COV877: Differentiable Graphics for Vision and Learning 4. Differentiable Simulation

Animation

<u>https://www.youtube.com/watch?v=4NU9ikjqjC0</u>

CAESAR

Akinci et al. 2012

Simulation

What makes the motion of a physical object look real?

$\mathbf{F} = m\mathbf{a}$

Solve the equations of motion to automatically get physically realistic motion.

- e.g. Rigid bodies
- Degrees of freedom: position, rotation

$$\frac{d^2 \mathbf{x}}{dt^2} = \mathbf{f}_{\text{ext}}/m$$
$$\frac{d^2 \mathbf{R}}{dt^2} = \cdots$$

• Challenges: collisions, frictional contact, stacking

Deformable bodies, cloth, etc.

Every vertex can move independently! But deformation causes internal elastic forces

- Physically accurate: finite element method
- Cheap approximation: mass-spring systems (just a bunch of particles and 1D springs)

deformation causes internal elastic forces

Fluids (smoke, water, fire, etc.)

Described by the Navier-Stokes equations (system of partial differential equations)

Velocity field **v**(**x**): every point has its own velocity!

(system of partial differential equations) relocity!

Let's start simple...

Particle system = collection of (usually non-interacting) particles in motion

Each particle is a point mass

- Fixed: mass m_i
- Variable state: position \mathbf{x}_i , velocity \mathbf{v}_i

Affected by some forces $\mathbf{f}_i = \mathbf{f}(t, \mathbf{x}_i(t), \mathbf{v}_i(t))$

Spatial fields **f** = **f**(**x**)

Collisions $\mathbf{f} = \dots TBD$

Equations of motion: $\mathbf{f} = m\mathbf{a}$ (where \mathbf{f} is total force) so...

$$\frac{\mathrm{d}^2 \mathbf{x}(t)}{\mathrm{d}t^2} = m^{-1} \mathbf{f}(t, \mathbf{x}(t), \mathbf{v}(t))$$

For each emitted particle, we know initial position **x**(0) and velocity $\mathbf{v}(0)$. How to find $\mathbf{x}(t)$, $\mathbf{v}(t)$ at any future time t?

In general, no closed form unless **f** is very simple!

Like with rendering, we need a numerical method...

[))

Time stepping

dea: Given a known state ($\mathbf{x}(t)$, $\mathbf{v}(t)$), estimate a near future state ($\mathbf{x}(t+\Delta t)$, $\mathbf{v}(t+\Delta t)$).

$$\frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t} = r$$

Simplest strategy:

Then we can iterate: $(\mathbf{x}(0), \mathbf{v}(0)) \rightarrow (\mathbf{x}(\Delta t), \mathbf{v}(\Delta t)) \rightarrow (\mathbf{x}(2\Delta t), \mathbf{v}(2\Delta t)) \rightarrow (\mathbf{x}(3\Delta t), \mathbf{v}(3\Delta t)) \rightarrow \cdots$ $\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{v}(t)$ m^{-1} **f**(t, **x**(t), **v**(t))

Mass-spring systems

https://www.youtube.com/watch?v=ib1vmRDs8Vw

In 3D, suppose a spring of length ℓ_0 and stiffness k_s connects particles *i* and *j*. What should be the force \mathbf{f}_{ij} on *i* due to *j*?

Let's first define the potential energy:

 $U = \frac{1}{2} k_s$

Then $\mathbf{f}_{ij} = -\partial U / \partial \mathbf{x}_i \Rightarrow$

 $\mathbf{f}_{ij} = -k_s \left(\| \mathbf{x}_i - \mathbf{x}_j - \mathbf{x}_j \right)$

 $= -k_s \left(\|\mathbf{x}_{ij}\| - \ell_0 \right) \mathbf{\hat{x}}_{ij}$

Similarly $\mathbf{f}_{ji} = -\partial U/\partial \mathbf{x}_j$ (but it's also just $-\mathbf{f}_{ij}$)

Also add a damping force $\mathbf{f}_{ij} = -k_d (\mathbf{v}_{ij} \cdot \hat{\mathbf{x}}_{ij}) \hat{\mathbf{x}}_{ij}$ to dissipate energy

$$(||\mathbf{x}_i - \mathbf{x}_j|| - \ell_0)^2$$

$$-\mathbf{x}_{j} \| - \ell_{0} \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|}$$

Sum of contributions from all incident springs. May depend on $\mathbf{x}_1(t)$, $\mathbf{v}_1(t)$, $\mathbf{x}_2(t)$, $\mathbf{v}_2(t)$, ...!

How to compute? Same strategy:

 $\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + m_i^{-1} \mathbf{f}_i(t) \Delta t$

 $\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \mathbf{v}_i(t + \Delta t) \Delta t$

Pseudocode:

for each particle p: p.f = 0 for each force object F: for each particle p affected by F: p.f += force on p due to F for each particle p: p.v += p.f/p.m * dt

$$p.x += p.v * dt$$

Simpler with generalized coordinates:

Now we're solving for the evolution of a single (though 3*n*-dimensional!) vector

Generalized coordinates:

 $\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \mathbf{M}^{-1} \mathbf{f}(t, \mathbf{q}, \mathbf{v}) \Delta t$ $\mathbf{q}(t + \Delta t) = \mathbf{q}(t) + \mathbf{v}(t + \Delta t) \Delta t$

Simple! And generalizes to other things (e.g. rigid bodies) with few changes

 $\frac{\mathrm{d}^2 \mathbf{q}(t)}{\mathrm{d}t^2} = \mathbf{M}^{-1} \mathbf{f}(t, \mathbf{q}, \mathbf{v})$ \downarrow

Here's a problem you'll encounter:

Sometimes your simulation blows up for no apparent reason!

Why?

We have an ordinary differential equation $\label{eq:quation} \ddot{\mathbf{q}} = \mathbf{N}$

- and are trying to solve an initial value problem: Given $\mathbf{q}(0)$, $\dot{\mathbf{q}}(0)$, find $\mathbf{q}(t)$, $\dot{\mathbf{q}}(t)$ for t > 0.
- Let's start by understanding this for a simple 1st-order ODE: $\dot{x}(t) = \phi(t, x(t))$
- Like a leaf in a river: if you are at position x at time t, your velocity is $\phi(t, x)$

 $\ddot{\mathbf{q}} = \mathbf{M}^{-1} \mathbf{f}(t, \mathbf{q}, \dot{\mathbf{q}})$

Witkin & Bara ff 2001

Explicit vs. implicit time integration

• Simplest strategy: forward Euler method

$$x_{n+1} = x_n + \phi(t_n, x_n) \Delta t$$

Tends to blow up if Δt is too large

• Backward Euler:

$$x_{n+1} = x_n + \phi(t_{n+1}, x_{n+1}) \Delta t$$

Implicit method: unknown x_{n+1} appears on both sides! But unconditionally stable for any Δt

 $\dot{\mathbf{x}}(t) = \boldsymbol{\phi}(t, \mathbf{x}(t))$

How do we apply all this to our 2nd-order ODE, $\ddot{\mathbf{q}} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})$? Reduce to 1st-order:

Forward Euler:

 $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_n \Delta t$

Backward Euler:

 $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$

 $\dot{\mathbf{q}} = \mathbf{v}$ $\dot{\mathbf{v}} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \mathbf{v})$

 $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_n, \mathbf{v}_n) \Delta t$

 $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}) \Delta t$

 $q_{n+1} = 2q_n - q_{n-1} + M^{-1} f(q_{n+1}, (q_{n+1} - q_n)/\Delta t) \Delta t^2$

Newton's method

How to solve a nonlinear system of equations f(x) = 0?

Start with a guess: \tilde{x} .

1. Approximate the problem near the guess:

 $0=f(\tilde{x}+\Delta x)\approx f(\tilde{x})+f'(\tilde{x})\,\Delta x$

2. Solve the approximation exactly:

$$\Delta x = -(f'(\tilde{x}))^{-1} f(\tilde{x})$$

3. Improve the guess and repeat: $\tilde{x} \leftarrow \tilde{x} + \Delta x$

 $q_{n+1} =$ $v_{n+1} = v_n +$

- Pick a guess ($\tilde{\mathbf{q}}, \tilde{\mathbf{v}}$). A natural choice is to start with $\tilde{\mathbf{q}} = \mathbf{q}_n, \tilde{\mathbf{v}} = \mathbf{v}_n$.
- 1. Approximate the problem:

 $(\tilde{\mathbf{q}} + \Delta \mathbf{q}) =$

- $(\tilde{\mathbf{v}} + \Delta \mathbf{v}) = \mathbf{v}_n + \mathbf{N}$
- where $\mathbf{f}(\mathbf{\tilde{q}} + \Delta \mathbf{q}, \mathbf{\tilde{v}} + \Delta \mathbf{v}) \approx \mathbf{f}(\mathbf{v})$

2. Now the system is linear in (Δq , Δv). Plug into any linear solver. (Can simplify a bit first...)

Note: To carry this out, we must able to eva

•
$$\mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$$

M⁻¹ $\mathbf{f}(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}) \Delta t$

$$\mathbf{q}_n + (\mathbf{\tilde{v}} + \Delta \mathbf{v}) \Delta t$$

$$\mathbf{M}^{-1} \mathbf{f}(\mathbf{\tilde{q}} + \Delta \mathbf{q}, \mathbf{\tilde{v}} + \Delta \mathbf{v}) \Delta t$$
$$(\mathbf{\tilde{q}}, \mathbf{\tilde{v}}) + \frac{\partial \mathbf{f}}{\partial \mathbf{q}}(\mathbf{\tilde{q}}, \mathbf{\tilde{v}}) \Delta \mathbf{q} + \frac{\partial \mathbf{f}}{\partial \mathbf{v}}(\mathbf{\tilde{q}}, \mathbf{\tilde{v}}) \Delta \mathbf{v}$$

aluate the **force Jacobians**
$$\frac{\partial \mathbf{f}}{\partial \mathbf{q}}$$
 and $\frac{\partial \mathbf{f}}{\partial \mathbf{v}}$.

Rigid bodies

Degrees of freedom: Center of mass position **x**, rotation (matrix **R** or quaternion **q**) ...Basically just the body's coordinate system

Kinematics:

• (Linear) veloc

Exity:
$$\dot{\mathbf{x}} = \mathbf{v}$$

City: $\boldsymbol{\omega}$
 $\dot{\mathbf{R}} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \mathbf{R} \text{ or } \dot{\mathbf{q}} = \frac{1}{2} \begin{bmatrix} q_x & -q_y & -q_z \\ q_w & q_z & -q_y \\ -q_z & q_w & q_x \\ q_y & -q_x & q_w \end{bmatrix} \boldsymbol{\omega}$

Dynamics:

v

 $\dot{\omega} = \mathbf{I}^{-1}$

where $\mathbf{I} = \text{moment of inertia}, \mathbf{T} = \text{net torque}$

 $\boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega} = "gyroscopic term"$ that makes things tumble

Simulation loop:

- Sum up forces **f** and torques **T**
- Update velocities v, ω
- Update DOFs x, q. Don't forget to normalize q

$$= m^{-1} \mathbf{f}$$
$$(\mathbf{T} - \boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega})$$
$$\mathbf{e} = \sum_{i} (\mathbf{p}_{i} - \mathbf{x}) \times \mathbf{f}_{i}$$

https://commons.wikimedia.org/ wiki/File:Tennis_racket_theorem.gif

_	-
r	
Ľ.,	
Y	
L	
-	-
	.,
	1
	1
	1
	,
	1
-	•
	1
	1
-	9
	1
	1
-	1
	4
-	

Collisions

https://www.cs.ubc.ca/~rbridson/

Brids no et al. 2002

Collision detection: find out which particles / bodies / etc. are colliding

Purely a geometric problem

Collision response: figure out how to update their velocities / positions

Involves physics of contact forces, friction, etc.

Output of collision detection: contact pairs

- Point **p**_a on one body
- Point \mathbf{p}_b on other body
- Contact normal **n**
- Time of impact *t**

Collision resolution

Two components:

- Normal force (prevents interpenetration)
- Frictional force (opposes tangential sliding)

Actually, collision forces change velocity over an extremely very short time \rightarrow treat as an instantaneous impulse

 $v^{+} = v + m^{-1} i$

The normal component is like a constraint that prevents interpenetration. Define a gap function $\varphi(\mathbf{q})$ which measures the distance between the bodies

Constraint: $\varphi(\mathbf{q}) \ge 0$

Normal impulse: $\mathbf{j} = \lambda \nabla \varphi(\mathbf{q}), \lambda \ge 0$ (no sticking)

Complementarity: if $\varphi(\mathbf{q}) > 0$ then $\lambda = 0$, if $\lambda > 0$ then $\varphi(\mathbf{q}) = 0$

 $0 \le \varphi(\mathbf{q}) \perp \lambda \ge 0$

Friction is described by Coulomb's law $\|\mathbf{f}_t\| \leq \mu \, \mathbf{f}_n$

Maximum dissipation principle: Frictional force takes the value which dissipates as much kinetic energy as possible.

1. If
$$\|\mathbf{v}_t\| > 0$$
 (slipping) then $\mathbf{f}_t = -(\mu \mathbf{f}_n) \hat{\mathbf{v}}_t$

2. If $\|\mathbf{v}_t\| = 0$ (sticking) then \mathbf{f}_t is any force in friction cone

Bend er et al. 2012

Multi-contact problems (harder!)

Often modeled as a linear complementarity problem (LCP)

Smith et 2012

Harmon et al. 2008

Differentiable simulation

Reminder:

- Sign-up sheet posted on Teams
- Enter your name by end of today! Late sign-ups will be forced to present next week itself :)

н	ome Insert	oSave 💿 🎧 🎧 🏸 🗸 Draw Page Layout I	🕝 ··· 🖻 COV877 pres Formulas Data Revi	entation s — La ew —— 🖓 Tell me	st Modified: 16	m ago ~
CI	ipboard For	× ≣ × % × Alignment Number	 Conditional Formatting ~ Format as Table ~ Cell Styles ~ 	Cells Edit	v Analyse Data	Sensitivity Doc
D	2 🌲 🗙	$\checkmark f_x$				
1	A	В	С	D	E	F
1	Probable date	Paper	Authors	Presenter name	Entry no.	Preferred date
2	5 or 8 Sep	Soft Rasterizer	Liu et al. 2019			
3		Modular Primitives	Laine et al. 2020		-	
4		Differentiable Vector Graphics	Li et al. 2020			
5		Non-Differentiable Sampling	Cole et al. 2021			
6	8 or 19 Sep	IGR	Gropp et al. 2020			
7		Neural Radiance Fields	Mildenhall et al. 2020			
8		Plenoxels	Fridovich-Keil et al. 2022			
9		Instant NGP	Müller et al. 2022			
10	19 or 26 Sep	Differentiable Monte Carlo	Li et al. 2018			
11		Reparameterizing	Loubet et al. 2019			
12		Radiative Backpropagation	Nimier-David et al. 2020			
13		Unbiased Warped-Area Sampling	Bangaru et al. 2020			
14	26 or 29 Sep	DiffTaichi	Hu et al. 2020			
15		ADD	Geilinger et al. 2020			
16		gradSim	Jatavallabhula et al. 2021			
17		DiffPD	Du et al. 2022			
18						
19						
-	Sheet	1 +				
_	Ready 12 Ac	cessibility: Good to go				+ 100%

Suppose we want to do quasistatics: Given the parameters **p**, what is the equilibrium configuration of the body **x***?

Simulator gives us forces **f**(**x**; **p**)

Equilibrium configuration is implicitly defined by

How to find **p** to to minimize some objective $O(\mathbf{x}^*, \mathbf{p})$?

CRL 🐋

 $f(x^*; p) = 0$

Coros et al. 202

Implicit differentiation

Differentiate both sides with respect to **p**:

- So now we can get the gradient of the object
 - dp Õ

 $f(x^*; p) = 0$

$$= \mathbf{0} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \frac{d\mathbf{x}^{*}}{d\mathbf{p}} + \frac{\partial \mathbf{f}}{\partial \mathbf{p}}$$
$$- \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{p}}$$
ective $O(\mathbf{x}^{*}, \mathbf{p})$:
$$\frac{\partial O}{\partial \mathbf{x}^{*}} \frac{d\mathbf{x}^{*}}{d\mathbf{p}} + \frac{\partial O}{\partial \mathbf{p}}$$

Zhang et al., "Computational Design of Fabric Formwork", SIGGRAPH 2019

What about dynamics?

Trajectory $\mathbf{x}(\mathbf{p}) = [\mathbf{x}_0(\mathbf{p}), \mathbf{x}_1(\mathbf{p}), ..., \mathbf{x}_n(\mathbf{p})]$

input parameters p (e.g. initial velocity)

Control as an optimization problem:

$$\min_{p} O(\boldsymbol{x}(\boldsymbol{p}), \boldsymbol{p})$$

e.g. $\|\boldsymbol{x}_n - \hat{\boldsymbol{x}}\|_2^2$

Gradient: $\frac{dO}{dp} = \frac{\partial O}{\partial x} \frac{dx}{dp} + \frac{\partial O}{\partial p}$

- *p* is the input driving the simulation - what we want is $\frac{dx}{dn}$ - x(p) does not have an analytic form

- for any p, we compute x(p) such that G(x(p), p) = 0

$$G_{k} = M \frac{x_{k} - 2x_{k-1} + x_{k-2}}{h^{2}} - F(x_{k}, p)$$

ETHzürich

$$\frac{d\mathbf{G}}{d\mathbf{p}} = \mathbf{0} = \frac{\partial \mathbf{G}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{d\mathbf{p}} + \frac{\partial \mathbf{G}}{\partial \mathbf{p}}$$

 $G(x(p), p) = 0, \forall p$

$$\frac{d\boldsymbol{x}}{d\boldsymbol{p}} = -\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{x}}\right)^{-1} \frac{\partial \boldsymbol{G}}{\partial \boldsymbol{p}}$$

because $\mathbf{G}_{i} = \mathbf{M}(\mathbf{x}_{i} - 2\mathbf{x}_{i-1} + \mathbf{x}_{i-2})/h^{2} - (\mathbf{F}(\mathbf{x}_{i}) + \mathbf{f}_{i}^{act})$

Example: if input parameters are actuation forces at each time step, $\mathbf{p} = [\mathbf{f}_0^{\text{act}}, \mathbf{f}_1^{\text{act}}, \dots, \mathbf{f}_n^{\text{act}}]$

ETHzürich

Still very expensive if we have many DOFs, many time steps, and many parameters!

If we just want the gradient with respect to some scalar objective/score $s(\mathbf{x})$, there should be a way to do backpropagation / reverse mode...

Adjoint variables

various intermediate variables y, z, etc.

Recall
$$\frac{\partial s}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial s}{\partial x_1} & \frac{\partial s}{\partial x_2} & \cdots & \frac{\partial s}{\partial x_n} \end{bmatrix}$$

Define the adjoint $\mathbf{x}^* = \left(\frac{\partial s}{\partial \mathbf{x}}\right)^T = \nabla_{\mathbf{x}} s$

If $\mathbf{x} = \mathbf{f}(\mathbf{g}(\mathbf{y}))$, then

 ∂S

Quick notational convenience: We'll need the gradient of the score $s(\mathbf{x})$ with respect to

 $\partial s \partial f \partial g$ $\partial \mathbf{x} \partial \mathbf{g} \partial \mathbf{y}$ $\mathbf{y}^* = \mathbf{J}_{\mathbf{g}}^\top \mathbf{J}_{\mathbf{f}}^\top \mathbf{x}^*$

→X

(Discrete) adjoint method

• Replace ODE with time-stepping equations:

$$\mathbf{x}^{t+1} = f(\mathbf{x}^t)$$

• Discrete trajectory + loss:

$$s(\mathbf{x}^{t+n}) = s(f(f(f(\mathbf{x}^t)))$$

• Apply chain rule:

$$\mathbf{x}^{*^{t}} = \frac{\partial s}{\partial \mathbf{x}}\Big|_{t=0}^{T} = \frac{\partial f}{\partial \mathbf{x}}\Big|_{t=0}^{T} \cdot \frac{\partial f}{\partial \mathbf{x}}\Big|_{t=1}^{T} \cdot \frac{\partial f}{\partial \mathbf{x}}\Big|_{t=1}^{T}$$

Collisions

Problem: Collisions are nonsmooth events!

Both normal and frictional force change nonsmoothly with position/velocity

Smoothed contact

Smoothed contact

Contact sparseness

- No gradient information until contact
- Optimization stuck at local minima

Solution: leaky gradients

Differentiable Elastic Object Simulation

Iteration 0

Iteration 40

Continuum modeled with both particles and grids. Open-loop controller. 4.2x shorter code than ChainQueen [Hu et al. ICRA 2019]; 188x faster than TensorFlow. 1024 time steps, 80 gradient descent iter. Run time=2min. Red=extension blue=contraction. Reproduce: python3 diffmpm.py

Iteration 20

fTaichi", ICLR 2020 et al., "Dif Нu

Differentiable Billiard Simulation

iter. 0

iter. 40

iter. 100

Reproduce: python3 billiards.py

Motion capture data

C

Geilinger et al., "ADD: Analytically Differentiable Dynamics...", SIGGRAPH Asia 2020

Geilinger et al., "ADD: Analytically Differentiable Dynamics...", SIGGRAPH Asia 2020

Throw to target found in simulation

editing

Geilinger et al., "ADD: Analytically Differentiable Dynamics...", SIGGRAPH Asia 2020

Acknowledgements

Many of these slides are based on the following source:

• Coros et al., Differentiable Simulation, SIGGRAPH 2021