COV877: Differentiable Graphics for Vision and Learning

4. Differentiable Simulation

Animation

CAESAR

Simulation

What makes the motion of a physical object look real?

$$
\mathbf{F}=\mathrm{ma}
$$

Solve the equations of motion to automatically get physically realistic motion.
e.g. Rigid bodies

- Degrees of freedom: position, rotation

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \mathbf{x}}{\mathrm{~d} t^{2}}=\mathbf{f}_{\mathrm{ext}} / m \\
& \frac{\mathrm{~d}^{2} \mathbf{R}}{\mathrm{~d} t^{2}}=\cdots
\end{aligned}
$$

- Challenges: collisions, frictional contact, stacking

Deformable bodies, cloth, etc.

Every vertex can move independently! But deformation causes internal elastic forces

- Physically accurate: finite element method
- Cheap approximation: mass-spring systems (just a bunch of particles and 1D springs)

Fluids (smoke, water, fire, etc.)
Described by the Navier-Stokes equations (system of partial differential equations)
Velocity field $\mathbf{v}(\mathbf{x})$: every point has its own velocity!

Let's start simple...
Particle system = collection of (usually non-interacting) particles in motion

Each particle is a point mass

- Fixed: mass m_{i}
- Variable state: position \mathbf{x}_{i}, velocity \mathbf{v}_{i}

Affected by some forces $\mathbf{f}_{i}=\mathbf{f}\left(t, \mathbf{x}_{i}(t), \mathbf{v}_{i}(t)\right)$

Gravity
$\mathbf{f}=\mathrm{mg}$

Wind / drag
$\mathbf{f}=-k_{d}\left(\mathbf{v}-\mathbf{v}_{\text {air }}\right)$

Spatial fields $\mathbf{f}=\mathbf{f}(\mathbf{x})$

Collisions
$\mathrm{f}=\ldots \mathrm{TBD}$

Equations of motion: $\mathbf{f}=\mathrm{ma}$ (where \mathbf{f} is total force) so...

$$
\frac{\mathrm{d}^{2} \mathbf{x}(t)}{\mathrm{d} t^{2}}=m^{-1} \mathbf{f}(t, \mathbf{x}(t), \mathbf{v}(t))
$$

For each emitted particle, we know initial position $\mathbf{x}(0)$ and velocity $\mathbf{v}(0)$. How to find $\mathbf{x}(t), \mathbf{v}(t)$ at any future time t ?

In general, no closed form unless \mathbf{f} is very simple!

L66L Hexeg 8 u!yl! ! M
Like with rendering, we need a numerical method...

Time stepping

Idea: Given a known state $(\mathbf{x}(t), \mathbf{v}(t))$, estimate a near future state $(\mathbf{x}(t+\Delta t), \mathbf{v}(t+\Delta t))$.
Then we can iterate: $(\mathbf{x}(0), \mathbf{v}(0)) \rightarrow(\mathbf{x}(\Delta t), \mathbf{v}(\Delta t)) \rightarrow(\mathbf{x}(2 \Delta t), \mathbf{v}(2 \Delta t)) \rightarrow(\mathbf{x}(3 \Delta t), \mathbf{v}(3 \Delta t)) \rightarrow \cdots$

$$
\begin{gathered}
\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\mathbf{v}(t) \\
\frac{\mathrm{d} \mathbf{v}(t)}{\mathrm{d} t}=m^{-1} \mathbf{f}(t, \mathbf{x}(t), \mathbf{v}(t))
\end{gathered}
$$

Simplest strategy:

$$
\begin{gathered}
\mathbf{v}(t+\Delta t)=\mathbf{v}(t)+m^{-1} \mathbf{f}(t, \mathbf{x}(t), \mathbf{v}(t)) \Delta t \\
\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\mathbf{v}(t+\Delta t) \Delta t
\end{gathered}
$$

Mass-spring systems

https://www.youtube.com/watch?v=ib1vmRDs8Vw

In 3D, suppose a spring of length ℓ_{0} and stiffness k_{s} connects particles i and j. What should be the force $\mathbf{f}_{i j}$ on i due to j ?

Let's first define the potential energy:

$$
U=1 / 2 k_{s}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-\ell_{0}\right)^{2}
$$

Then $\mathbf{f}_{i j}=-\partial U / \partial \mathbf{x}_{i} \Rightarrow$

$$
\begin{gathered}
\mathbf{f}_{i j}=-k_{s}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-\ell_{0}\right) \frac{\mathbf{x}_{i}-\mathbf{x}_{j}}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|} \\
=-k_{\mathrm{s}}\left(\left\|\mathbf{x}_{i j}\right\|-\ell_{0}\right) \hat{\mathbf{x}}_{i j}
\end{gathered}
$$

Similarly $\mathbf{f}_{j i}=-\partial U / \partial \mathbf{x}_{j}$ (but it's also just $-\mathbf{f}_{\mathrm{ij}}$)
Also add a damping force $\mathbf{f}_{i j}=-k_{d}\left(\mathbf{v}_{i j} \cdot \hat{\mathbf{x}}_{i j}\right) \hat{\mathbf{x}}_{i j}$ to dissipate energy

Sum of contributions from all incident springs.
May depend on $\mathbf{x}_{1}(t), \mathbf{v}_{1}(t), \mathbf{x}_{2}(t), \mathbf{v}_{2}(t), \ldots!$

How to compute? Same strategy:

Pseudocode:

for each particle p :

$$
p . f=0
$$

for each force object F :
for each particle p affected by F : $p . f+=$ force on p due to F
for each particle p :

$$
\begin{aligned}
& p \cdot v+=p . f / p \cdot m * d t \\
& p \cdot x+=p \cdot v^{*} d t
\end{aligned}
$$

Simpler with generalized coordinates:

$$
\mathbf{q}=\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right]
$$

Then

$$
\frac{\mathrm{d}^{2} \mathbf{q}(t)}{\mathrm{d} t^{2}}=\left[\begin{array}{c}
m_{1}^{-1} \mathbf{f}_{1}(t, \mathbf{q}, \mathbf{v}) \\
m_{2}^{-1} \mathbf{f}_{2}(t, \mathbf{q}, \mathbf{v}) \\
\vdots \\
m_{n}^{-1} \mathbf{f}_{n}(t, \mathbf{q}, \mathbf{v})
\end{array}\right]=\left[\begin{array}{llll}
m_{1} \mathbf{I} & & & \\
& m_{2} \mathbf{I} & & \\
& & \ddots & \\
& & & m_{n} \mathbf{I}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{f}_{1}(t, \mathbf{q}, \mathbf{v}) \\
\mathbf{f}_{2}(t, \mathbf{q}, \mathbf{v}) \\
\vdots \\
\mathbf{f}_{n}(t, \mathbf{q}, \mathbf{v})
\end{array}\right]
$$

Now we're solving for the evolution of a single (though 3n-dimensional!) vector

Generalized coordinates:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} \mathbf{q}(t)}{\mathrm{d} t^{2}}=\mathbf{M}^{-1} \mathbf{f}(t, \mathbf{q}, \mathbf{v}) \\
\downarrow \\
\mathbf{v}(t+\Delta t)=\mathbf{v}(t)+\mathbf{M}^{-1} \mathbf{f}(t, \mathbf{q}, \mathbf{v}) \Delta t \\
\mathbf{q}(t+\Delta t)=\mathbf{q}(t)+\mathbf{v}(t+\Delta t) \Delta t
\end{gathered}
$$

Simple! And generalizes to other things (e.g. rigid bodies) with few changes

Here's a problem you'll encounter:
Sometimes your simulation blows up for no apparent reason!

Why?

We have an ordinary differential equation

$$
\ddot{\mathbf{q}}=\mathbf{M}^{-1} \mathbf{f}(t, \mathbf{q}, \dot{\mathbf{q}})
$$

and are trying to solve an initial value problem:
Given $\mathbf{q}(0), \dot{\mathbf{q}}(0)$, find $\mathbf{q}(t), \dot{\mathbf{q}}(t)$ for $t>0$.

Let's start by understanding this for a simple 1st-order ODE:

$$
\dot{x}(t)=\phi(t, x(t))
$$

Like a leaf in a river: if you are at position x at time t, your velocity is $\phi(t, x)$

Explicit vs. implicit time integration

$$
\dot{x}(t)=\phi(t, x(t))
$$

- Simplest strategy: forward Euler method

$$
x_{n+1}=x_{n}+\phi\left(t_{n}, x_{n}\right) \Delta t
$$

Tends to blow up if Δt is too large

- Backward Euler:

$$
x_{n+1}=x_{n}+\phi\left(t_{n+1}, x_{n+1}\right) \Delta t
$$

Implicit method: unknown x_{n+1} appears on both sides! But unconditionally stable for any Δt

How do we apply all this to our 2nd-order ODE, $\ddot{\mathbf{q}}=\mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})$?
Reduce to 1st-order:

$$
\begin{aligned}
& \dot{\mathbf{q}}=\mathbf{v} \\
& \dot{\mathbf{v}}=\mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \mathbf{v})
\end{aligned}
$$

Forward Euler:

$$
\begin{aligned}
& \mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n} \Delta t \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t
\end{aligned}
$$

Backward Euler:

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
\mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right) \Delta t \\
\mathbf{q}_{n+1}=2 \mathbf{q}_{n}-\mathbf{q}_{n-1}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n+1},\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right) / \Delta t\right) \Delta t^{2}
\end{gathered}
$$

Newton's method

How to solve a nonlinear system of equations $f(x)=0$?
Start with a guess: \tilde{x}.

1. Approximate the problem near the guess:

$$
0=f(\tilde{x}+\Delta x) \approx f(\tilde{x})+f^{\prime}(\tilde{x}) \Delta x
$$

2. Solve the approximation exactly:

$$
\Delta x=-\left(f^{\prime}(\tilde{x})\right)^{-1} f(\tilde{x})
$$

3. Improve the guess and repeat: $\tilde{x} \leftarrow \tilde{x}+\Delta x$

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
\mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right) \Delta t
\end{gathered}
$$

Pick a guess ($\tilde{\mathbf{q}}, \tilde{\mathbf{v}}$). A natural choice is to start with $\tilde{\mathbf{q}}=\mathbf{q}_{n}, \tilde{\mathbf{v}}=\mathbf{v}_{n}$.

1. Approximate the problem:

$$
\begin{gathered}
(\tilde{\mathbf{q}}+\Delta \mathbf{q})=\mathbf{q}_{n}+(\tilde{\mathbf{v}}+\Delta \mathbf{v}) \Delta t \\
(\tilde{\mathbf{v}}+\Delta \mathbf{v})=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}(\tilde{\mathbf{q}}+\Delta \mathbf{q}, \tilde{\mathbf{v}}+\Delta \mathbf{v}) \Delta t \\
\text { where } f(\tilde{\mathbf{q}}+\Delta \mathbf{q}, \tilde{\mathbf{v}}+\Delta \mathbf{v}) \approx \mathbf{f}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}})+\frac{\partial \mathbf{f}}{\partial \mathbf{q}}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}}) \Delta \mathbf{q}+\frac{\partial \mathbf{f}}{\partial \mathbf{v}}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}}) \Delta \mathbf{v}
\end{gathered}
$$

2. Now the system is linear in $(\Delta \mathbf{q}, \Delta \mathbf{v})$. Plug into any linear solver. (Can simplify a bit first...)

Note: To carry this out, we must able to evaluate the force Jacobians $\frac{\partial \mathrm{f}}{\partial \mathrm{q}}$ and $\frac{\partial \mathrm{f}}{\partial \mathrm{v}}$.

Rigid bodies

Degrees of freedom: Center of mass position \mathbf{x}, rotation (matrix \mathbf{R} or quaternion \mathbf{q}) ...Basically just the body's coordinate system

Kinematics:

- (Linear) velocity: $\dot{\mathbf{x}}=\mathbf{v}$
- Angular velocity: $\boldsymbol{\omega}$

$$
\dot{\mathbf{R}}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right] \mathbf{R} \quad \text { or } \quad \dot{\mathbf{q}}=\frac{1}{2}\left[\begin{array}{ccc}
q_{x} & -q_{y} & -q_{z} \\
q_{w} & q_{z} & -q_{y} \\
-q_{z} & q_{w} & q_{x} \\
q_{y} & -q_{x} & q_{w}
\end{array}\right] \omega
$$

Dynamics:

$$
\begin{gathered}
\dot{\mathbf{v}}=m^{-1} \mathbf{f} \\
\dot{\boldsymbol{\omega}}=\mathbf{I}^{-1}(\mathbf{T}-\boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega})
\end{gathered}
$$

where $\mathbf{I}=$ moment of inertia, $\mathbf{T}=$ net torque $=\sum\left(\mathbf{p}_{i}-\mathbf{x}\right) \times \mathbf{f}_{i}$
$\boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega}=$ "gyroscopic term" that makes things tumble
Simulation loop:

- Sum up forces \mathbf{f} and torques \mathbf{T}
- Update velocities $\mathbf{v}, \boldsymbol{\omega}$
- Update DOFs \mathbf{x}, \mathbf{q}. Don't forget to normalize \mathbf{q}

https://commons.wikimedia.org/ wiki/File:Tennis racket theorem.gif

Collisions

Collision detection: find out which particles / bodies / etc. are colliding
Purely a geometric problem

Collision response: figure out how to update their velocities / positions Involves physics of contact forces, friction, etc.

Output of collision detection: contact pairs

- Point \mathbf{p}_{a} on one body
- Point \mathbf{p}_{b} on other body
- Contact normal n
- Time of impact t^{\star}

Witkin \& Baraff 2001

Collision resolution

Two components:

- Normal force (prevents interpenetration)
- Frictional force (opposes tangential sliding)

Actually, collision forces change velocity over an extremely very short time \rightarrow treat as an instantaneous impulse

$$
\mathbf{v}^{+}=\mathbf{v}+m^{-1} \mathbf{j}
$$

The normal component is like a constraint that prevents interpenetration.
Define a gap function $\varphi(\mathbf{q})$ which measures the distance between the bodies

Constraint: $\varphi(\mathbf{q}) \geq 0$
Normal impulse: $\mathbf{j}=\lambda \nabla \varphi(\mathbf{q}), \lambda \geq 0$ (no sticking)
Complementarity: if $\varphi(\mathbf{q})>0$ then $\lambda=0$, if $\lambda>0$ then $\varphi(\mathbf{q})=0$

$$
0 \leq \varphi(\mathbf{q}) \quad \perp \quad \lambda \geq 0
$$

Friction is described by Coulomb's law

$$
\left\|\mathbf{f}_{t}\right\| \leq \mu \mathbf{f}_{n}
$$

Maximum dissipation principle: Frictional force takes the value which dissipates as much kinetic energy as possible.

1. If $\left\|\mathbf{v}_{t}\right\|>0$ (slipping) then $\mathbf{f}_{t}=-\left(\mu \mathbf{f}_{n}\right) \hat{\mathbf{v}}_{t}$
2. If $\left\|\mathbf{v}_{t}\right\|=0$ (sticking) then \mathbf{f}_{t} is any force in friction cone

Multi-contact problems (harder!)

Often modeled as a linear complementarity problem (LCP)

Differentiable simulation

Reminder:

- Sign-up sheet posted on Teams
- Enter your name by end of today! Late sign-ups will be forced to present next week itself :)

Suppose we want to do quasistatics: Given the parameters \mathbf{p}, what is the equilibrium configuration of the body \mathbf{x}^{\star} ?

Simulator gives us forces $\mathbf{f}(\mathbf{x} ; \mathbf{p})$
Equilibrium configuration is implicitly defined by

$$
\mathbf{f}\left(\mathbf{x}^{\star} ; \mathbf{p}\right)=\mathbf{0}
$$

How to find \mathbf{p} to to minimize some objective $O\left(\mathbf{x}^{\star}, \mathbf{p}\right)$?

Implicit differentiation

$$
\mathbf{f}\left(\mathbf{x}^{\star} ; \mathbf{p}\right)=\mathbf{0}
$$

Differentiate both sides with respect to \mathbf{p} :

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \mathbf{p}} \mathbf{f}\left(\mathbf{x}^{*} ; \mathbf{p}\right)=\mathbf{0}=\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \frac{\mathrm{d} \mathbf{x}^{*}}{\mathrm{~d} \mathbf{p}}+\frac{\partial \mathbf{f}}{\partial \mathbf{p}} \\
\frac{\mathrm{d} \mathbf{x}^{*}}{\mathrm{~d} \mathbf{p}}=-\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{p}}
\end{gathered}
$$

So now we can get the gradient of the objective $O\left(\mathbf{x}^{\star}, \mathbf{p}\right)$:

$$
\frac{\mathrm{d} O}{\mathrm{~d} \mathbf{p}}=\frac{\partial O}{\partial \mathbf{x}^{*}} \frac{\mathrm{~d} \mathbf{x}^{*}}{\mathrm{~d} \mathbf{p}}+\frac{\partial O}{\partial \mathbf{p}}
$$

What about dynamics?
Trajectory $\mathbf{x}(\mathbf{p})=\left[\mathbf{x}_{0}(\mathbf{p}), \mathbf{x}_{1}(\mathbf{p}), \ldots, \mathbf{x}_{n}(\mathbf{p})\right]$

Simulation output:

Where:

- \boldsymbol{p} is the input driving the simulation
- what we want is $\frac{d x}{d p}$
- $\boldsymbol{x}(\boldsymbol{p})$ does not have an analytic form

But:

- for any \boldsymbol{p}, we compute $\boldsymbol{x}(\boldsymbol{p})$ such that $\boldsymbol{G}(\boldsymbol{x}(\boldsymbol{p}), \boldsymbol{p})=0$

$$
\begin{aligned}
& \boldsymbol{G}(\boldsymbol{x}(\boldsymbol{p}), \boldsymbol{p})=\mathbf{0}, \forall \boldsymbol{p} \\
& \frac{d \boldsymbol{G}}{d \boldsymbol{p}}=\mathbf{0}=\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}} \frac{d \boldsymbol{x}}{d \boldsymbol{p}}+\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}} \\
& \frac{d \boldsymbol{x}}{d \boldsymbol{p}}=-\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}\right)^{-1} \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}
\end{aligned}
$$

$\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}$

$$
\begin{aligned}
& \boldsymbol{G}(\boldsymbol{x}(\boldsymbol{p}), \boldsymbol{p})=\mathbf{0}, \forall \boldsymbol{p} \\
& \frac{d \boldsymbol{G}}{d \boldsymbol{p}}=\mathbf{0}=\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}} \frac{d \boldsymbol{x}}{d \boldsymbol{p}}+\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}} \\
& \frac{d \boldsymbol{x}}{d \boldsymbol{p}}=-\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}\right)^{-1} \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}
\end{aligned}
$$

Example: if input parameters are actuation forces at each time step, $\mathbf{p}=\left[\mathbf{f}_{0}{ }^{\text {act }}, \mathbf{f}_{1}\right.$ act $, \ldots, \mathbf{f}_{n}$ act $]$

$$
\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}} \quad \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} \boldsymbol{p}} \quad \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}
$$

$$
\begin{aligned}
& \boldsymbol{G}(\boldsymbol{x}(\boldsymbol{p}), \boldsymbol{p})=\mathbf{0}, \forall \boldsymbol{p} \\
& \frac{d \boldsymbol{G}}{d \boldsymbol{p}}=\mathbf{0}=\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}} \frac{d \boldsymbol{x}}{d \boldsymbol{p}}+\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}} \\
& \frac{d \boldsymbol{x}}{d \boldsymbol{p}}=-\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}\right)^{-1} \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}
\end{aligned}
$$

because $\mathbf{G}_{i}=\mathbf{M}\left(\mathbf{x}_{i}-2 \mathbf{x}_{i-1}+\mathbf{x}_{i-2}\right) / h^{2}-\left(\mathbf{F}\left(\mathbf{x}_{i}\right)+\mathbf{f}_{i}\right.$ act $)$

$$
\begin{aligned}
& \boldsymbol{G}(\boldsymbol{x}(\boldsymbol{p}), \boldsymbol{p})=\mathbf{0}, \forall \boldsymbol{p} \\
& \frac{d \boldsymbol{G}}{d \boldsymbol{p}}=\mathbf{0}=\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}} \frac{d \boldsymbol{x}}{d \boldsymbol{p}}+\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}} \\
& \frac{d \boldsymbol{x}}{d \boldsymbol{p}}=-\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}\right)^{-1} \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}
\end{aligned}
$$

$\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} \boldsymbol{p}} \quad \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}$

Still very expensive if we have many DOFs, many time steps, and many parameters!
If we just want the gradient with respect to some scalar objective/score $s(\mathbf{x})$, there should be a way to do backpropagation / reverse mode...

Adjoint variables

Quick notational convenience: We'll need the gradient of the score $s(\mathbf{x})$ with respect to various intermediate variables \mathbf{y}, \mathbf{z}, etc.

Recall $\frac{\partial s}{\partial \mathbf{x}}=\left[\begin{array}{llll}\frac{\partial s}{\partial x_{1}} & \frac{\partial s}{\partial x_{2}} & \cdots & \frac{\partial s}{\partial x_{n}}\end{array}\right]$
Define the adjoint $\mathbf{x}^{*}=\left(\frac{\partial s}{\partial \mathbf{x}}\right)^{T}=\nabla_{\mathbf{x}} s$
If $\mathbf{x}=\mathbf{f}(\mathbf{g}(\mathbf{y})$), then

$$
\begin{aligned}
\frac{\partial s}{\partial \mathbf{y}} & =\frac{\partial s}{\partial \mathbf{x}} \frac{\partial \mathbf{f}}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial \mathbf{y}} \\
\mathbf{y}^{\star} & =\mathbf{J}_{\mathbf{g}}^{\top} \mathbf{J}_{\mathbf{f}}^{\top} \mathbf{x}^{\star}
\end{aligned}
$$

(Discrete) adjoint method

- Replace ODE with time-stepping equations:

$$
\mathbf{x}^{t+1}=f\left(\mathbf{x}^{t}\right)
$$

- Discrete trajectory + loss:

$$
s\left(\mathbf{x}^{t+n}\right)=s\left(f \left(f\left(f\left(\mathbf{x}^{t}\right)\right)\right.\right.
$$

- Apply chain rule:

$$
\mathbf{x}^{*^{t}}=\left.\frac{\partial s}{\partial \mathbf{x}}\right|_{t+0} ^{T}=\left.\left.\left.\left.\frac{\partial f}{\partial \mathbf{x}}\right|_{t+0} ^{T} \cdot \frac{\partial f}{\partial \mathbf{x}}\right|_{t+1} ^{T} \cdot \frac{\partial f}{\partial \mathbf{x}}\right|_{t+2} ^{T} \cdot \frac{\partial s}{\partial \mathbf{x}}\right|_{t+3} ^{T}
$$

Adjoint

Collisions

Problem: Collisions are nonsmooth events!
Both normal and frictional force change
 nonsmoothly with position/velocity

Smoothed contact

Smoothed contact

Contact sparseness

- No gradient information until contact
- Optimization stuck at local minima

Solution: leaky gradients

Differentiable Elastic Object Simulation

Iteration 0
Iteration 20

Iteration 80

Continuum modeled with both particles and grids. Open-loop controller. $4.2 x$ shorter code than ChainQueen [Hu et al. ICRA 2019]; 188x faster than TensorFlow. 1024 time steps, 80 gradient descent iter. Run time $=2 \mathrm{~min}$. Red=extension blue=contraction.

Differentiable Billiard Simulation

iter. 0
iter. 40
iter. 100

Optimize the initial position and velocity of the white ball so that the blue ball goes to the black destination

Reproduce: python3 billiards.py

Motion capture data

Throw to target found in simulation

Acknowledgements

Many of these slides are based on the following source:

- Coros et al., Differentiable Simulation, SIGGRAPH 2021

