

Major exam format

> Sunday, 7 May
> 8:00-10:00 AM (?!)
> LH 416

Syllabus is the entire course content, but more emphasis on latter part:

- 20% Minor 1 topics
- 20% Minor 2 topics
- 60% everything after Minor 2

You're allowed to bring a double-sided A4 size page of handwritten notes

Remaining evaluations

Assignment 2 marks to be released soon
Assignment 3 demos to be scheduled (during / after majors)

Assignment 4:

- We will update the viewer code this weekend
- Demos on 13 May (Saturday after majors)

Participation (quizzes, Moodle Q\&A) to be evaluated soon

Course goals (from lecture 1)

Scientific and mathematical foundations of graphics

- Physics of light and colour, materials, dynamics for animation, ...
- Mathematics of curves and surfaces, perspective projection, sampling, ...

Representations, algorithms, and systems

- Modelling geometry, images, transformations, ...
- Mesh subdivision, ray tracing, time integration, ...
- GPUs, hardware rendering pipeline, ...

Course content

Modelling

Rendering

Animation

Rasterization, sampling, ...

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Vector vs. raster, point-in-triangle test, bounding boxes, supersampling, filtering, ...

Transformations: linear, affine, ...

Matrices as linear transformations, coordinate systems, homogeneous coordinates, hierarchical transformations, transformation pipeline, ...

Perspective, visibility, ...

Perspective via homogeneous coordinates, the visibility problem, z-buffering, ...

Interpolation, texture mapping, ...

Barycentric coordinates, basis functions, parameterization via texture coordinates, bi- and trilinear interpolation, mipmaps for prefiltering, ...

Rasterization pipeline, transparency, shading, ...

Programmable vertex and fragment processing, alpha compositing, Blinn-Phong reflectance model, ...

Ray tracing, ...

Ray-shape intersection, intersecting transformed shapes, shadow rays, recursive ray tracing, reflection and refraction, ...

Modeling, Bézier splines, subdivision, ...

Explicit vs. implicit representations, splines, procedural vs. analytical forms, continuity, subdivision surfaces, ...

Meshes, editing, spatial data structures...

Manifoldness and orientation, connectivity vs. geometry, local operations, geometric queries, bounding volumes, space partitioning, recursive traversal, ...

Radiometry, colour, materials, ...

Radiant flux, irradiance vs. radiance, tristimulus values, gamma correction, BRDFs, microfacet models, Fresnel reflectance, ...

The rendering equation, path tracing, ...

Global illumination, Monte Carlo integration, path tracing, inversion vs. rejection sampling, Russian roulette, importance sampling, ...

Bidirectional methods, real-time rendering, ...

Variations of path tracing (independent samples) vs. photon mapping (reuse of light paths), gathering data from the right viewpoint, precomputed shading, ...

Skeletal animation, skinning, ...

Animation controls, keyframing vs. motion capture, quaternions, forward vs. inverse kinematics, linear blend skinning vs. dual quaternions, ...

Particles, mass-spring systems, time stepping, ...

Time stepping, inter-particle interactions, generalized coordinates, forces from potentials, strains, implicit integration, Newton's method, ...

Constraints, collisions, continuum models, ...

Constraint projection, rigid body dynamics, collision detection vs. response, Laplacian operator, discretization, finite elements, splitting methods, ...

