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Motivation and Problem Statement




Problem Statement
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3D Representations

Voxel Point Cloud Mesh

Limited to the typology of the

Cubically growing compute and Do not describe surface _
template at that time.

memory requirements




Signed Distance Function

fo(x,y,2) = SDF(x,y,2)

Decision

_ [d(z,0Q) ifxzeQ | s
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d(z,00) := yle%t;z d(z,y)
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Problem Statement
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Proposed Methodology
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Method Overview
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Method Overview

loss(@) = ¥ |fx: 6) > + AE, (1Y, fx; )| = 1)°

' vanish on :
el o i Eikonal on ambient space
surface samples

\

Note : For calculating the Expectation for Eikonal term the distribution used is average of a uniform
distribution and a sum of Gaussians
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Method Overview

loss(0) = Z (1/Cx;; 0) © + T||V,x-f()f,-; 0) :’1,-“2) + AE,([IV, flx; 0)]| — 1)2
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Eikonal PDE for SDFs

e A solution to the Eikonal equation will be a signed distance function and
a global minimum of the loss in equation

e However the solutions to the Eikonal for a given point boundary data is

not unique i.e. there are an infinite number of signed distance functions
vanishing on arbitrary discrete sets of points
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Eikonal PDE for SDFs

Theorem : If Q is a subset of R {n} with piecewise smooth boundary, then every
signed distance function Satisfies the Eikonal

Outline Of Proof :
For any xz ¢ 002 we have d(z,0) = d(x,y) for some y € 02 as 02 is smooth.
The vector x — y will be orthogonal to the tangent hyperplane at y (7;,012).

Now, if we take any point & that lies on the line ax + (1 — )y, we can easily
see that d(z,00) = d(z,y).

So, if we move the point by Az units along the z — y, the value of d(x,02)
will increase by Az units.

This implies the directional derivative D, f(z) = Vf(z).v = £1 (Let v be a
unit vector along = — y), so |V f(z)|| = 1.




R
Implicit Geometric Regularization

e Optimizing the proposed loss function using stochastic gradient descent
results in solutions that are close to a signed distance function with a
smooth and surprisingly plausible zero level sets

e For the set of points available, ‘ ‘ \\*\1
iy 0@

both figures represent optimal
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e The proposed model shows k\
plane reproduction property L A\ @




Plane Reproduction Property

Theorem:

Assume the data points span a (d — 1)-dim hyperplane in R that contains the origin,

then GD of the linear model with random initialization converges w.p 1 to the correct
signed distance function.

f0) = wi
loss(0) = Z wlx)* + A(|w]]* = 1)°
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Neural Architecture

loss(©) = Y, (1f:0) > + 7V, f05:0) ~ i ?) + 2E,(IV fx: 0)]| - 1)

i€l

Y+ =o(Wy° +b)

I7 A I /+1
1 / Number of Layers : 8
dlaga Number of Hidden Units/layer : 512
/¢ ‘/‘/ b o) et *Contains a Single Skip Connection
y —> > y from Input to Middle Layer

Figure Illustrating Layer—Wise Computation Network




Evaluations and Limitations
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Model Evaluations

The authors focused on 2 major evaluations :
1. Signed distance function approximation :

Goal : Testing the ability of our trained model f to reproduce a signed distance
function of known manifold surfaces

Evaluation Metric : Average of Abs. Relative Error at randomly sampled points
2. Fidelity and level of details :

Goal : Testing the faithfulness or fidelity of the learning method on raw point
cloud scans of humans

Evaluation Metric : Two-sided Chamfer distance and Two-sided Hausdorff
distance between the Reconstructed Surface and Ground Truth Surface; as well
as One-sided Chamfer distance and One-sided Hausdorff distance from input
point clouds to Reconstructed Surface
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Fvaluation Metrics

Let &y, X, Cc R3 be 2 points sets::
1
1942 ) =— T 57 min |((&q1 — L9 : One Sided Chamfer Distance
47 (X, %) = o > min e — o

dI-_I> (Xl, Xg) = wl?eafy(l wgnggé ”wl — X9 ” : One Sided Hausdorff Distance

1 . |
dc (Xl, XZ) = 5 (dE) (Xl, X2) + dE* (X2, Xl)) : Two Sided Chamfer Distance
dy (Xl, XZ) — max {dI-_I) ()('1, )('2) 7dI-—I) (X2, Xl)} : Two Sided Hausdorff Distance
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Limitations

e Due to using a Feed-Forward Neural Network as base architecture the
model faces a problem when representing high-frequency features

e A few outlier points in data can lead to significant deviations in the
predicted SDF




Thank you
Please Feel Free to Ask any Questions




