
Report on “DiffTaichi: Differentiable Programming for
Physical Simulation” by Hu et al.
DEEPANSHU

DiffTaichi is a new differentiable programming language designed specifically for building high-
performance differentiable physical simulators.

Existing differentiable programming tools for deep learning are not suitable for physical simula-
tion due to their lower arithmetic intensity and lack of support for imperative programming and
flexible indexing.
We discussed about the need to have a GPU based infrastructure. Existing methods in python

were based out of Tensorflow/PyTorch. DiffTaichi takes the best of both worlds and have a language
that directly runs on GPU (speeds similar to the CUDA framework) and coded up in python (ease
of implementation).
DiffTaichi uses a two-scale automatic differentiation (AD) system. It uses source code transfor-

mations to differentiate within kernels to preserve parallelism and arithmetic intensity. It also uses
a light-weight tape to record kernel launches for end-to-end differentiation.

One can think of the source code transformation as essentially a function that mapps the space
of code in one langugage to the DiffTaichi framework. Similar to CUDA programming, there are
decorators for parallel frameworks and restrictions within the loop. Since there is an option of
flexible indexing (discussed later), it becomes easier to deal with graphics problems withim the
restriction of DiffTaichi on the loop.

To make AD well-defined in an imperative setting where global tensors can be freely modified,
DiffTaichi imposes Global Data Access Rules. These rules ensure that global tensor elements are
written correctly, avoiding conflicts. In cases where memory consumption becomes an issue due to
the history of tensor values, checkpointing can be employed to manage memory efficiently.
The presentation also discussed about methods of implementing the language in a memory

efficient way. The compilation uses a Directed Acyclic Graph or a DAG to store the intermediate
calculations and fixes a total order on the causality of command execution. This makes the language
deterministic.

This is done by generating an adjoint kernel that stores the node data of the DAG and the edges
connection determines the flow of code. This also means that there are different checkpointing
methods deployed.
Storage control of adjoint tensors is also provided, allowing users to specify storage using the

Taichi data structure description language. This feature enables users to manage adjoint tensors
effectively.

In practical applications, DiffTaichi has been used to implement and automatically differentiate
ten physical simulators, including rigid bodies, deformable objects, and fluids. This demonstrates
its suitability for developing complex and high-performance differentiable physical simulators,
potentially with neural network controllers.

It uses a "megakernel" approach, allowing the fusion of multiple computation stages into a single
kernel. This approach is differentiated using source code transformations and just-in-time compi-
lation. Compared to traditional linear algebra operators in TensorFlow and PyTorch, DiffTaichi
kernels offer higher arithmetic intensity, making them more efficient for physical simulations.

Author’s address: Deepanshu.



2 Deepanshu

Unlike functional array programming languages commonly used in deep learning, DiffTaichi
adopts an imperative approach. It provides support for imperative constructs like parallel loops
and control flows (e.g., "if" statements). This approach simplifies tasks such as handling collisions,
boundary conditions, and iterative solvers, making it easier to port existing physical simulation
code to DiffTaichi.
DiffTaichi allows direct manipulation of array elements via arbitrary indexing. This flexibility

enables partial updates of global arrays and natural expression of common simulation patterns.
Unlike existing systems that rely on unintuitive scatter/gather operations for such patterns. This
flexible indexing is particularly useful during various simulations in Computer Graphics problems.

DiffTaichi was also benchmarked against various simulation cases from rigit body dynamics to
water simulation. The paper also addressed the period of collision and fixing gradient at the time
of impact.

DiffTaichi can be used to implement a variety of differentiable physical simulators like continuum
mechanics simulators, liquid simulators, incompressible fluid simulators, rigid body simulators, etc.
In deep learning, existing tools are optimized for large data blobs, such as convolutional layers

in neural networks, with high-level operations like tensor addition and multiplication. These
operations are highly efficient due to their high arithmetic intensity, making the most of hardware
capabilities. However, these high-level operations are inflexible and cannot be customized easily,
leading users to compose their desired high-level operations using low-level operations, resulting
in temporary buffers and excessive GPU kernel launches.

DiffTaichi, on the other hand, is tailored for differentiable physical simulations, offering features
specifically designed for this domain. The table in the text provides a detailed comparison of
DiffTaichi with other existing programming tools. It emphasizes that while tools like PyTorch and
TensorFlow have been successful in deep learning, they may not have been designed for differen-
tiable physical simulation, and their operator fusion capabilities may not meet the requirements of
simulation tasks.

The core of DiffTaichi’s differentiation system revolves around primal and adjoint kernels. Primal
kernels are operators that takemultiple input tensors and produce output tensors, executing uniform
operations on them. In the context of differentiable programming, a loss function is defined on the
output tensors, and the gradients of this loss function with respect to each tensor are computed
and stored in adjoint tensors, which are denoted as Xijk. The automatic differentiation (AD) system
transforms primal kernels into adjoint kernels, allowing the computation of gradients efficiently.
The process of differentiating within kernels using the "make adjoint" pass, which is part of

the reverse-mode AD. This pass transforms forward evaluation (primal) kernels into gradient
accumulation (adjoint) kernels. It operates on the hierarchical intermediate representation (IR) of
Taichi and can handle multiple outer for loops in primal kernels. During this pass, local adjoint
variables are allocated for gradient contribution accumulation, and the compiler traverses statements
in reverse order to accumulate gradients.

The differentiable simulators built with DiffTaichi are more concise, faster and easier to develop
compared to other approaches like TensorFlow or manually written CUDA kernels. The paper also
compared the lines of code required to implement various techniques.
DiffTaichi optimised on the differences in workload and requirements between deep learning

and differentiable physical simulations. It emphasizes that while existing tools are optimized for
deep learning tasks, DiffTaichi is designed to meet the unique challenges of differentiable physical
simulations, offering features like megakernels, imperative programming, and flexible indexing. It
also provides insight into the core of DiffTaichi’s differentiation system, which transforms primal
kernels into adjoint kernels, enabling efficient gradient computation.



Report on “DiffTaichi: Differentiable Programming for Physical Simulation” by Hu et al. 3

As discussed multiple times in the COV discussions, the differential physical simulators not
always give useful gradients. Issues like discontinuities, singularities and initialization can cause
gradients to be misleading. One of the main tasks in approximating the collision forces and impulses
is to determine the effect on the body on that short duration of time. Techniques like time of impact
and proper initialization can help improve gradient quality.
In summary, we discussed DiffTaichi in light of GPU architecture, graphics use cases and pro-

gramming langugage implementation. DiffTaichi is an example of an efficient product made using
knowledge from various fields of computer science and is possible due to extensive collaborative
options available in the research domain.


