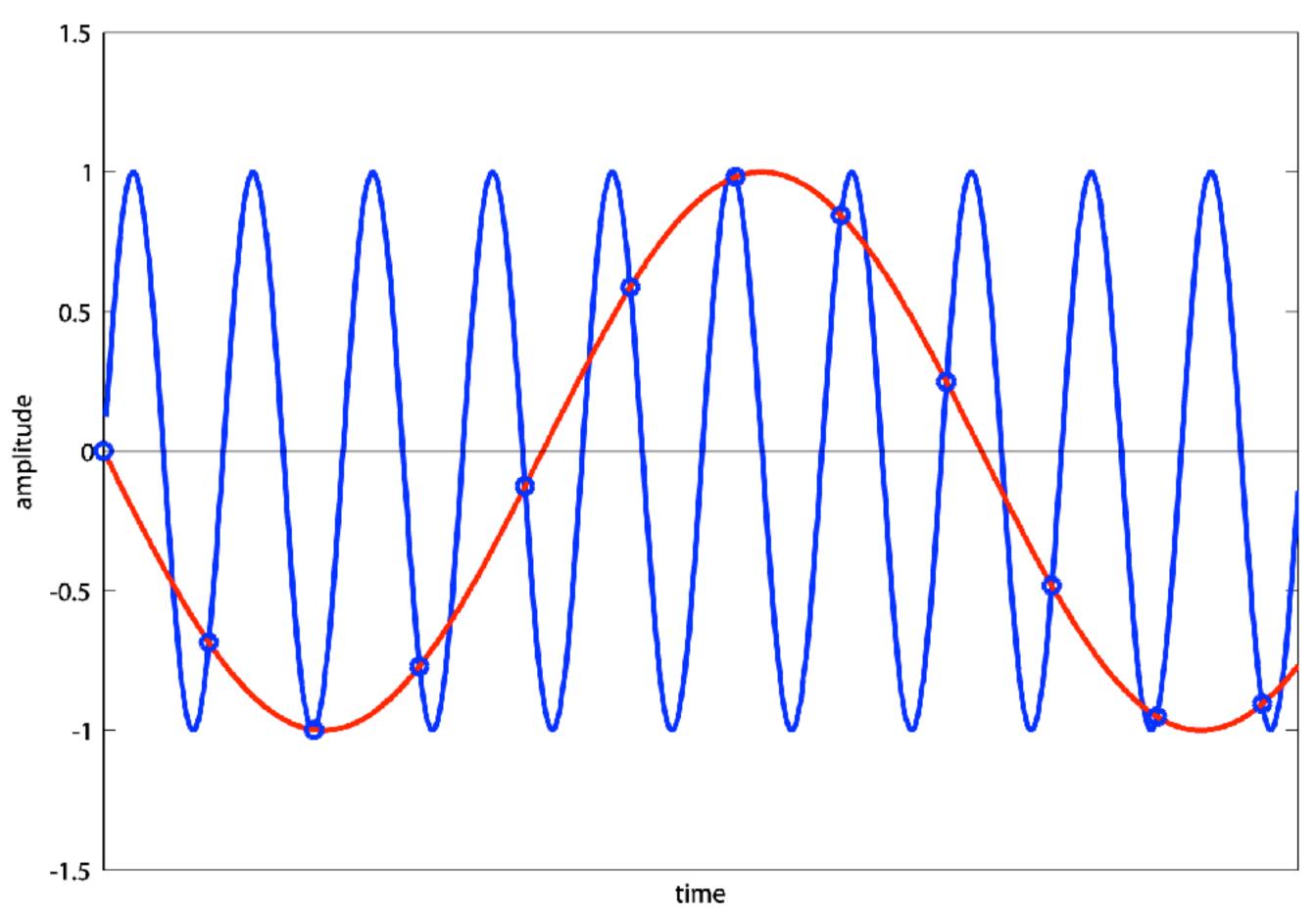


X

Low-frequency sinusoids can be reconstructed accurately

High-frequency sinusoids incorrectly appear as low frequencies!

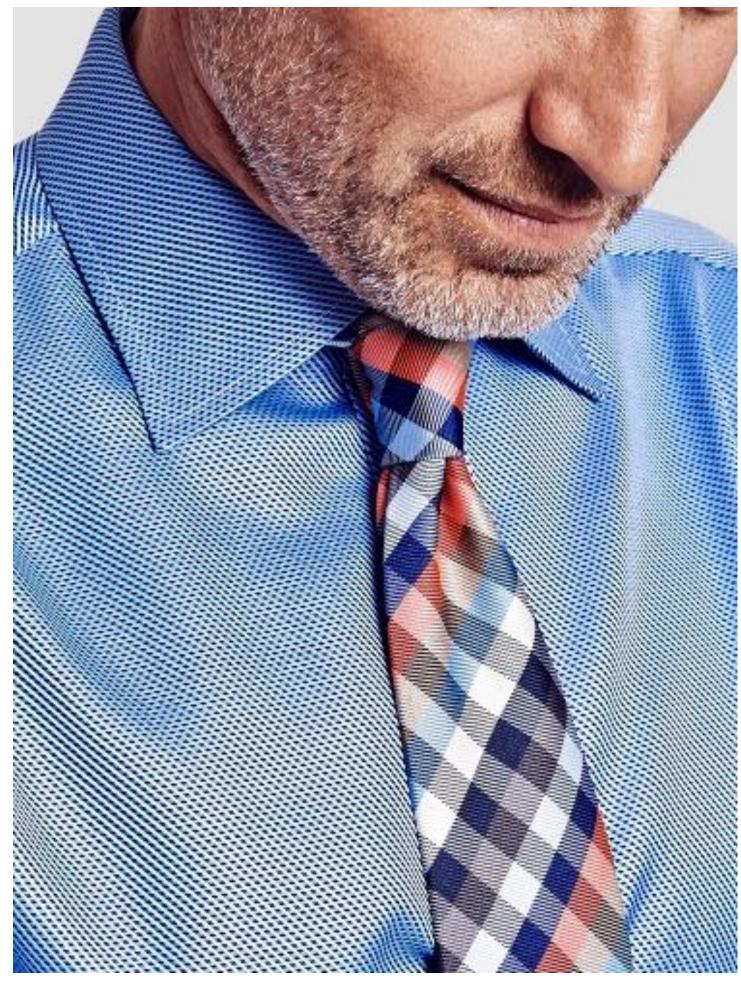
Alias = false name



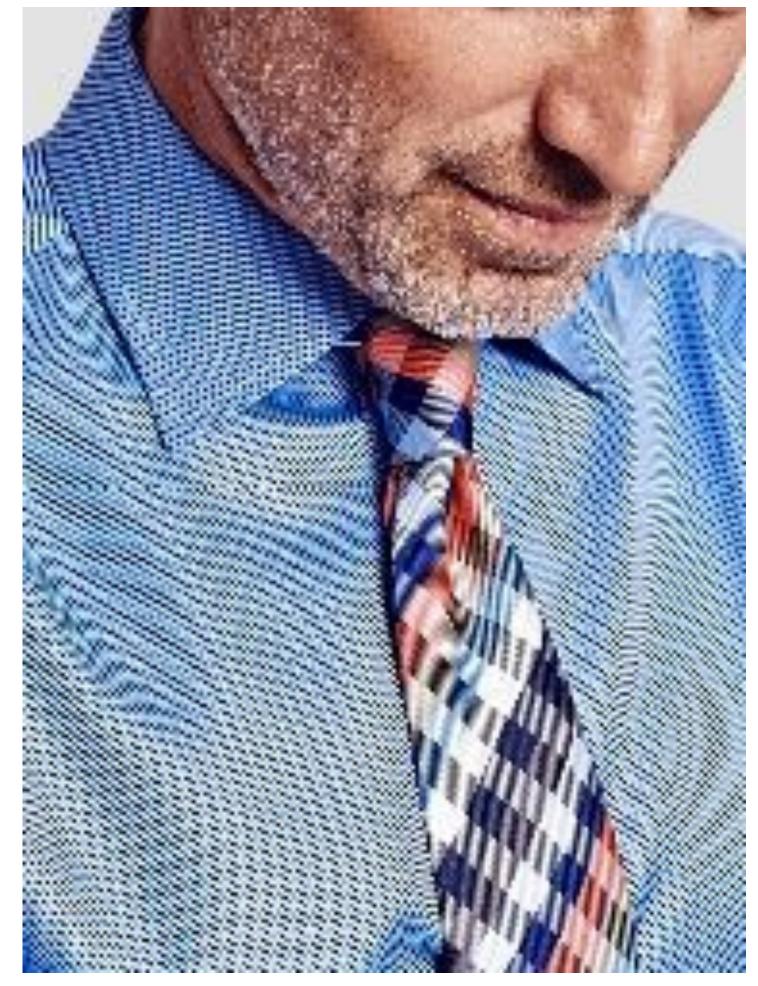
from a low-frequency sinusoid!

A sinusoid with frequency higher than the sampling rate is indistinguishable

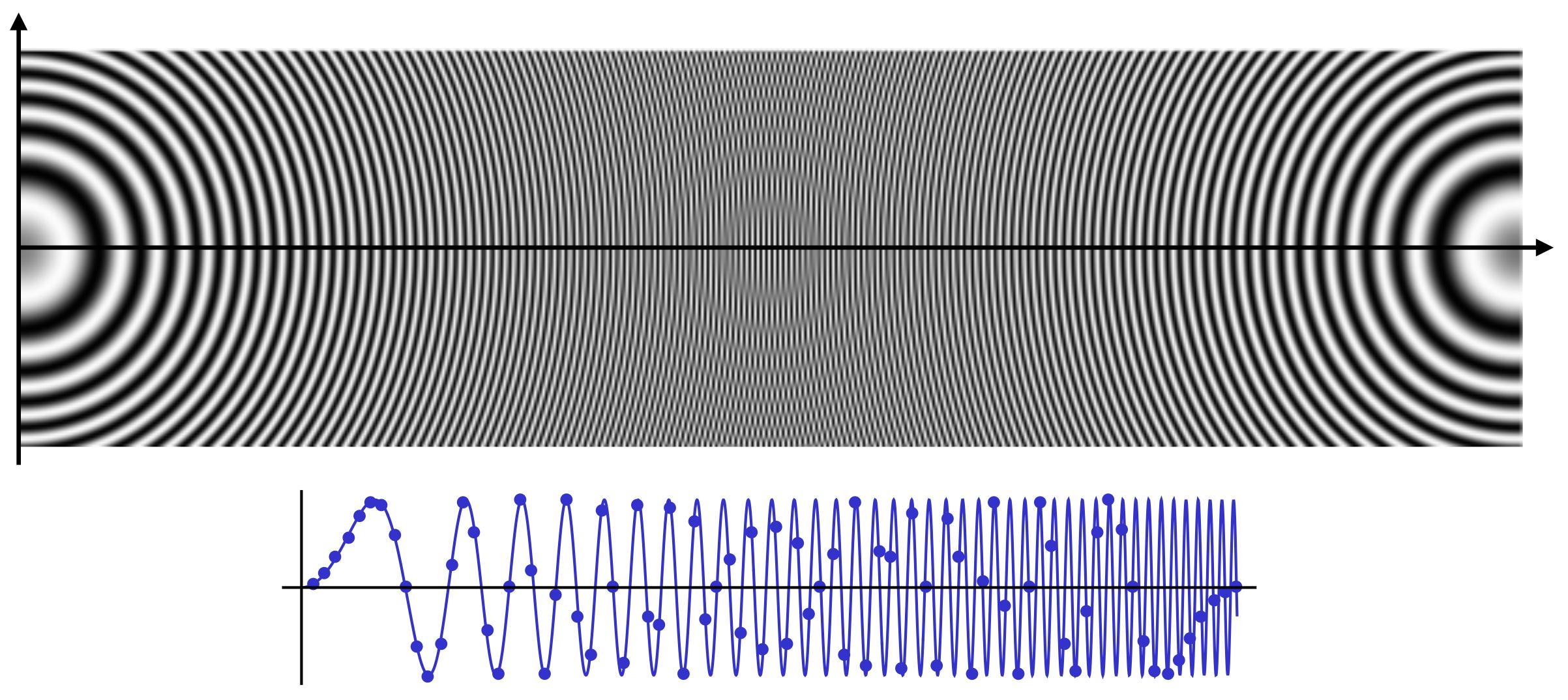
Aliasing in images



Original image



Dropping half the rows and columns

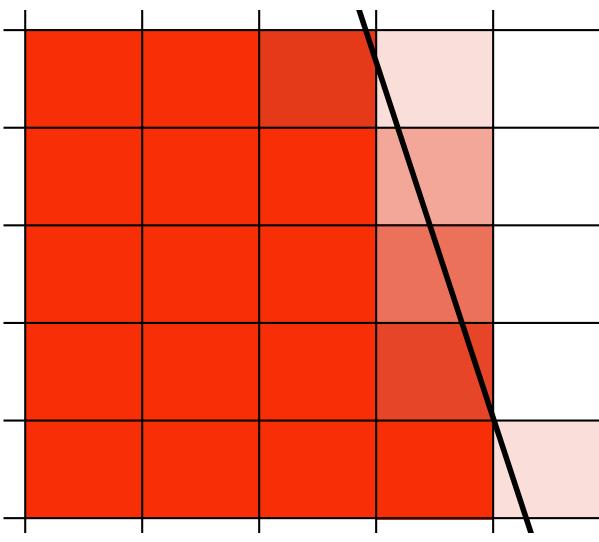


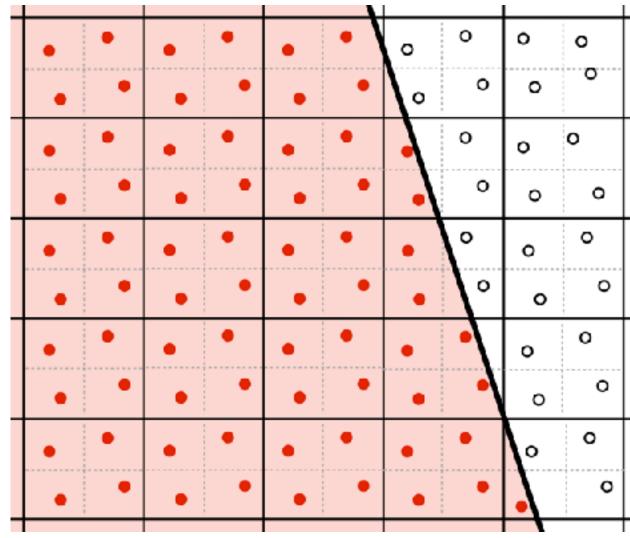
Zone plate: $f(x,y) = sin(x^2 + y^2)$

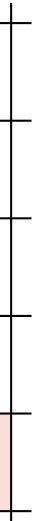
Anti-aliasing by averaging

Intuitive idea: the colour of a pixel should be the average colour in the square.

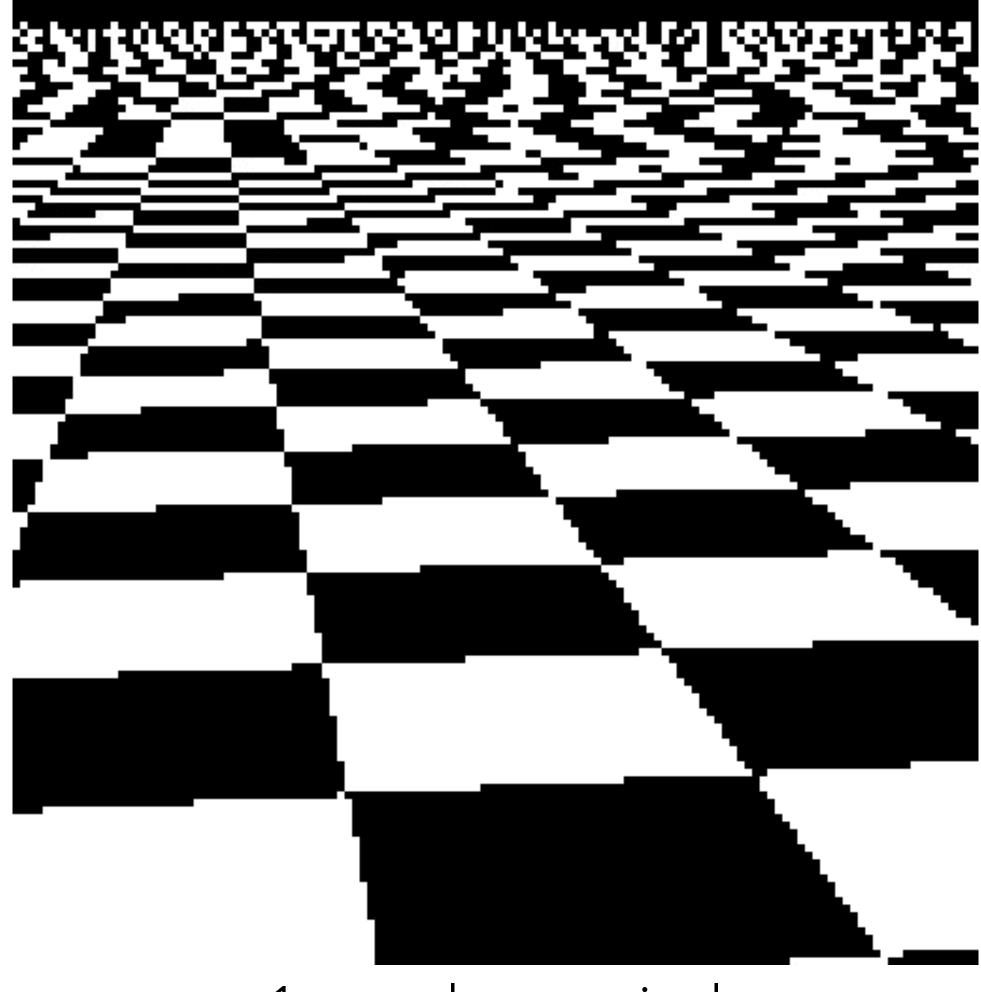
- Computed exactly if you can
- Or approximated by averaging multiple samples





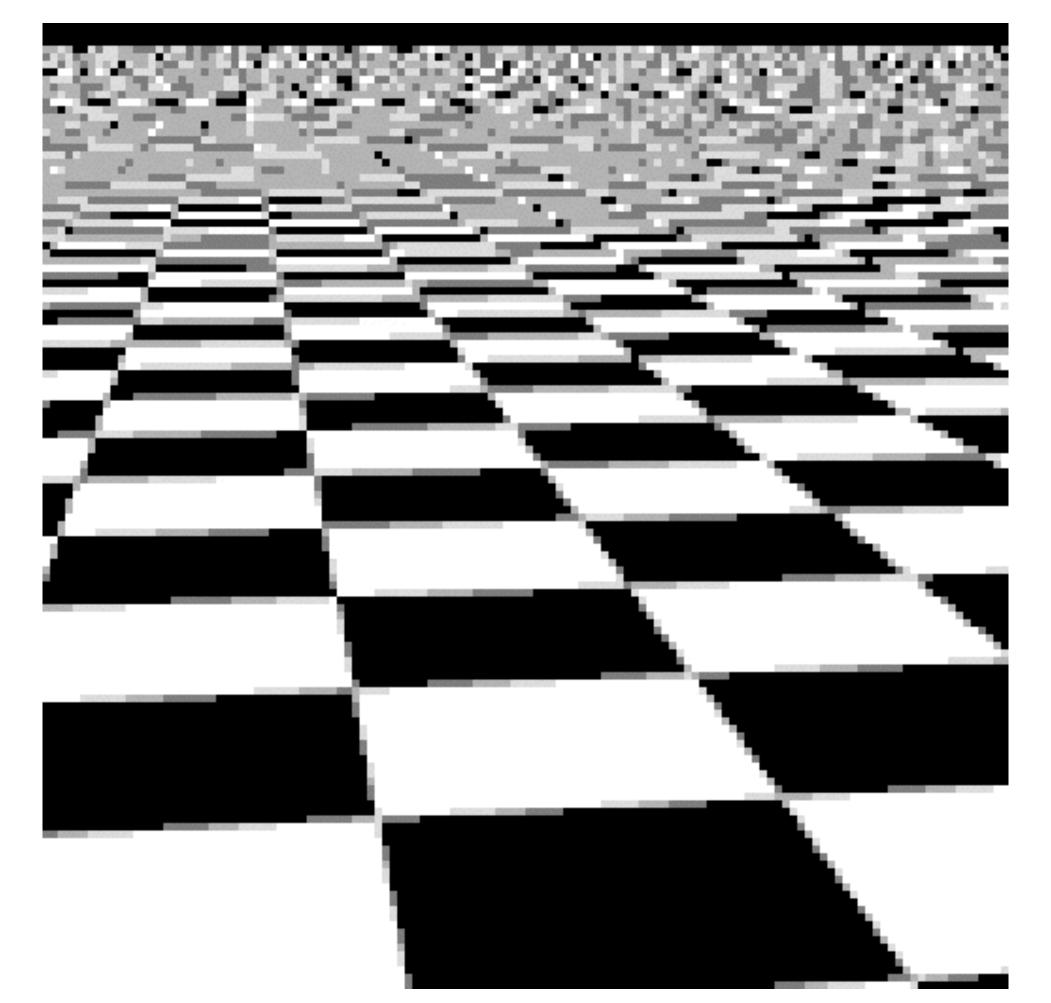


Supersampling

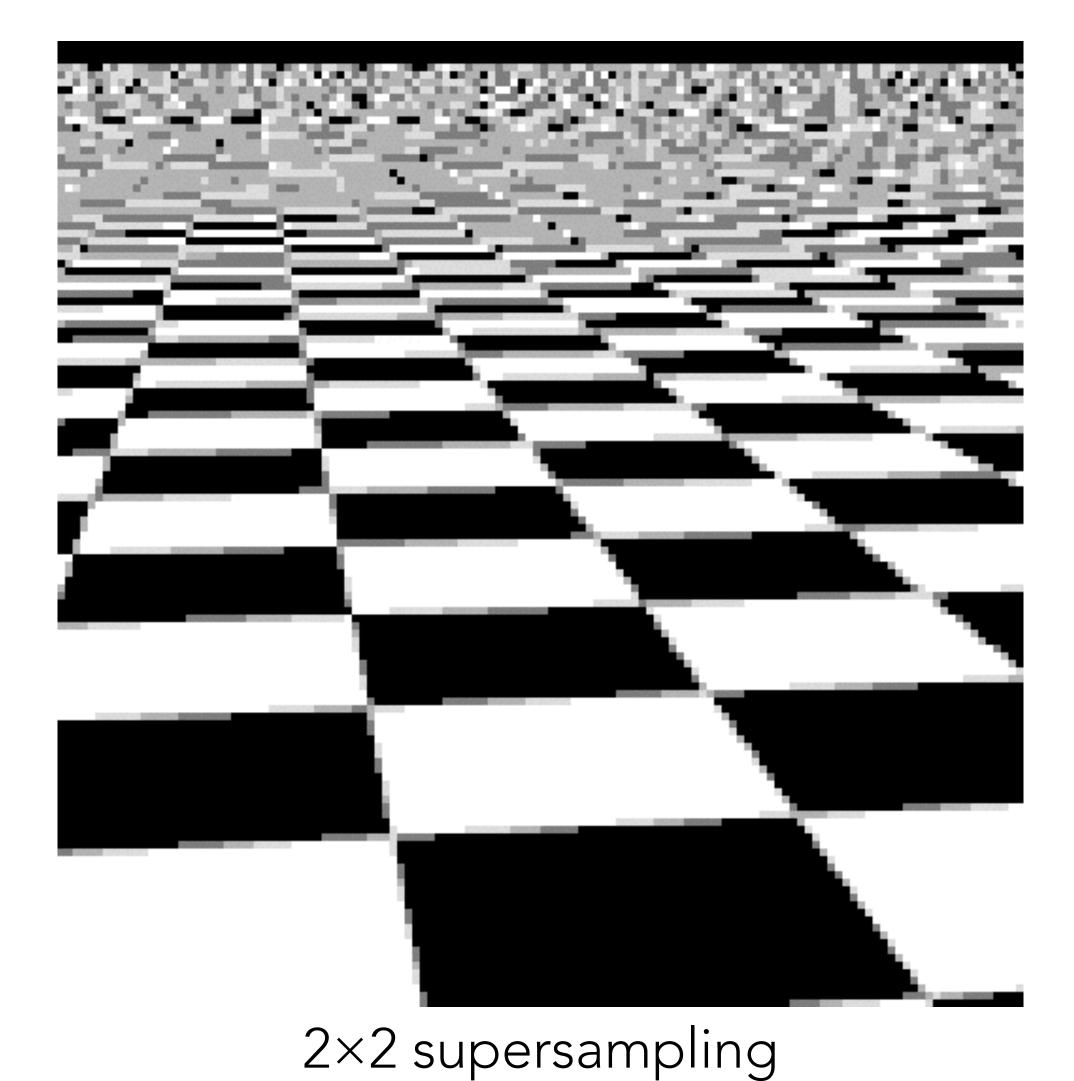


1 sample per pixel

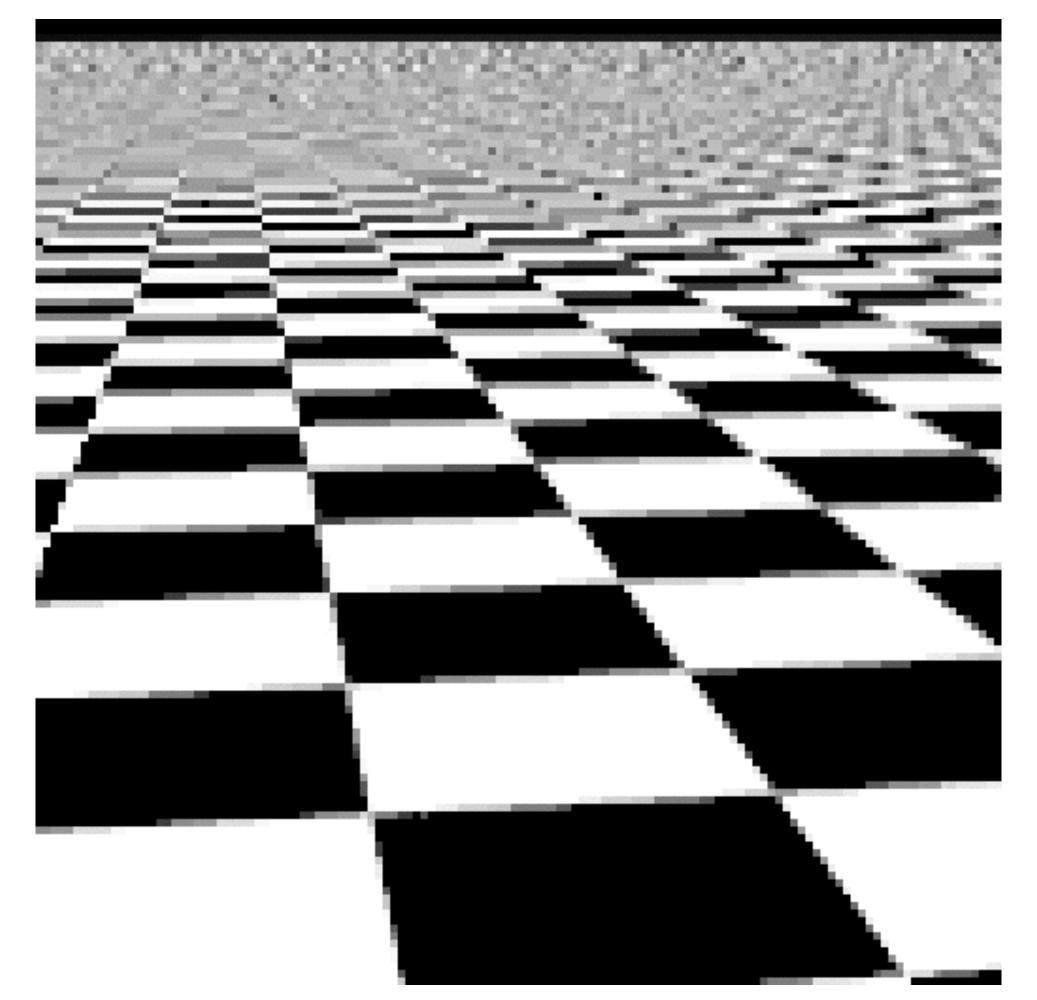
2×2 supersampling



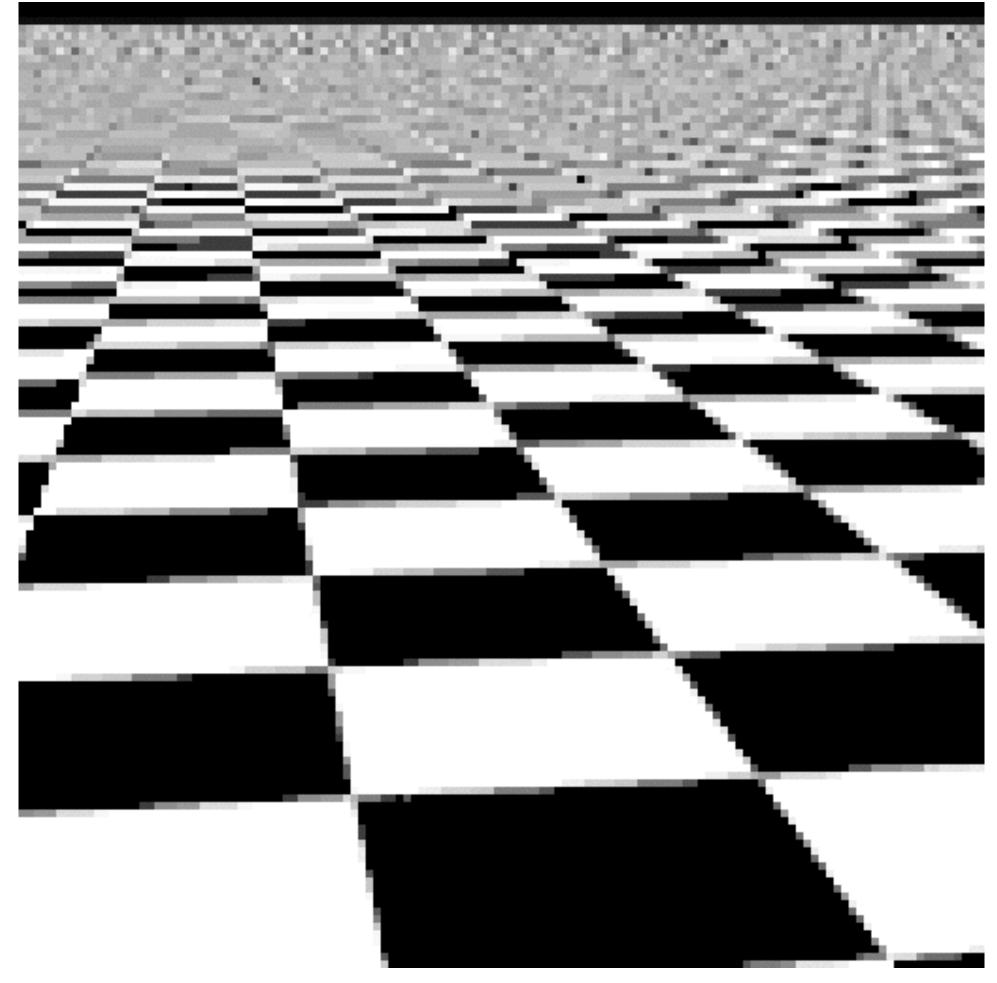
Supersampling



4×4 supersampling

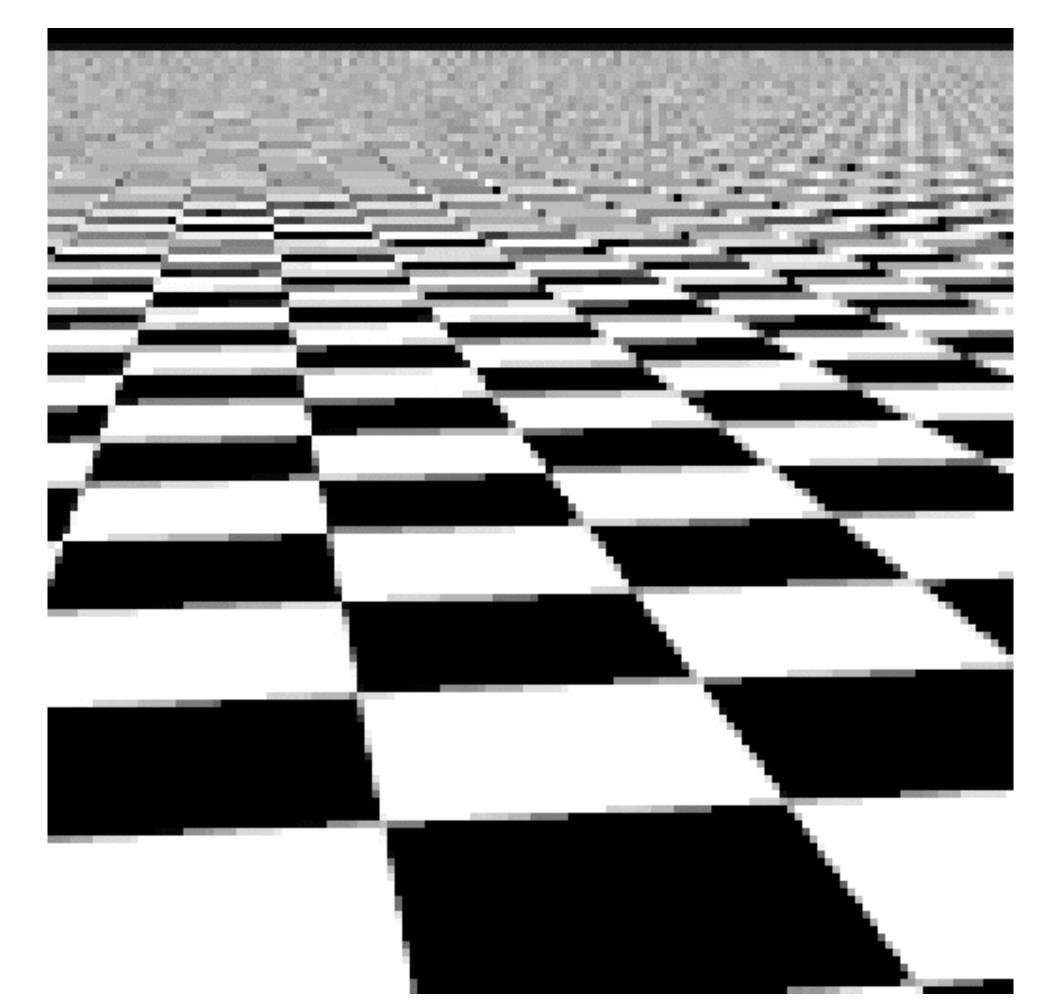


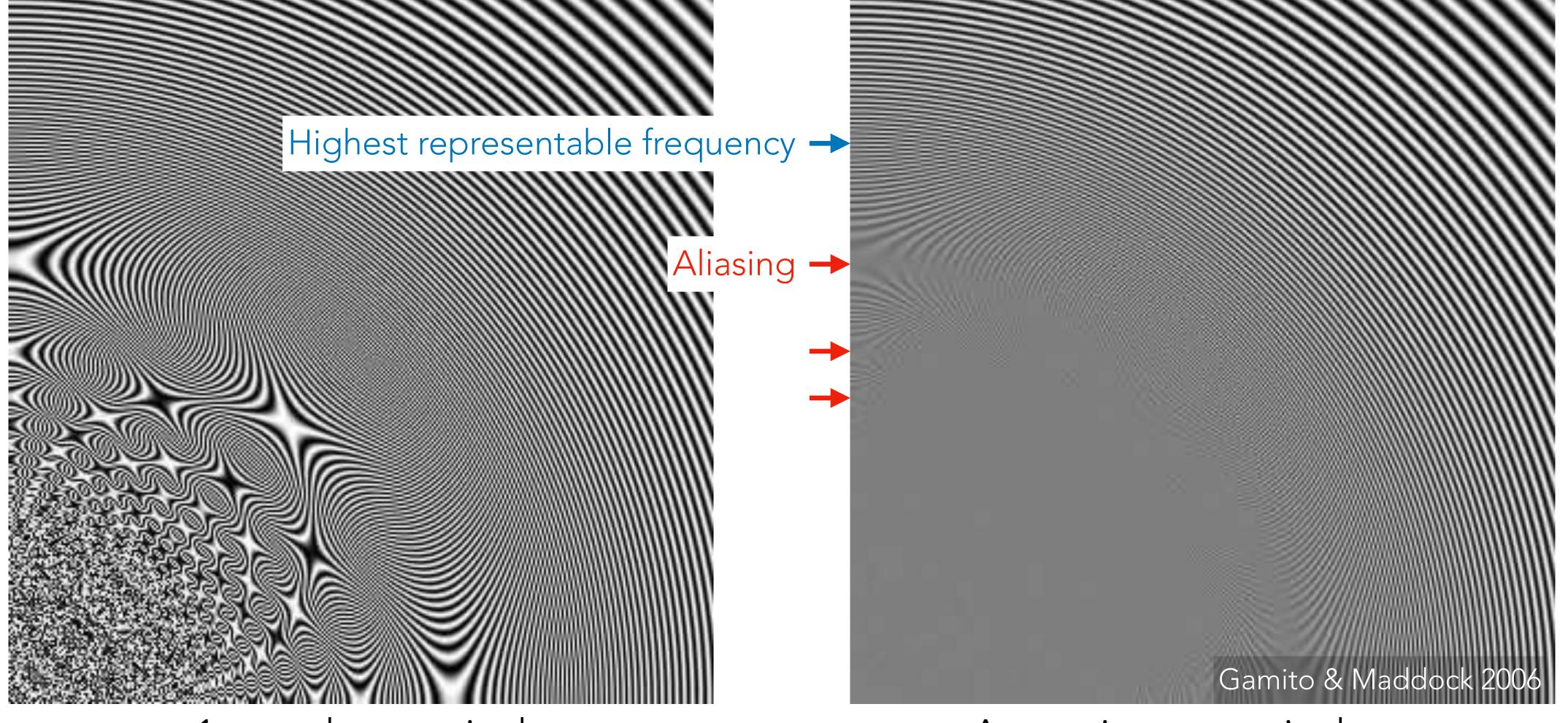
Supersampling



4×4 supersampling

32×32 supersampling





1 sample per pixel

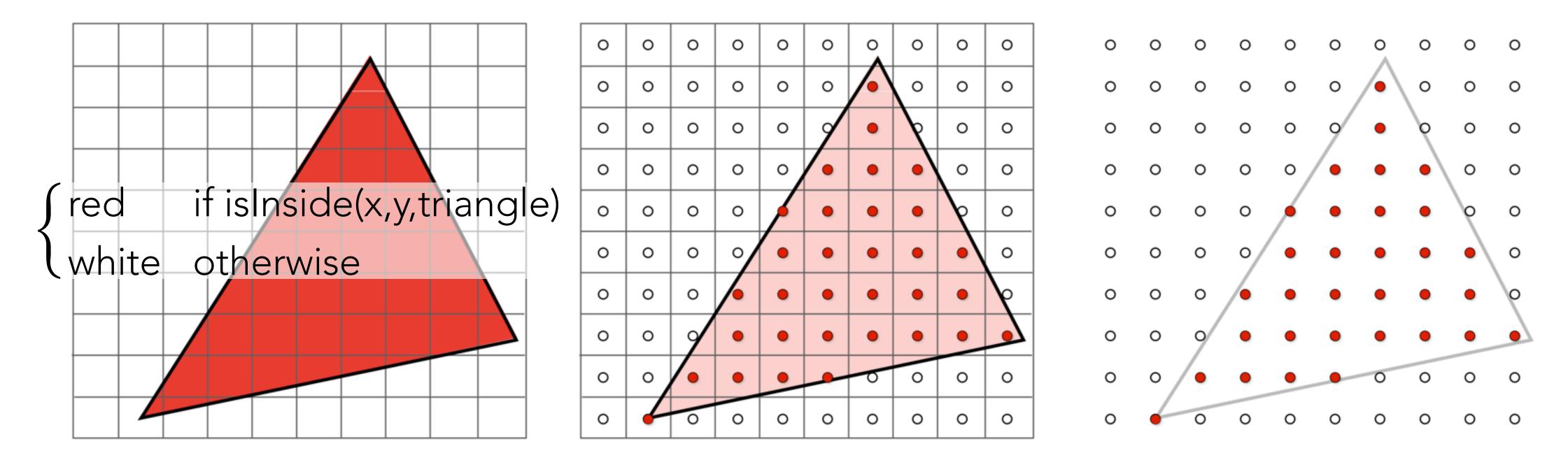
Pretty good! But why do we still have aliasing?

Averaging over pixel area

Signal processing

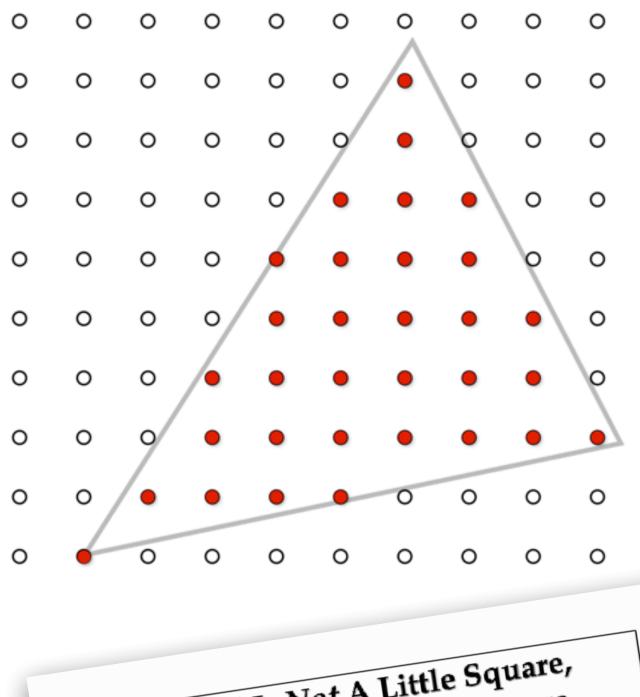
Sampling and reconstruction

What we actually want to display is a spatial signal $\mathbb{R}^2 \rightarrow \text{Colour}$



In rasterization, we are sampling the signal at finitely many points. After sampling, all we know are the values at the sample points.

Sampling and reconstruction



A Pixel Is Not A Little Square, A Pixel Is Not A Little Square, A Pixel Is Not A Little Square! (And a Voxel is Not a Little Cube)' Technical Memo 6 Alvy Ray Smith July 17, 1995 the world of the misconception This is an isNearest neighbour

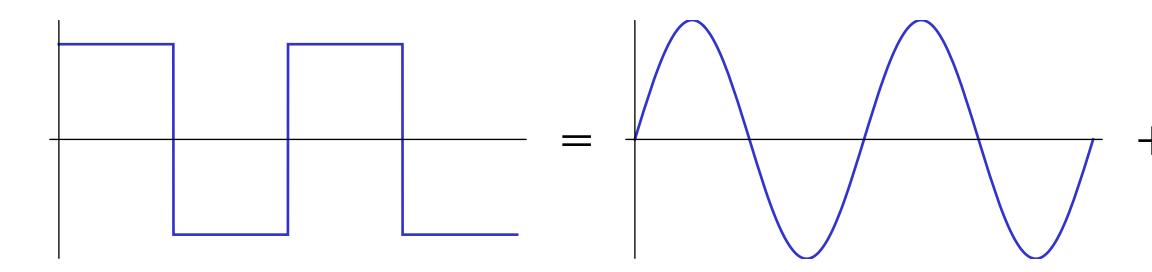
From the samples, we can try to reconstruct the original signal in various ways

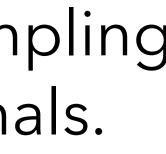
Bilinear interpolation

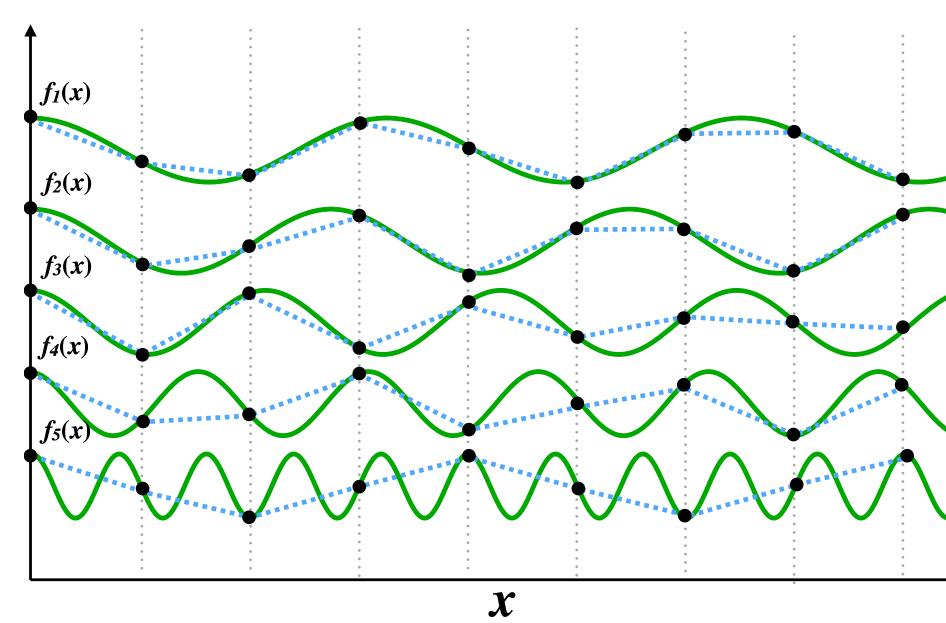
We already know that insufficient sampling rate causes aliasing in sinusoidal signals.

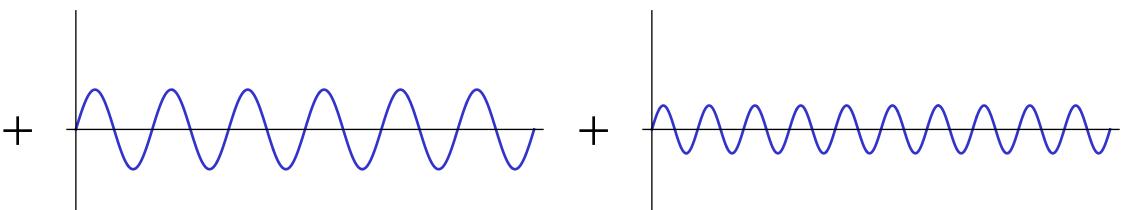
What about other signals?

Fourier transform: Any signal can be decomposed into a sum of sinusoids!



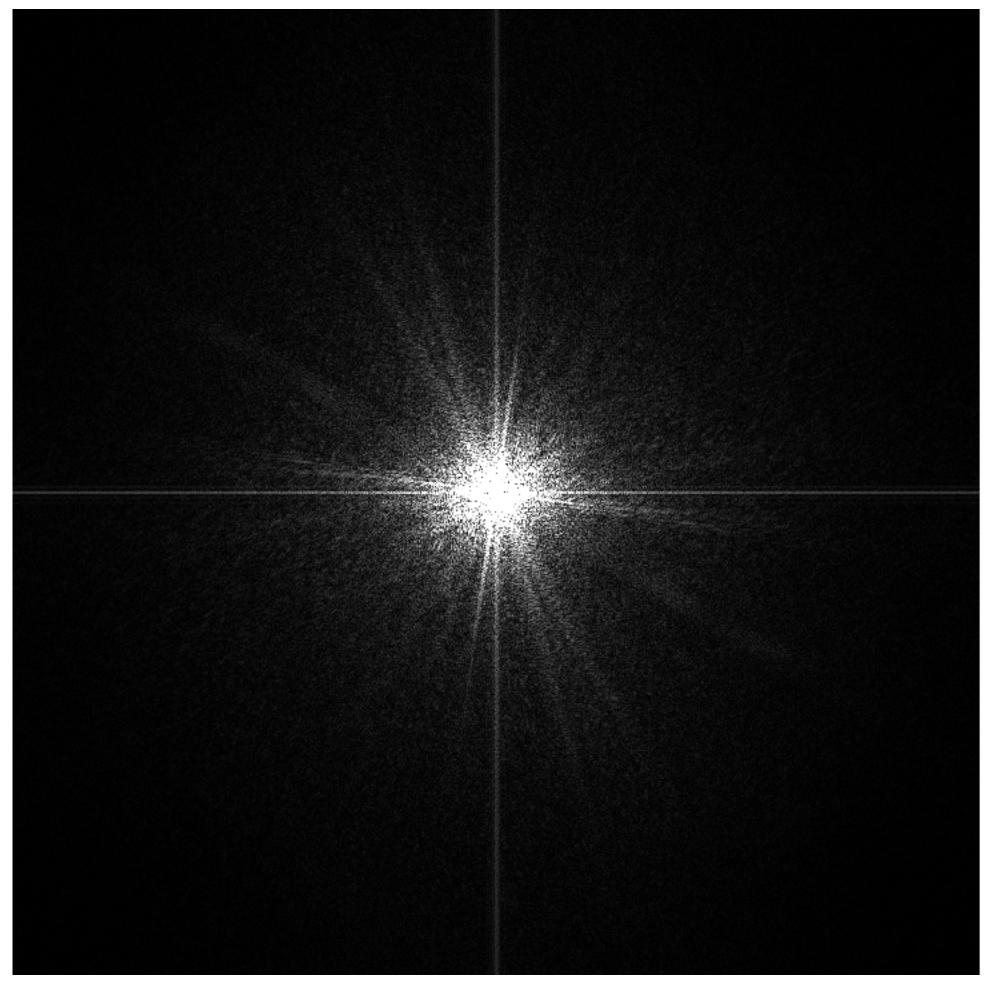






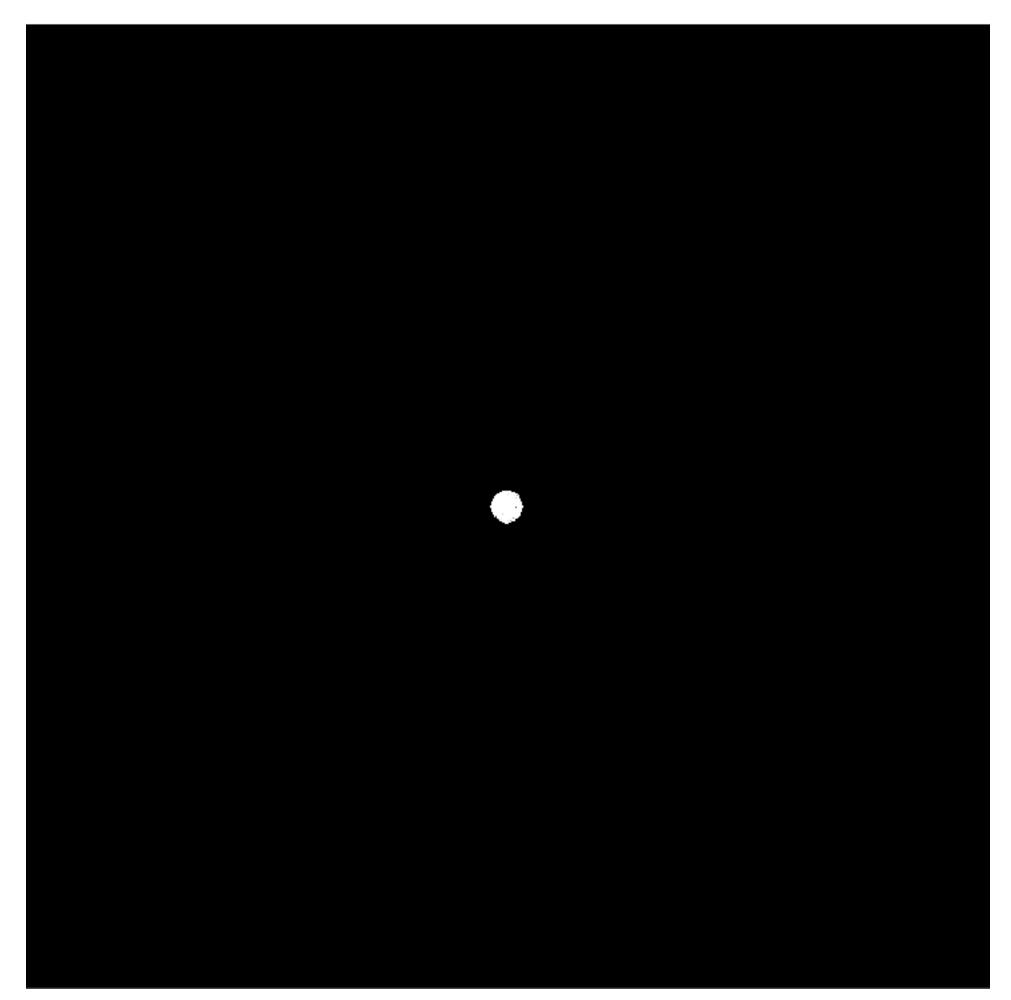
Fourier transform of an image

Spatial domain



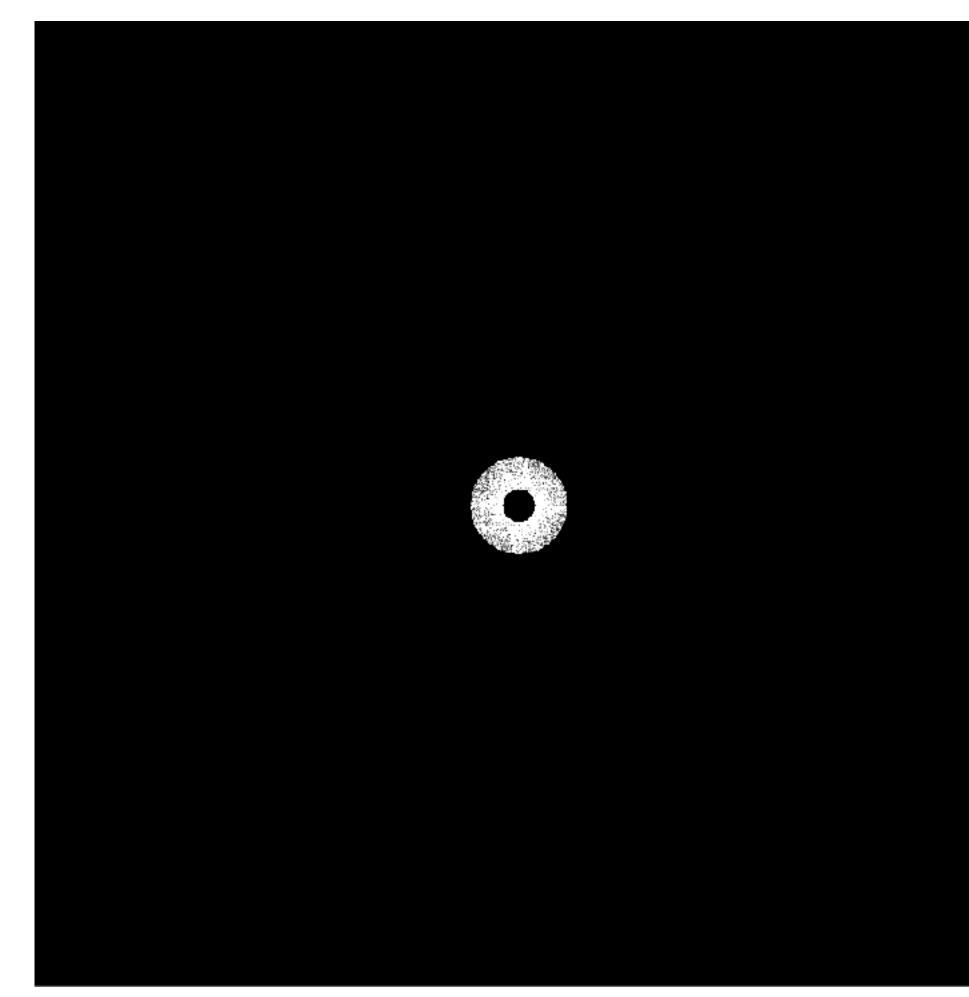
Low frequencies

Spatial domain



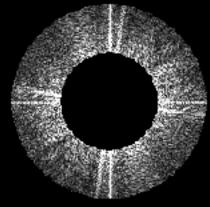
Medium frequencies

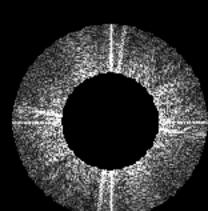
Spatial domain



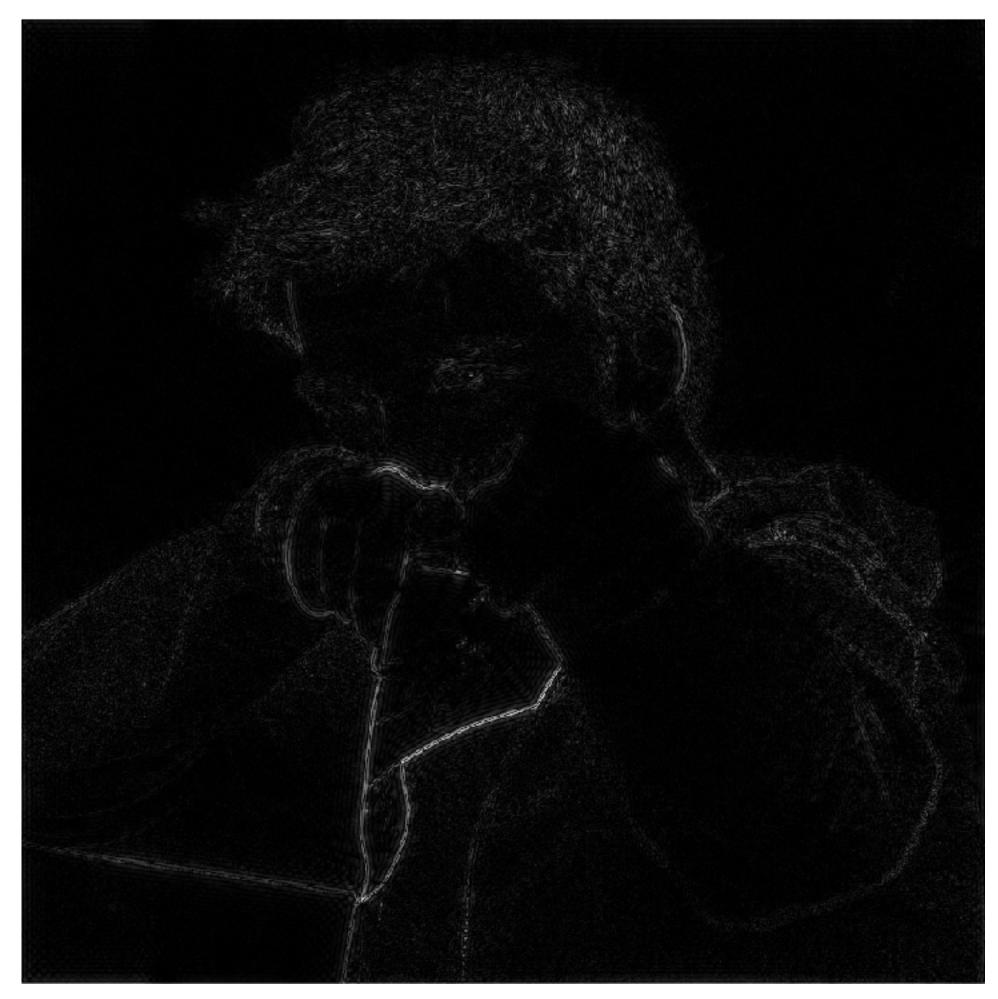
Medium frequencies

Spatial domain

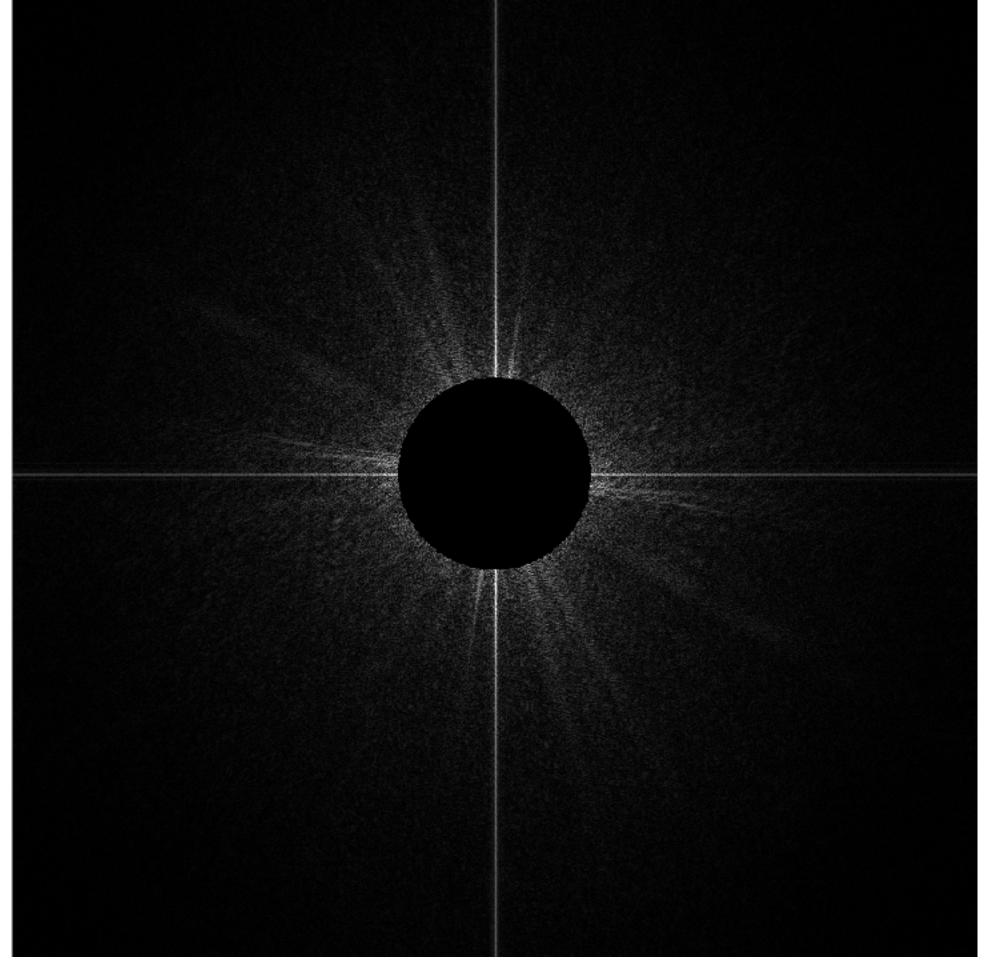




High frequencies



Spatial domain



The Nyquist-Shannon sampling theorem

- i.e. two samples per period of the highest-frequency component
- Perfect reconstruction requires a sinc kernel: (sin x)/x

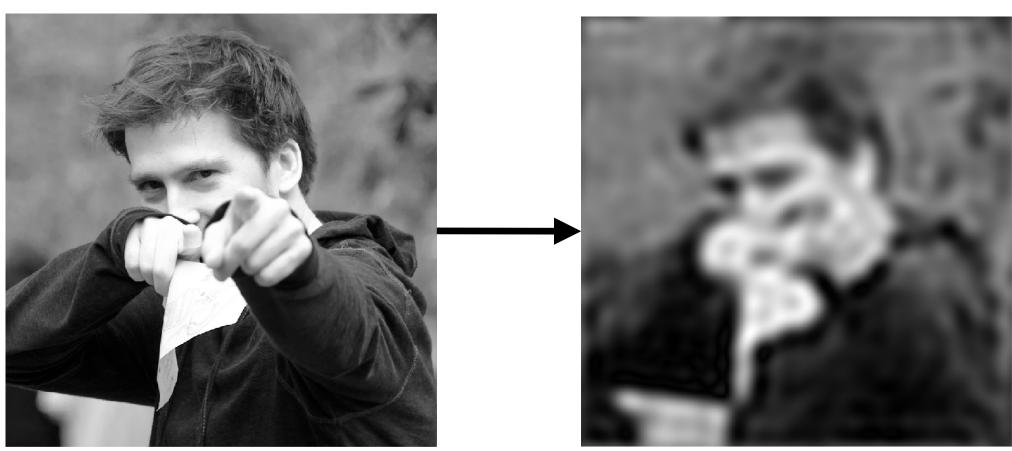
If a signal has no frequencies higher than some cutoff B, then it can be perfectly reconstructed after sampling with spacing 1/(2B).

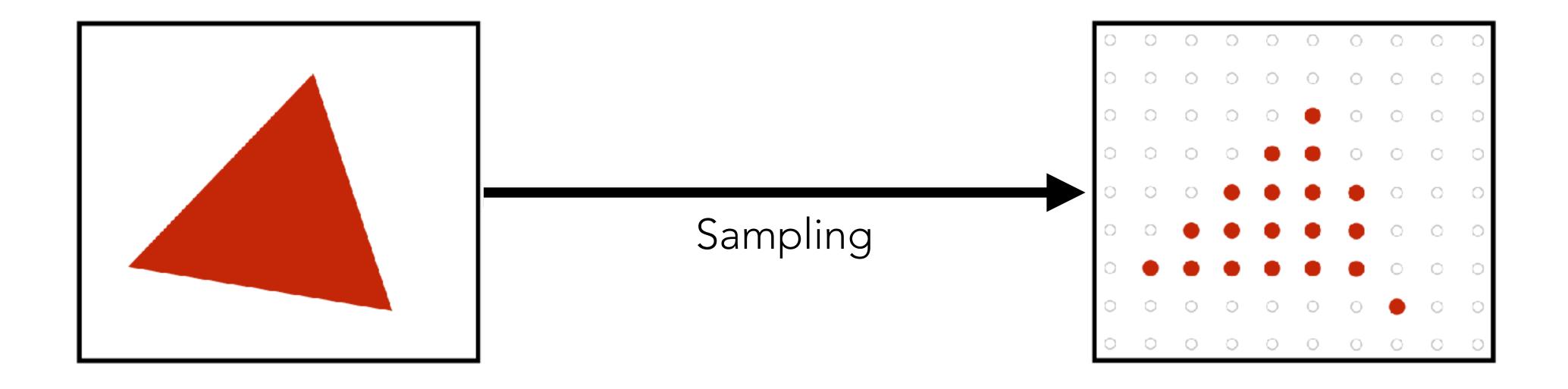
The Nyquist-Shannon sampling theorem

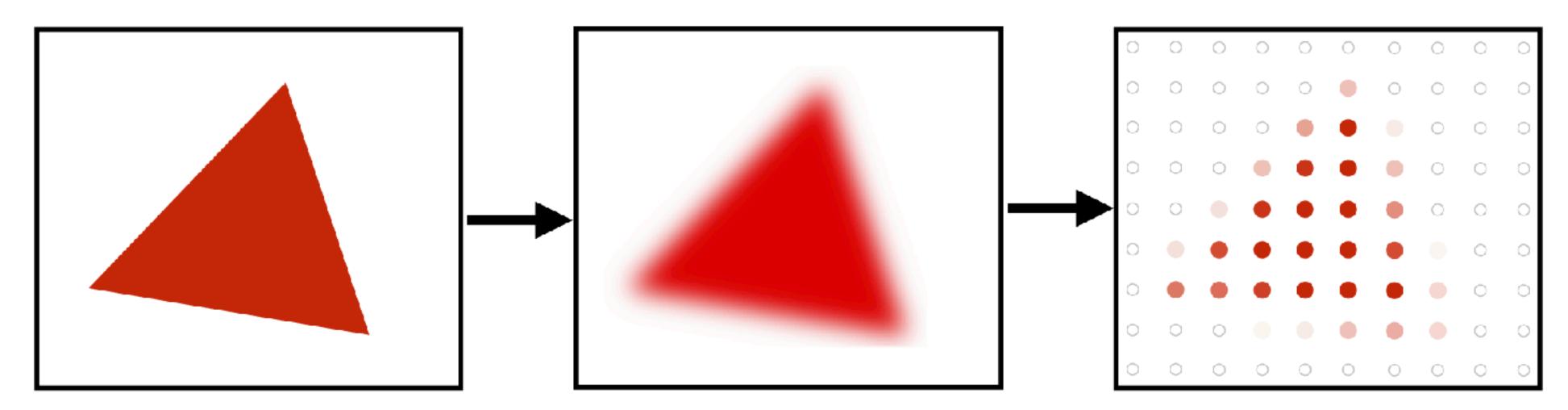
If a signal has no frequencies higher than some cutoff B, then it can be perfectly reconstructed after sampling with spacing 1/(2B).

Practical consequences: To get a faithful reconstruction, we have to eliminate frequencies above the sampling limit!

Removing high frequencies = blurring







Pre-filtering

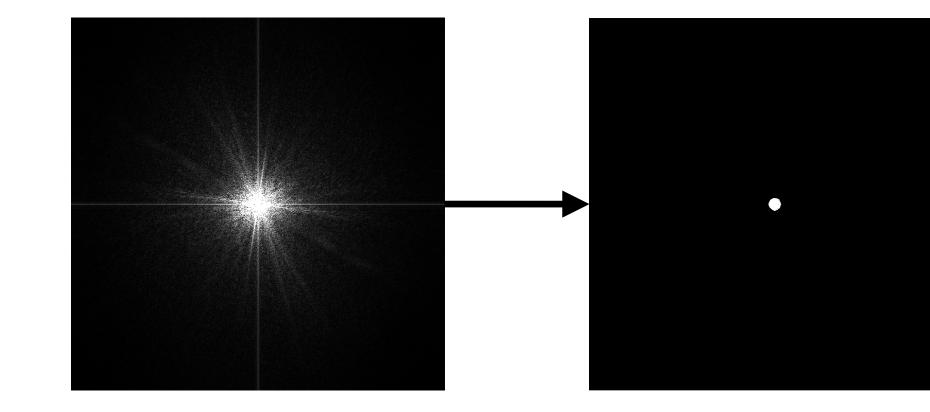
Sampling

The theoretical basis of anti-aliasing

Ideally, we'd like to:

- 1. Take the Fourier transform
- 2. Multiply high-frequency components by 0
- 3. Take the inverse Fourier transform
- 4. Sample the filtered signal

the spatial domain



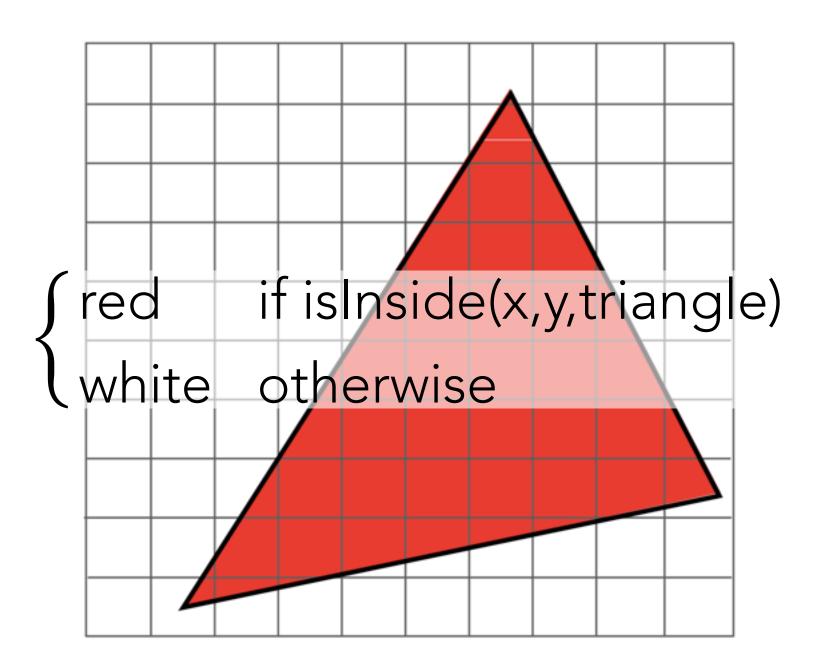
Convolution theorem: Multiplication in the frequency domain = convolution in

Ideally, we'd like to:

- 1. Convolve the signal with a sinc
- 2. Sample the filtered signal

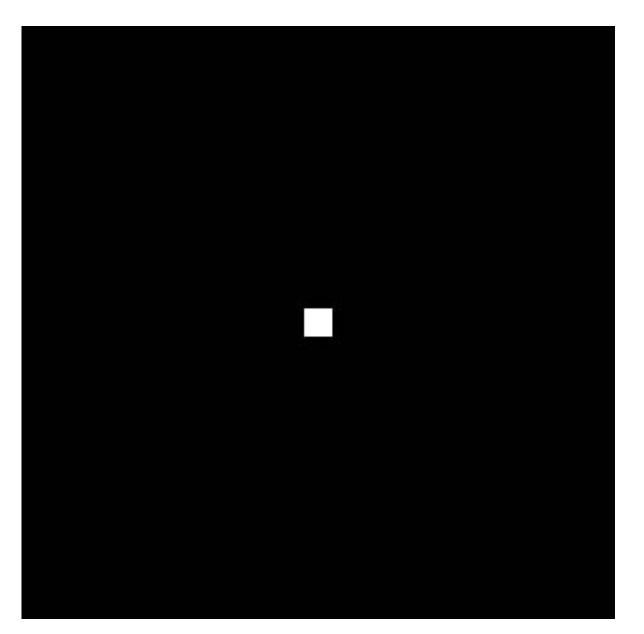
But, of course, we don't know how to convolve a shape with a sinc.

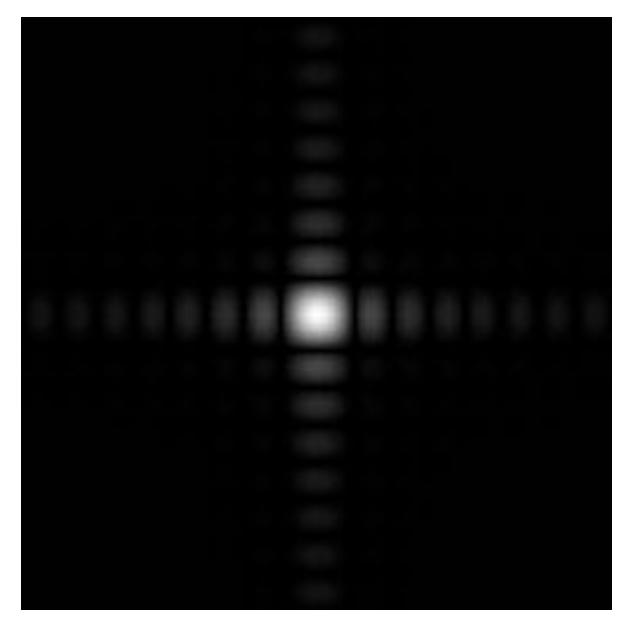
Convolution with sinc + sampling = weighted integral of all nearby points \approx weighted average of some nearby points

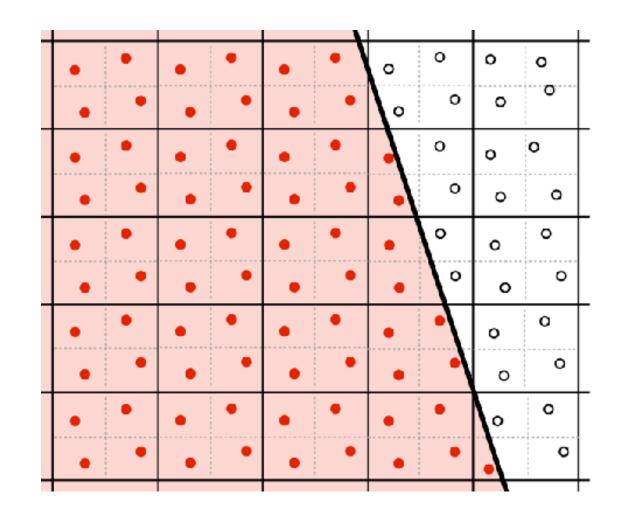


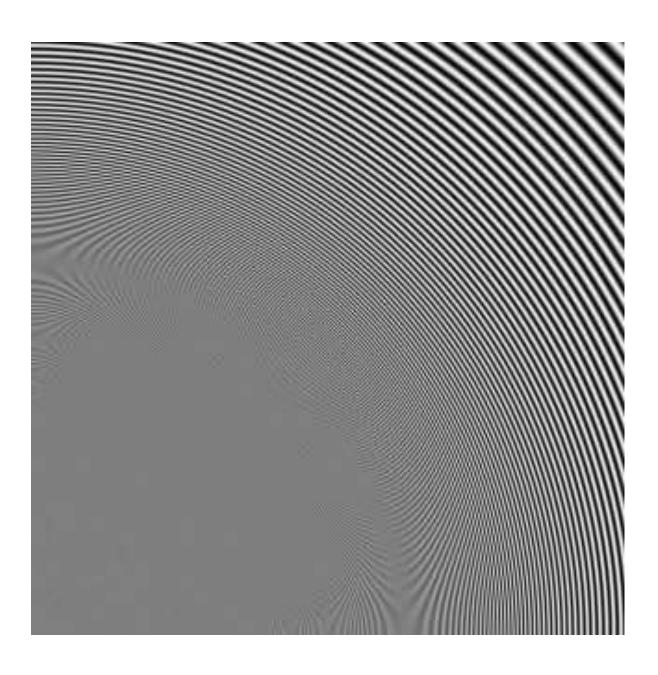
Convolution with sinc + sampling = weighted integral of all nearby points ≈ weighted average of some nearby points

Naïve averaging = unweighted average \approx convolution with **box filter**





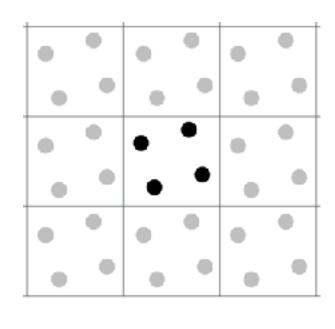


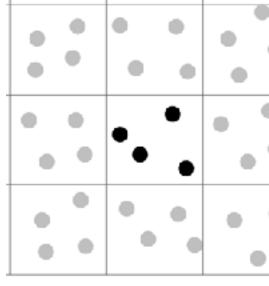


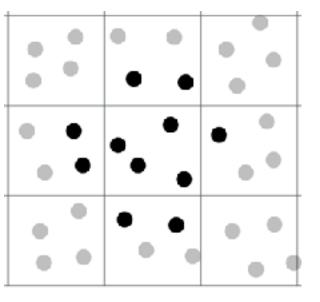
Now we understand:

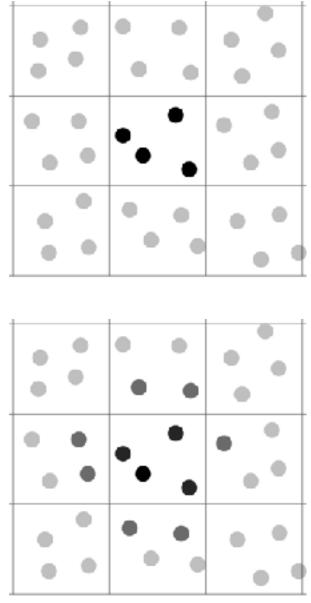
- why aliasing really happens
- the theoretically ideal (but impractical) solution
- why box filtering is good but not perfect Much more can be said!
- What are good choices for sampling locations?
- Does the ideal filter also "look good" visually?

But we'll stop here.







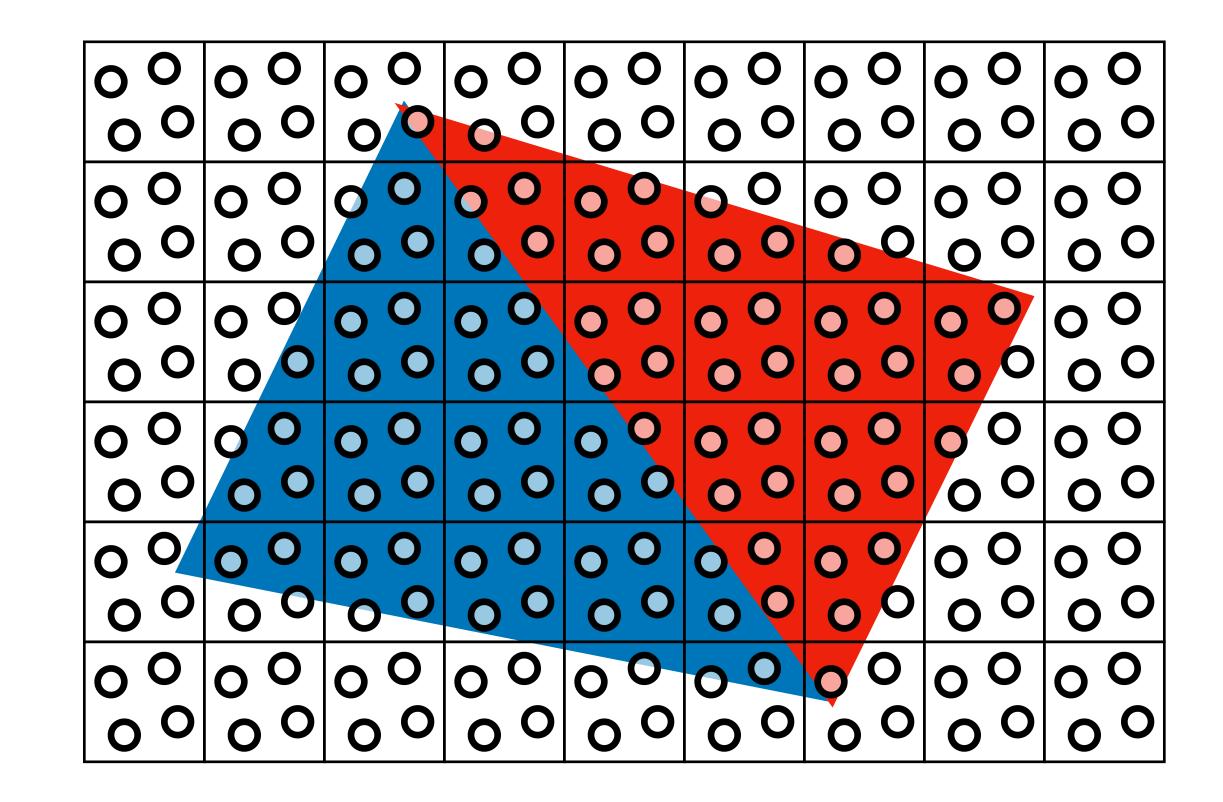


Something to think about

Suppose you want to draw multiple triangles. When should you average a pixel's sample values down to a single colour?

- After drawing each triangle?
- Only in the end?

How do these choices affect the image quality and the memory usage?



Acknowledgements

This lecture's slides are heavily based on those of Ren Ng and Keenan Crane.