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Animation

Modeling

RenderingAnimation



https://www.youtube.com/watch?v=4NU9ikjqjC0

https://www.youtube.com/watch?v=4NU9ikjqjC0


A
kinci et al. 2012https://www.youtube.com/watch?v=chnS24QfgNY

https://www.youtube.com/watch?v=chnS24QfgNY


Simulation
What makes the motion of a physical object look real?


F = ma
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Solve the equations of motion to automatically get physically realistic motion.


e.g. Rigid bodies


• Degrees of freedom: position, rotation





⋯


• Challenges: collisions, frictional contact, stacking

d2x
dt2

= fext /m

d2R
dt2

=
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Deformable bodies, cloth, etc.


Every vertex can move independently! But deformation causes internal elastic forces


• Physically accurate: finite element method


• Cheap approximation: 
mass-spring systems 
(just a bunch of particles 
and 1D springs)
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Fluids (smoke, water, fire, etc.)


Described by the Navier-Stokes equations (system of partial differential equations)


Velocity field v(x): every point has its own velocity!



Let’s start simple…


Particle system = collection of (usually 
non-interacting) particles in motion



Each particle is a point mass


• Fixed: mass mi


• Variable state: position xi, velocity vi


Affected by some forces fi = f(t, xi(t), vi(t))

xi

vi

Gravity 
f = mg

Wind / drag 
f = −kd (v − vair)

Spatial fields 
f = f(x)

Collisions 
f = …TBD



Equations of motion: f = ma (where f is total force) so…


 = m−1 f(t, x(t), v(t))


For each emitted particle, we know initial position x(0) and 
velocity v(0). How to find x(t), v(t) at any future time t?


In general, no closed form unless f is very simple!


Like with rendering, we need a numerical method…

d2x(t)
dt2

W
itkin &

 B
araff 1997



Time stepping
Idea: Given a known state (x(t), v(t)), estimate a near future state (x(t+Δt), v(t+Δt)).


Then we can iterate: (x(0), v(0)) → (x(Δt), v(Δt)) → (x(2Δt), v(2Δt)) → (x(3Δt), v(3Δt)) → ⋯


 = v(t) 

 = m−1 f(t, x(t), v(t)) 

Simplest strategy:


v(t + Δt) = v(t) + m−1 f(t, x(t), v(t)) Δt


x(t + Δt) = x(t) + v(t + Δt) Δt

dx(t)
dtdv(t)

dt

because we already have it 

from the previous step



Mass-spring systems

Pa
ul

 N
at

ha
n

https://www.youtube.com/watch?v=ib1vmRDs8Vw

https://www.youtube.com/watch?v=ib1vmRDs8Vw


In 3D, suppose a spring of length ℓ0 and stiffness ks connects particles i and j. 
What should be the force fij on i due to j?


Let’s first define the potential energy:


U = ½ ks ( xi − xj  − ℓ0)2


Then fij = −∂U/∂xi ⇒


fij = −ks ( xi − xj  − ℓ0) 


= −ks ( xij  − ℓ0) x̂ij


Similarly fji = −∂U/∂xj (but it’s also just −fij)


Also add a damping force fij = −kd (vij · x̂ij) x̂ij to dissipate energy

∥ ∥

∥ ∥
xi − xj

∥xi − xj∥

∥ ∥



How to compute? Same strategy:


vi (t + Δt) = vi (t) + mi−1 fi (t) Δt


xi (t + Δt) = xi (t) + vi (t + Δt) Δt

Sum of contributions from all incident springs.

May depend on x1(t), v1(t), x2(t), v2(t), …!

Pseudocode: 

for each particle p:

p.f = 0


for each force object F:

for each particle p affected by F:


p.f += force on p due to F

for each particle p:


p.v += p.f/p.m * dt

p.x += p.v * dt



Simpler with generalized coordinates:


q = ,    v = 


Then


 

Now we’re solving for the evolution of a single (though 3n-dimensional!) vector

x1
x2
⋮
xn

v1
v2
⋮
vn

d2q(t)
dt2

=

m−1
1 f1(t, q, v)

m−1
2 f2(t, q, v)

⋮
m−1

n fn(t, q, v)

=

m1I
m2I

⋱
mnI

−1 f1(t, q, v)
f2(t, q, v)

⋮
fn(t, q, v)



Generalized coordinates:


 = M−1 f(t, q, v)


⇓


v(t + Δt) = v(t) + M−1 f(t, q, v) Δt 
q(t + Δt) = q(t) + v(t + Δt) Δt


Simple! And generalizes to other things (e.g. rigid bodies) with few changes

d2q(t)
dt2



Here’s a problem you’ll encounter:


Sometimes your simulation 
blows up for no apparent reason!


Why?

K
ev

in
 D

o

https://www.youtube.com/watch?v=rN6XUM4KOYo

https://www.youtube.com/watch?v=rN6XUM4KOYo


We have an ordinary differential equation


q̈ = M−1 f(t, q, q̇)


and are trying to solve an initial value problem:


Given q(0), q̇(0), find q(t), q̇(t) for t > 0. 

Let’s start by understanding this for a simple 1st-order ODE:


ẋ(t) = φ(t, x(t))


Like a leaf in a river: if you are at position x at time t, 
your velocity is φ(t, x)

W
itkin &

 B
araff 2001



Explicit vs. implicit time integration
ẋ(t) = φ(t, x(t))


• Simplest strategy: forward Euler method


xn+1 = xn + φ(tn, xn) Δt


Tends to blow up if Δt is too large


• Backward Euler:


xn+1 = xn + φ(tn+1, xn+1) Δt


Implicit method: unknown xn+1 appears on both sides! 
But unconditionally stable for any Δt

t

x

W
itkin &

 B
araff 2001



How do we apply all this to our 2nd-order ODE, q̈ = M−1 f(q, q̇)?


Reduce to 1st-order:


q̇ = v 
v̇ = M−1 f(q, v)


Forward Euler:


qn+1 = qn + vn Δt 
vn+1 = vn + M−1 f(qn, vn) Δt


Backward Euler:


qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt


qn+1 = 2qn − qn−1 + M−1 f(qn+1, (qn+1 − qn)/Δt) Δt2



Newton’s method
How to solve a nonlinear system of equations f (x) = 0?


Start with a guess:  x̃.


1. Approximate the problem near the guess:


0 = f (x̃ + Δx) ≈ f (x̃) + f ’(x̃) Δx


2. Solve the approximation exactly:


Δx = −(f ’(x̃))−1 f (x̃)


3. Improve the guess and repeat:  x̃ ← x̃ + Δx



qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt


Pick a guess (q̃, ṽ). A natural choice is to start with q̃ = qn, ṽ = vn.


1. Approximate the problem:


(q̃+Δq) = qn + (ṽ+Δv) Δt


(ṽ+Δv) = vn + M−1 f(q̃+Δq, ṽ+Δv) Δt


where f(q̃+Δq, ṽ+Δv) ≈ f(q̃, ṽ) + (q̃, ṽ) Δq + (q̃, ṽ) Δv


2. Now the system is linear in (Δq, Δv). Plug into any linear solver. (Can simplify a bit first…) 

Note: To carry this out, we must able to evaluate the force Jacobians  and .

∂f
∂q

∂f
∂v

∂f
∂q

∂f
∂v



Rigid bodies
Degrees of freedom: Center of mass position x, rotation (matrix R or quaternion q) 
…Basically just the body’s coordinate system


Kinematics:


• (Linear) velocity: ẋ = v


• Angular velocity: ω


    or    ·R =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0
R ·q = 1

2

qx −qy −qz
qw qz −qy

−qz qw qx
qy −qx qw

ω



Dynamics:


v̇ = m−1 f


ω̇ = 𝐈−1 (τ − ω × 𝐈 ω)


where 𝐈 = moment of inertia, τ = net torque =  (pi − x) × fi


ω × 𝐈 ω = “gyroscopic term” that makes things tumble


Simulation loop:


• Sum up forces f and torques τ


• Update velocities v, ω


• Update DOFs x, q. Don’t forget to normalize q

∑

https://commons.wikimedia.org/
wiki/File:Tennis_racket_theorem.gif

https://commons.wikimedia.org/wiki/File:Tennis_racket_theorem.gif
https://commons.wikimedia.org/wiki/File:Tennis_racket_theorem.gif


Collisions
Bridson et al. 2002https://www.cs.ubc.ca/~rbridson/

https://www.cs.ubc.ca/~rbridson/


Collision detection: find out which particles / bodies / etc. are colliding


Purely a geometric problem


Collision response: figure out how to update their velocities / positions


Involves physics of contact forces, friction, etc.

Peter Kipfer



Output of collision detection: contact pairs


• Point pa on one body


• Point pb on other body


• Contact normal n


• Time of impact t*

W
itkin & Baraff 2001



Collision resolution

Two components:


• Normal force (prevents interpenetration)


• Frictional force (opposes tangential sliding) 

Actually, collision forces change velocity over 
an extremely very short time → treat as an instantaneous impulse


v+ = v + m−1 j

W
itkin & Baraff 2001



The normal component is like a constraint that prevents interpenetration.


Define a gap function φ(q) which measures the distance between the bodies 
 
 
 
 
 

Constraint: φ(q) ≥ 0


Normal impulse: j = λ ∇φ(q), λ ≥ 0 (no sticking)


Complementarity: if φ(q) > 0 then λ = 0, if λ > 0 then φ(q) = 0


0 ≤ φ(q)    ⟂    λ ≥ 0

Andrew
s 

et al. 2002



Friction is described by Coulomb’s law


ft  ≤ μ fn


Maximum dissipation principle: Frictional force takes the 
value which dissipates as much kinetic energy as possible.


1. If vt  > 0 (slipping) then ft = −(μ fn) v̂t


2. If vt  = 0 (sticking) then ft is any force in friction cone

∥ ∥

∥ ∥

∥ ∥

Bender et al. 2012

ft



Multi-contact problems (harder!)

Erleben 2007

Sm
ith et al. 2012

H
arm

on et 
al. 2008Often modeled as a linear complementarity problem (LCP)



Differentiable simulation



Reminder:


• Sign-up sheet posted on Teams


• Enter your name by end of today! Late 
sign-ups will be forced to present next 
week itself :)



Suppose we want to do quasistatics: Given the parameters p, 
what is the equilibrium configuration of the body x*?


Simulator gives us forces f (x; p)


Equilibrium configuration is implicitly defined by


f (x*; p) = 0


How to find p to to minimize some objective O(x*, p)?

Coros et al. 2021



Implicit differentiation
f (x*; p) = 0


Differentiate both sides with respect to p:


 f (x*; p) = 0 =  + 





So now we can get the gradient of the objective O(x*, p):


d
dp

∂f
∂x

dx*
dp

∂f
∂p

dx*
dp

= − ( ∂f
∂x )

−1 ∂f
∂p

dO
dp

=
∂O
∂x*

dx*
dp

+
∂O
∂p



Zhang et al., “Computational Design of Fabric Formwork”, SIGGRAPH 2019



What about dynamics?


Trajectory x(p) = [x0(p), x1(p), …, xn(p)]
A control problem

input parameters 𝒑
(e.g. initial velocity)

Control as an optimization problem: 

min
𝒑

𝑂 𝒙 𝒑 , 𝒑

ෝ𝒙 𝑑𝑂
𝑑𝒑 =

𝜕𝑂
𝜕𝒙

𝑑𝒙
𝑑𝒑 +

𝜕𝑂
𝜕𝒑Gradient: 

e.g. 𝒙𝒏 − ෝ𝒙 2
2
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⋮
𝒙 =

𝒙𝟏

𝒙𝟐

⋮

𝒙𝒏

Where: 
- 𝒑 is the input driving the simulation
- what we want is 𝑑𝒙

𝑑𝒑
- 𝒙 𝒑 does not have an analytic form

But:
- for any 𝒑, we compute 𝒙 𝒑 such that 𝑮 𝒙(𝒑), 𝒑 = 0

→ 𝐌 ሷ𝒙1 − 𝐹 𝒙1, 𝒑 = 0

→ 𝐌 ሷ𝒙2 − 𝐹 𝒙2, 𝒑 = 0

→ 𝐌 ሷ𝒙𝑛 − 𝐹 𝒙𝑛, 𝒑 = 0

𝑮 𝒙(𝒑), 𝒑

Simulation output:

Briefly, how it works – forward simulation
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𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮
𝑑𝒑 = 𝟎

𝑑𝒙
𝑑𝒑 = −

𝜕𝑮
𝜕𝒙

−1 𝜕𝑮
𝜕𝒑

=
𝜕𝑮
𝜕𝒙

𝑑𝒙
𝑑𝒑 +

𝜕𝑮
𝜕𝒑

, ∀𝒑

𝜕𝑮
𝜕𝒙

d𝒙
d𝒑

𝜕𝑮
𝜕𝒑

𝑮k = 𝑀
𝒙𝑘 − 2𝒙𝑘−1 + 𝒙𝑘−2

ℎ2 − 𝐹 𝒙𝑘, 𝒑

𝜕𝑮𝒊
𝜕𝒙𝒋

(how does the “F-Ma” residual at time step 𝒊 change wrt system 

configuration at time step 𝒋)

Briefly, how it works – simulation derivatives
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𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮
𝑑𝒑 = 𝟎

𝑑𝒙
𝑑𝒑 = −

𝜕𝑮
𝜕𝒙

−1 𝜕𝑮
𝜕𝒑

=
𝜕𝑮
𝜕𝒙

𝑑𝒙
𝑑𝒑 +

𝜕𝑮
𝜕𝒑

, ∀𝒑

𝜕𝑮
𝜕𝒙

d𝒙
d𝒑

𝜕𝑮
𝜕𝒑

𝜕𝑮𝒊
𝜕𝒑𝒋

(how does the “F-Ma” residual at time step 
𝒊 change wrt the jth input parameter 𝒑𝒋)

Briefly, how it works – simulation derivatives
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Example: if input parameters are actuation forces at each time step, p = [f0act, f1act, …, fnact]


because Gi = M (xi − 2xi−1 + xi−2)/h2 − (F(xi) + fiact)

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮
𝑑𝒑 = 𝟎

𝑑𝒙
𝑑𝒑 = −

𝜕𝑮
𝜕𝒙

−1 𝜕𝑮
𝜕𝒑

=
𝜕𝑮
𝜕𝒙

𝑑𝒙
𝑑𝒑 +

𝜕𝑮
𝜕𝒑

, ∀𝒑

𝜕𝑮
𝜕𝒙

d𝒙
d𝒑

𝜕𝑮
𝜕𝒑

Note: the sparsity structure of 𝜕𝑮
𝜕𝒑

(and d𝒙
d𝒑

) depends on the type of problem we are solving. 
Specialized solvers that exploit this structure can easily be developed.

Briefly, how it works – simulation derivatives
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Still very expensive if we have many DOFs, many time steps, and many parameters!


If we just want the gradient with respect to some scalar objective/score s(x), there should 
be a way to do backpropagation / reverse mode…

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮
𝑑𝒑 = 𝟎

𝑑𝒙
𝑑𝒑 = −

𝜕𝑮
𝜕𝒙

−1 𝜕𝑮
𝜕𝒑

=
𝜕𝑮
𝜕𝒙

𝑑𝒙
𝑑𝒑 +

𝜕𝑮
𝜕𝒑

, ∀𝒑

𝜕𝑮
𝜕𝒙

d𝒙
d𝒑

𝜕𝑮
𝜕𝒑

Note: the sparsity structure of 𝜕𝑮
𝜕𝒑

(and d𝒙
d𝒑

) depends on the type of problem we are solving. 
Specialized solvers that exploit this structure can easily be developed.

Briefly, how it works – simulation derivatives
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Adjoint variables
Quick notational convenience: We’ll need the gradient of the score s(x) with respect to 
various intermediate variables y, z, etc.


Recall 


Define the adjoint 


If x = f(g(y)), then





y* = JgT JfT x*

∂s
∂x

= [ ∂s
∂x1

∂s
∂x2

⋯ ∂s
∂xn ]

x* = ( ∂s
∂x )

T

= ∇xs

∂s
∂y

=
∂s
∂x

∂f
∂g

∂g
∂y

g f xy
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(Discrete) adjoint method

7

DISCRETE ADJOINT METHOD

• Replace ODE with time-stepping equations:

• Discrete trajectory + loss:

• Apply chain rule:

• Two ways to evaluate the chain rule..

State

Adjoint
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Collisions

Problem: Collisions are nonsmooth events!


Both normal and frictional force change 
nonsmoothly with position/velocity

W
itkin & Baraff 2001



Smoothed contact

39

CONTACT SMOOTHNESS
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Smoothed contact

40

FRICTION SMOOTHNESS
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Contact sparseness

42

CONTACT SPARSENESS

• No gradient information until contact

• Optimization stuck at local minima
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Solution: leaky gradients

43

CONTACT + LEAKY GRADIENTS
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Geilinger et al., “ADD: Analytically Differentiable Dynamics…”, SIGGRAPH Asia 2020
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