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Differentiable simulators and soft body dynamics

e Gradient knowledge helps in physics systems

e Motion of soft bodies: Not differentiable

e DoFs, friction, mass distribution
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System Ildentification

Goal: estimate the material parameters from the motion

Initial guess Optimized Ground truth




Initial State Optimisation

Goal: optimise the initial state and velocity to reach a final position

Initial guess Optimized



Trajectory optimisation

Goal: optimizing time-invariant actuation to get the desired trajectory

Initial guess

Optimized

Contraction FE N N E xpansion
Ours: 166.2s, Cholesky: 932.3s (5.6x), PCG: 962.1s (5.8x)




Motion planning

Goal: estimate the motion parameters to reach a given destination




Real-to-Sim

Goal: duplicate an actual scene in a simulator

Input video Simulation
(Initial quess) _




Paper Contributions

e A fast PD-based differentiable soft-body simulator

e a differentiable collision handling algorithm

e demonstrations of the efficacy of our method on a wide range of
applications

e 8x - 10x times faster than the benchmarks



Background: Implicit Time Integration
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Recast it as a saddle-point problem: find Vg(x;;1) = 0 where

1
= (X = V) TMX = y) + E(%)

g(x) =
y := X; + hv; + h?M~f_, is independent of X.

Source: Paper slides
Stuart and Humphries [1996] and Martin et al. [2011]



Background: Implicit Time Integration

Newton’s method: x¥*1 = x* + Ax* where
72g(x¥)Ax" = Vg[(x*)
Bottleneck: solving the matrix Vzg(xk):
P2g(xk) = — M + P2E(xk
g(x*) = =M+ VEXY)

requires recomputation whenever xk changes!

Source: Paper slides



Time Integration

Forward simulation: 72 g(x*)Ax* = 7g(x¥).

-
Backpropagation: V2g(X;+1)Z = ( = ) .

0Xj41

Source: Paper slides



Numerical techniques in forward
simulation and backpropagation are two
sides of the same coin.

Efficient forward simulation solvers can be transferred to efficient backpropagation solvers!



Proposed Approach

e Consider a special case when Energy E consists of quadratic terms and
is dependent on local features eg: Deformation gradient

1
577 XYM -y) + E(x)

9 =5 %

The saddle-point problem Vg = 0 is now modified accordingly:

. (=) M(x - y)+2nccx pell2
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Proposed Approach

e Consider a special case when Energy E consists of quadratic terms and
is dependent on local features eg: Deformation gradient

The saddle-point problem Vg = 0 is now modified accordingly:

(o) ZhZ(X Y} M(x— Y)+Z||ch pcll?



Proposed Approach

With PD, V% g becomes

1 ap
V2g(x) = h—ZM + Z G/G, — Z G} axc
C C

=A—AA

Source: Paper slides



Summary

Efficient forward simulation: V2g(x*)Ax* = Vg(x¥).

=
Efficient backpropagation: V2 g(X;41)Z = ( o ) :

0Xjt1

Source: Paper slides



Performance
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Sec. | Task name Newton-PCG Newton-Cholesky DffPD (Ours)
Fwd. Back. Eval  Loss | Fwd. Back Eval ~ Loss | Fwd Back. Eval.  Loss Speedup
Cantilever 1182 394 160.1 559 105 55 10x
i Rolling sphere | 1073 313 1356 366 40 57 8
7 Plant 1,0895  530.5 10 1939296 5252 10 193 | 7.6 947 28 9X
Bouncing ball 2693 909 43 7.9e-2 | 2626 1025 22  8de-2 | 158 142 12 12x
7 Bunny 2177 880 21 T0e3 | 3582 1269 29 Sled | 240 173 11 9X
Routing tendon | 1082 567 36  6.0c-4 | 1073 587 38 494 | 83 99 30 9X
Torus 7519 2103 47 =23e3 | 7199 2124 43 -24e-2 | 843 819 27 6X
73 | Quadruped 2892 515 69 ~-18e0 | 2463 478 54  -lle0 | 502 158 30 4x
Cow 7717 1417 14 97e1| 6201 1402 20 98-l | 1053 437 31 5%
Starfish 277 1051 100 48e-1 | 2440 1294 100  1del | 57 108 100 19x
e Shark 260.7 1593 100 9.8e-1 | 5994 2418 100 -9.0e-3 | 355 153 100 8
75 | Tennis balls 546 64 14 722 | 268 58 12 T22| 241 159 4 0.8x




Penalty Based Contact

e Previous PD simulations use penalty-based soft contact models.

e Contact forces are represented with fictitious energy Ec and matrix
Ge.

e Ec pushes nodes back upon contact surface penetration.

e Handling friction with penalty-based forces in PD.



Background: Implicit Time Integration
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Limitations

e Energy model assumption restricts material diversity.

e Contact models prioritize differentiability over realism.

e Scalability limited to thousands of elements.

e Slower for locomotion tasks due to contact inclusion.

e Optimization methods may struggle with non-convex landscapes.
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