
2. Rasterization
COL781: Computer Graphics

Course policies

Course webpage: https://www.cse.iitd.ac.in/~narain/, Ctrl+F 781 :)

Office hours: by appointment (please email me)

Announcements: on Moodle only

Questions: on Moodle Q&A forum only! Please do not ask by email

Textbooks: No required text, but the following are recommended:

• Hughes et al., Computer Graphics: Principles and Practice, 3rd Ed.

• Marschner and Shirley, Fundamentals of Computer Graphics, 4th or 5th Ed.

https://www.cse.iitd.ac.in/~narain/

Course policies

Grading: Minimum 80% marks for A grade. Minimum 30% marks for D

Audit policy: At least 40% in course total, and at least 20% in each assignment
and each exam

Attendance policy: Attendance lower than 75% may result in a one-grade
penalty (e.g. A to A–, or A– to B)

Graphics in a nutshell

?

Scene data (geometry,
materials, illumination, …) Image (array of pixels)

But why an array of pixels, specifically?

Raster displays

Cathode ray tubes (CRTs)
A rastrum

Raster displays

Liquid crystal displays (LCDs)

Raster displays

Light-emitting diodes (LEDs)

Raster images

Raster displays provide a grid of pixels (picture
elements) whose intensity / colour can be
individually controlled

A raster image (or bitmap image, or just
image) is a 2D array of pixel values, and can
easily be displayed on a raster device.

Vector graphics
Users usually don’t want to draw things by setting individual pixels!

One wants to provide a high-level description:

<svg version="1.1"
 width="300" height="200"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="100%" height="100%" fill="red" />
 <circle cx="150" cy="100" r="80" fill="green" />
 <text x="150" y="125" font-size="60"
 text-anchor="middle" fill="white">SVG</text>
</svg>

Vector graphics

Li et al. 2020

Raster image Vector drawing

VERTICES
A:(1, 1, 1) E:(1, 1,-1)
B:(-1, 1, 1) F:(-1, 1,-1)
C:(1,-1, 1) G:(1,-1,-1)
D:(-1,-1, 1) H:(-1,-1,-1)

TRIANGLES
EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

Similarly, 3D graphics models are almost
always represented in a high-level form:

Though in 3D we don’t refer to this as
“vector graphics”!

Puzzle:

What would be the 3D analogue of a raster image?

Can you think of a graphics application where it is / could be used?

Voxel data

Andreas Jakl

SideFX

Rasterization
To display any 2D or 3D shape on a raster display, it needs to be rasterized!

Input: Geometrical “primitives” (usually triangles) with attributes (e.g. colour)

Output: Raster image approx-
imating the given shape

Usually this is performed by the
graphics processing unit (GPU)

Preview: The (real-time)
graphics pipeline

Even for 3D graphics,

1. first we project the vertices of each 3D
triangle to their 2D locations on the screen

2. then we rasterize the 2D triangle!

So it makes sense to study rasterization of 2D
graphics first.

Aside: Vector displays

@joshmillard@mastodon.social

Oscilloscopes Plotters Laser light shows

How to draw an arbitrary triangle on a pixel grid?

For now, let’s pick a sample point at the center of each pixel, and colour the
pixel if the sample point lies inside the triangle.

How to check whether a point is inside a triangle?

A point p is inside triangle abc if:

• p is to the left of edge ab, and

• p is to the left of edge bc, and

• p is to the left of edge ca.
a

b

c

p

Edge tangent vector:

t = b − a = (bx − ax, by − ay)

Edge “normal” vector:

n = perp(t) = (−ty, tx)

p is to the left of ab if

n · (p − a) ≥ 0a

b

t

perp(t)

p

Points to the left of ab

a

b

c

Points to the left of ab
and to the left of bc

a

b

c

Points to the left of ab
and to the left of bc
and to the left of ca

a

b

c

Would this still work if the vertices were given in clockwise order instead?

Easy to fix: First check if c is to the left or the right of ab.
But, better if you ensure all triangles are anticlockwise in the first place.

This is an issue of orientation! We will see more of these in this course…

a

b

c

a

c

b

Edge cases (literally)
Is this sample point covered by triangle 1, or triangle 2, or both?

Most common edge rules
in modern GPUs:

A sample point lying on a triangle
boundary is classified as “covered” if
each incident edge is a

• “top edge”: horizontal & above all
other edges, or

• “left edge”: not exactly horizontal
and on left side of triangle.

More importantly: no gaps,
no over-draw between
adjacent triangles

From Microsoft’s Programming Guide for Direct3D 11

So, here’s what our rasterization algorithm looks like so far.

drawTriangle(triangle, colour):
 for x = 0 ... imageWidth:
 for y = 0 ... imageHeight:
 if isInside(x, y, triangle):
 image[x, y] = colour

Is this an efficient algorithm?

How can we make it faster?

Better to only check the pixels in the
bounding box of the triangle.

What are the coordinates of this box?

xmin = min {ax, bx, cx},
…

Are there any cases where this is also
terribly inefficient?

ymax

ymin
xmin xmax

Incremental traversal
It’s possible to enumerate only the pixels
actually covered by the triangle.

Roughly:

• Proceed row by row

• Keep track of where edges intersect row

• Fill in all pixels in between!

Which is better?
Incremental traversal does much less arithmetic…

• …but is also inherently serial

• Works well for “software rendering” i.e. on the CPU

GPUs are highly parallel SIMD (single instruction
multiple data) hardware

• Great for running the same tests in parallel on
lots of pixels!

Tiled triangle traversal
Traverse the bounding box in blocks of pixels:

• If the block is entirely outside, just skip it
(“early out”)

• If the block is entirely inside, process all the
samples without testing them (“early in”)

• Otherwise, test each sample point in parallel

All modern GPUs have specialized hardware
for doing this very very efficiently!

Homework to try
Write a simple program to rasterize a triangle with given vertex coordinates
into an array of booleans. “Display” it by printing it out, maybe like this:

....................

............[]......

............[]......

..........[][][]....

........[][][][]....

........[][][][][]..

......[][][][][][]..

......[][][][][][][]

....[][][][]........

..[]................

Acknowledgements
This lecture’s slides are heavily based on those of Ren Ng and Keenan Crane.

