COL781: Computer Graphics

Simulation

Recap: Elastic solids

Mass-spring systems

Degrees of freedom: $\mathbf{q} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$

Deformed shape of one spring: $\mathbf{x}_{ij} = \mathbf{x}_i - \mathbf{x}_j$

Strain:
$$\varepsilon = \frac{\|\mathbf{X}_{ij}\|}{\|\mathbf{X}_{ij}\|} - 1$$

Spring energy: $U_{ij} = \frac{1}{2} k_s \varepsilon \|\mathbf{X}_{ij}\|$

Total internal energy: $U = \sum U_{ij}$ Force on *i*th particle: $\mathbf{f}_i = -\frac{\partial U}{\partial \mathbf{x}_i} = -\sum \frac{\partial U_{ij}}{\partial \mathbf{x}_i}$

Degrees of freedom: $\varphi : \mathbf{X} \rightarrow \mathbf{x}$

Deformation of infinitesimal patch: $\mathbf{F} = \frac{d\mathbf{x}}{d\mathbf{X}}$

Strain: $\mathbf{E} = \frac{1}{2} (\mathbf{F}^{T} \mathbf{F} - \mathbf{I})$

Strain energy density: $\Psi(\mathbf{E})$

Total internal energy: $U = \int \Psi(\mathbf{E}) \, \mathrm{d}V$

Generalized force: $-\frac{\partial U}{\partial \phi}$?

Recap: Elastic solids

Mass-spring systems

Degrees of freedom: $\mathbf{q} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$

Deformed shape of one spring: $\mathbf{x}_{ij} = \mathbf{x}_i - \mathbf{x}_j$

Strain:
$$\varepsilon = \frac{\|\mathbf{X}_{ij}\|}{\|\mathbf{X}_{ij}\|} - 1$$

Spring energy: $U_{ij} = \frac{1}{2} k_s \varepsilon \|\mathbf{X}_{ij}\|$

Total internal energy: $U = \sum U_{ij}$ Force on *i*th particle: $\mathbf{f}_i = -\frac{\partial U}{\partial \mathbf{x}_i} = -\sum \frac{\partial U_{ij}}{\partial \mathbf{x}_i}$

Finite element method

Degrees of freedom: $\mathbf{q} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$

Deformation of *j*th element: $\mathbf{F}_j = \frac{d\mathbf{x}}{d\mathbf{X}}$

Strain: $\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$

Strain energy density: $\Psi(\mathbf{E})$

Total internal energy: $U = \sum \Psi(\mathbf{E}_j) dV_j$

Force on *i*th particle: $\mathbf{f}_i = -\frac{\partial U}{\partial \mathbf{x}_i} = -\sum_{i=1}^{n} \frac{\partial U_i}{\partial \mathbf{x}_i}$

Choice of strain energy density $\Psi(\mathbf{E})$ determines material behaviour, including volume preservation (Poisson's ratio), anisotropy, and all other effects

No rest shape, so no reference space **X** needed. No deformation map $\mathbf{x}(\mathbf{X})$, no time derivative $\mathbf{v}(\mathbf{X}) = \dot{\mathbf{x}}(\mathbf{X})$

Still need **v** as a function of **x** though: the velocity field

Can discretize using particles or a grid:

Forces acting on the fluid:

- External forces e.g. gravity
- Pressure $\mathbf{f}_{pres} = -\nabla p(\mathbf{x})$

Fluid is pushed away from high pressure towards low pressure

• Viscosity
$$\mathbf{f}_{visc} = \mu \nabla^2 \mathbf{u}(\mathbf{x})$$

Resists relative motion within the fluid

- Surface tension (out of scope)
- Interaction with solids (out of scope)

Pressure as a soft constraint

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Becker & eschner 2007

Pressure as a harder constraint

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Pressure

In real life, pressure is a restoring force that opposes changes in density. Restoring force → oscillations (sound, shock waves)!

In simulation, we'll treat fluid as perfectly incompressible \rightarrow no oscillations, stable! Change in volume of any "blob" of fluid should be zero everywhere:

remains true.

- $(\nabla \cdot \mathbf{u})(\mathbf{x}) = 0$
- Solve for the pressure field p so that, after applying the pressure force $-\nabla p(\mathbf{x})$, the above

The Navier-Stokes equations

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}t} = \mathbf{f}_{\text{ext}} - \nabla p + \mu \,\nabla^2 \,\mathbf{u}$$

Wait, what's D/Dt?

• Partial derivative $\frac{\partial \mathbf{u}(t, \mathbf{x})}{\partial t}$ = time derivative at a fixed point **x** • Material derivative $\frac{Du(t, x)}{Dt}$ = time derivative seen by point moving with the fluid

Actually
$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}t} = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}$$

 \mathcal{O} Blackaller-Johnsor

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \mathbf{f}_{ext} - \nabla p + \mu \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

How to solve this complicated thing?

Hard to handle all terms at once! But one at a time is easy: splitting method

1. Advection:
$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = 0$$

2. External forces: $\frac{\partial \mathbf{u}}{\partial t} = \mathbf{f}_{ext}$
3. Viscosity: $\frac{\partial \mathbf{u}}{\partial t} = \mu \nabla^2 \mathbf{u}$
4. Pressure: $\frac{\partial \mathbf{u}}{\partial t} = -\nabla p, \nabla \cdot \mathbf{u} = 0$

Advection

- Basically says: just move everything using the velocity field u Would be easy if we had particles:
- How to get the same effect on a grid?
- Create a temporary particle at each grid cell of q^n , move it forward for time Δt , write its data to q^{n+1} at the new position?

$$\frac{q}{d} + (\mathbf{u} \cdot \nabla)q = 0$$

 $\mathbf{x}_{i^{n+1}} = \mathbf{x}_{i^n} + \mathbf{v}_{i^n} \Delta t$

land at \mathbf{x}_i , and pick up the value from there.

- Create a temporary particle at each grid cell of q^{n+1}
- Trace it backwards using current velocity field **u** for time $-\Delta t$
- Look up interpolated value $q^n(\mathbf{x})$ and write into original grid cell

Semi-Lagrangian advection: figure out what location the particle should have started to

 q^{n+1}

Standard constraint projection strategy:

 $u^{n+1} =$

Plug it in and solve for p:

This is a Laplace problem with nonzero right-hand side, a.k.a. a Poisson problem

$$\frac{\partial \mathbf{u}}{\partial t} = -\nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\nabla \cdot \mathbf{u}^{n+1} = \mathbf{u}^n - \nabla p \Delta t$$

 $\nabla^2 p \,\Delta t = \nabla \cdot \mathbf{u}^n$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}$$

- 1. Advection: $\mathbf{u}^{(1)} = advect(\mathbf{u}^n, \mathbf{u}^n, \Delta t)$
- 2. External forces: $\mathbf{u}^{(2)} = \mathbf{u}^{(1)} + \mathbf{f}_{ext} \Delta t$
- 3. Viscosity: $\mathbf{u}^{(3)} = \mathbf{u}^{(2)} + \mu \nabla^2 \mathbf{u} \Delta t$

4. Pressure: $\mathbf{u}^{n+1} = \mathbf{u}^{(3)} - \nabla p \Delta t$ so that $\nabla \cdot$

This is the classic stable fluids algorithm [Stam 1999]

$$u^{n+1} = 0$$

http://physbam.stanford.edu/~mlentine/research.html

Liquids

Fluid only occupies a finite region $\Omega \subset \mathbb{R}3$

Need a surface tracking algorithm to represent Ω (usually with an implicit representation)

Level sets

Particles

Foster & Metaxas 1996

Particle fluids

There are also algorithms for simulating fluids with only particles: smoothed particle hydrodynamics

Some things become easy:

Advection = just move the particles

Some things become hard:

• How to compute spatial derivatives ($\nabla \cdot \mathbf{u}, \nabla p$, etc.)? Need to do weighted averaging over all nearby particles

Hybrid particle-in-cell methods (FLIP, APIC, MPM): Use particles for advection, use grids for everything else!

Where to learn more

Simulation in general:

- Witkin & Baraff, <u>Physically Based Modeling</u> (2001)
- Bargteil & Shinar, <u>An Introduction to Physics-Based Animation</u> (2019)

Elastic bodies:

• Kim & Eberle, *Dynamic Deformables* (2022)

Contact handling:

Andrews et al., <u>Contact and Friction Simulation for Computer Graphics</u> (2022)

Fluids:

• Bridson & Müller-Fischer, *Fluid Simulation for Computer Animation* (2007)