Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning

Shichen Liu, Tianye Li, Weikai Chen, Hao Li

University of South California

Presenter:
Siddhesh Kalekar (IIT Delhi)

COL877: Course Evaluation September 19, 2023

Introduction

- We're addressing the problem of getting 3D definitions from 2D images
- Problem in the pipeline is Rasterization and Z-buffering are non-differentiable
- Thus, we can't pass the gradients back to variables

Figure: $\frac{d z}{d x_{0}}=\frac{d z}{d y} * \frac{d y}{d x_{0}}$

Proposed Idea : Change the rendering pipeline

- Variables : Mesh (M), Appearance (A), Camera (P), Light (L)
- Normals (N), Depths (Z), Image-space (U), Vertex colours (C)

Rasterization (XY discontinuity) and Z-buffering (Z discontinuity) aren't differentiable functions, hence we replace them with equivalent with differentiable functions "Probability Computation" and "Aggregation function"

Probability Map

Define, probability map D_{j} for every triangle f_{j} and get the influence triangle f_{j} onto pixel p_{i} i.e every triangle has some infuence on every pixel
D_{j} at pixel p_{i} is defined as follows :

$$
D_{j}^{i}=\operatorname{sigmoid}\left(\delta_{j}^{i} . \frac{d^{2}(i, j)}{\sigma}\right)
$$

where, $\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}, \delta_{j}^{i}=+1$ if $p_{i} \in f_{j}$ else -1 $d(i, j)$ is closest distance from p_{i} to f_{j} 's edges, $\sigma>0$ sharpness scalar

(a) ground truth
(b) $\sigma=0.003$
(c) $\sigma=0.01$
(d) $\sigma=0.03$

Aggregate Function

Color map C_{j} for every pixel p_{i} is defined using weighted average of barycentric coordinates for triangle f_{j} if inside else 0 .

Aggregate function is a function of $\left\{D_{j}\right\},\left\{C_{j}\right\}$ and depth $\left\{z_{j}\right\}$, function output at pixel i is given by,

$$
I^{i}=A\left(\left\{D_{j}\right\},\left\{C_{j}\right\},\left\{z_{j}\right\}\right)=\left(\Sigma_{j} w_{j}^{i} C_{j}^{i}\right)+w_{b}^{i} C_{b}
$$

where, $w_{b}^{i}+\Sigma_{j} w_{j}^{i}=1$ and w_{j}^{i} is defined as

$$
w_{j}^{i}=\frac{D_{j}^{i} * \exp ^{-z_{j}^{i} / \gamma}}{\exp ^{\epsilon / \gamma}+\Sigma_{k} D_{k}^{i} * \exp ^{-z_{k}^{i} / \gamma}}
$$

Higher weights are assigned to closer triangles, as γ is sharpness constant and ϵ is background color dependent constant
Every triangle is contributing to the color of all pixels

Rendered example

Comparison

- We can pass gradients from pixels to triangles now as shown in figure below - (Z-discontinuity solved)
- Screen space gradients now exists because of probability map of triangles - (XY-discontinuity solved)

Image based shape fitting

- Occlusion Awareness : Gradients must pass through

Mesh Reconstruction

Minimise $L=L_{s}+\lambda L_{c}+\mu L_{g}$ where

- L_{s} is silhouette loss, $1-\frac{\left\|I_{s} \bigotimes \hat{I}_{s}\right\|_{1}}{\left\|I_{s} \bigoplus \hat{I}_{s}-I_{s} \bigotimes \hat{I}_{s}\right\|_{1}}$, silhoutte is binary image
- L_{c} is coloured loss, $\left\|I_{c}-\hat{I}_{c}\right\|_{1}$
- L_{g} is geomteric loss (Laplacian of shape and colour)

Figure: 64 input images, $\lambda=1, \mu=10^{-3}$

Summary

(1) Change of rendering pipeline by replacing rasterization and z-buffering with probability maps and Aggregator function to form Soft Rasterizer
(2) This makes the functions differentiable thus differentiable rendering is possible
(3) Performance-comparison of new pipeline with other differentiable rendering algorithms with applications in

- Shape fitting
- Mesh reconstruction

More details can be found in: Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning

