DiffPD: Differentiable Projective Dynamics

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, Wojciech Matusik

Presenter: Deepanshu 2019CS50427

ACM Reference format:

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41, 2, Article 13 (November 2021), 21 pages.

Differentiable simulators and soft body dynamics

• Gradient knowledge helps in physics systems

• Motion of soft bodies: Not differentiable

• DoFs, friction, mass distribution

Related Work

Soft body dynamics

Differentiable physics

System Identification

Goal: estimate the material parameters from the motion

Initial State Optimisation

Goal: optimise the initial state and velocity to reach a final position

Trajectory optimisation

Goal: optimizing time-invariant actuation to get the desired trajectory

Motion planning

Goal: estimate the motion parameters to reach a given destination

Real-to-Sim

Goal: duplicate an actual scene in a simulator

Paper Contributions

• A fast PD-based differentiable soft-body simulator

• a differentiable collision handling algorithm

• demonstrations of the efficacy of our method on a wide range of applications

• 8x - 10x times faster than the benchmarks

Background: Implicit Time Integration

$$x_{i+1} = x_i + hv_{i+1}$$

 $v_{i+1} = v_i + hM^{-1}[-VE(x_{i+1}) + f_{ext}]$

Recast it as a saddle-point problem: find $\nabla g(\mathbf{x}_{i+1}) = \mathbf{0}$ where

$$g(\mathbf{x}) \coloneqq \frac{1}{2h^2} (\mathbf{x} - \mathbf{y})^{\mathsf{T}} \mathbf{M} (\mathbf{x} - \mathbf{y}) + E(\mathbf{x})$$

 $\mathbf{y} \coloneqq \mathbf{x}_i + h\mathbf{v}_i + h^2 \mathbf{M}^{-1} \mathbf{f}_{ext}$ is independent of \mathbf{x} .

Source: Paper slides

Stuart and Humphries [1996] and Martin et al. [2011]

Background: Implicit Time Integration

Newton's method: $\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$ where

$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$

Bottleneck: solving the matrix $\nabla^2 g(\mathbf{x}^k)$:

$$\nabla^2 g(\mathbf{x}^k) = \frac{1}{h^2} \mathbf{M} + \nabla^2 E(\mathbf{x}^k)$$

requires recomputation whenever \mathbf{x}^k changes!

Time Integration

Forward simulation:
$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$
.

Numerical techniques in forward simulation and backpropagation are two sides of the same coin.

Efficient forward simulation solvers can be transferred to efficient backpropagation solvers!

Proposed Approach

• Consider a special case when Energy E consists of quadratic terms and is dependent on local features eg: Deformation gradient

$$g(\mathbf{x}) \coloneqq \frac{1}{2h^2} (\mathbf{x} - \mathbf{y})^\top \mathbf{M} (\mathbf{x} - \mathbf{y}) + E(\mathbf{x})$$

The saddle-point problem $\nabla g = \mathbf{0}$ is now modified accordingly:

$$\min_{\mathbf{x},\{\mathbf{p}_c\in\mathcal{M}_c\}}\frac{1}{2h^2}(\mathbf{x}-\mathbf{y})^{\mathsf{T}}\mathbf{M}(\mathbf{x}-\mathbf{y})+\sum_c||\mathbf{G}_c\mathbf{x}-\mathbf{p}_c||_2^2$$

Background: Implicit Time Integration

Newton's method: $\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$ where

$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$

Bottleneck: solving the matrix $\nabla^2 g(\mathbf{x}^k)$:

$$\nabla^2 g(\mathbf{x}^k) = \frac{1}{h^2} \mathbf{M} + \nabla^2 E(\mathbf{x}^k)$$

requires recomputation whenever \mathbf{x}^k changes!

Proposed Approach

• Consider a special case when Energy E consists of quadratic terms and is dependent on local features eg: Deformation gradient

The saddle-point problem $\nabla g = \mathbf{0}$ is now modified accordingly:

$$\min_{\mathbf{x},\{\mathbf{p}_c\in\mathcal{M}_c\}}\frac{1}{2h^2}(\mathbf{x}-\mathbf{y})^{\mathsf{T}}\mathbf{M}(\mathbf{x}-\mathbf{y})+\sum_c||\mathbf{G}_c\mathbf{x}-\mathbf{p}_c||_2^2$$

Proposed Approach

With PD, $abla^2 g$ becomes

$$\nabla^2 g(\mathbf{x}) = \frac{1}{h^2} \mathbf{M} + \sum_c \mathbf{G}_c^{\mathsf{T}} \mathbf{G}_c - \sum_c \mathbf{G}_c^{\mathsf{T}} \frac{\partial \mathbf{p}_c}{\partial \mathbf{x}}$$
$$\coloneqq \mathbf{A} - \Delta \mathbf{A}$$

Summary

Performance

Sec.	Task name	Newton-PCG				Newton-Cholesky				DiffPD (Ours)				
		Fwd.	Back.	Eval.	Loss	Fwd.	Back.	Eval.	Loss	Fwd.	Back.	Eval.	Loss	Speedup
6.2	Cantilever	118.2	39.4			160.1	55.9	5	2	10.5	5.5	2		10×
	Rolling sphere	107.3	31.3	-	-	135.6	36.6	-		14.0	5.7	-	-	8×
7.1	Plant	1,089.5	530.5	10	1.9e-3	929.6	525.2	10	1.9e-3	71.6	94.7	28	5.9e-7	9X
	Bouncing ball	269.3	90.9	43	7.9e-2	262.6	102.5	22	8.4e-2	15.8	14.2	12	9.6e-2	12×
7.2	Bunny	277.7	88.0	21	7.0e-3	358.2	126.9	29	5.1e-3	24.0	17.3	11	2.3e-2	9X
	Routing tendon	108.2	56.7	36	6.0e-4	107.3	58.7	38	4.9e-4	8.3	9.9	30	9.6e-4	9×
7.3	Torus	751.9	210.3	47	-2.3e-3	719.9	212.4	43	-2.4e-2	84.3	81.9	27	0	6X
	Quadruped	289.2	51.5	69	-1.8e0	246.3	47.8	54	-1.1e0	50.2	15.8	30	0	4×
	Cow	771.7	141.7	14	9.7e-1	620.1	140.2	20	9.8e-1	105.3	43.7	31	0	5×
7.4	Starfish	217.7	105.1	100	4.8e-1	244.0	129.4	100	1.4e-1	5.7	10.8	100	0	19×
	Shark	260.7	159.3	100	9.8e-1	599.4	241.8	100	-9.0e-3	35.5	15.3	100	0	8×
7.5	Tennis balls	54.6	6.4	14	7.2e-2	26.8	5.8	12	7.2e-2	24.1	15.9	41	6.9e-2	0.8×

Penalty Based Contact

• Previous PD simulations use penalty-based soft contact models.

• Contact forces are represented with fictitious energy Ec and matrix Gc.

• Ec pushes nodes back upon contact surface penetration.

• Handling friction with penalty-based forces in PD.

Background: Implicit Time Integration

$$x_{i+1} = x_i + hv_{i+1}$$

 $v_{i+1} = v_i + hM^{-1}[-\nabla E(x_{i+1}) + f_{ext}]$

Recast it as a saddle-point problem: find $\nabla g(\mathbf{x}_{i+1}) = \mathbf{0}$ where

$$g(\mathbf{x}) \coloneqq \frac{1}{2h^2} (\mathbf{x} - \mathbf{y})^{\mathsf{T}} \mathbf{M} (\mathbf{x} - \mathbf{y}) + E(\mathbf{x})$$

 $\mathbf{y} \coloneqq \mathbf{x}_i + h\mathbf{v}_i + h^2 \mathbf{M}^{-1} \mathbf{f}_{ext}$ is independent of \mathbf{x} .

Limitations

• Energy model assumption restricts material diversity.

• Contact models prioritize differentiability over realism.

• Scalability limited to thousands of elements.

• Slower for locomotion tasks due to contact inclusion.

• Optimization methods may struggle with non-convex landscapes.

Thank you