
39. Fluid 
 Simulation

COL781: Computer Graphics

C
he

rn
 e

t a
l.

20
16

Recap: Elastic solids
Mass-spring systems

Degrees of freedom: q = (x1, x2, …, xn)

Deformed shape of one spring: xij = xi − xj

Strain: ε = − 1

Spring energy: Uij = ½ ks ε Xij

Total internal energy: U = Uij

Force on ith particle: fi = − = −

∥xij∥
∥Xij∥

∥ ∥

∑
∂U
∂xi ∑

∂Uij

∂xi

Continuum elasticity

Degrees of freedom: φ : X → x

Deformation of infinitesimal patch: F =

Strain: E = ½ (FT F − I)

Strain energy density: Ψ(E)

Total internal energy: U = Ψ(E) dV

Generalized force: − ?

dx
dX

∫
∂U
∂ϕ

Recap: Elastic solids
Mass-spring systems

Degrees of freedom: q = (x1, x2, …, xn)

Deformed shape of one spring: xij = xi − xj

Strain: ε = − 1

Spring energy: Uij = ½ ks ε Xij

Total internal energy: U = Uij

Force on ith particle: fi = − = −

∥xij∥
∥Xij∥

∥ ∥

∑
∂U
∂xi ∑

∂Uij

∂xi

Finite element method

Degrees of freedom: q = (x1, x2, …, xn)

Deformation of jth element: Fj =

Strain: E = ½ (FT F − I)

Strain energy density: Ψ(E)

Total internal energy: U = Ψ(Ej) dVj

Force on ith particle: fi = − = −

dx
dX

∑
∂U
∂xi ∑

∂Uj

∂xi

Choice of strain energy density Ψ(E) determines material behaviour, including volume
preservation (Poisson’s ratio), anisotropy, and all other effects

Sm
ith et al. 2018

Kharevych et al. 2009

Sperl et al. 2020

Fluids
No rest shape, so no reference space X needed. 
No deformation map x(X), no time derivative v(X) = ẋ(X)

Still need v as a function of x though: the velocity field

Can discretize using particles or a grid:

Forces acting on the fluid:

• External forces e.g. gravity

• Pressure fpres = −∇p(x)

Fluid is pushed away from high pressure 
towards low pressure

• Viscosity fvisc = μ ∇2 u(x)

Resists relative motion within the fluid

• Surface tension (out of scope)

• Interaction with solids (out of scope)

Pressure as a soft constraint
Becker & Teschner 2007https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Pressure as a harder constraint
Becker & Teschner 2007https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

https://cg.informatik.uni-freiburg.de/movies/2007_SCA_SPH.avi

Pressure
In real life, pressure is a restoring force that opposes changes in density.

Restoring force → oscillations (sound, shock waves)! 

In simulation, we’ll treat fluid as perfectly incompressible → no oscillations, stable!

Change in volume of any “blob” of fluid should be zero everywhere:

(∇ · u)(x) = 0

Solve for the pressure field p so that, after applying the pressure force −∇p(x), the above
remains true.

The Navier-Stokes equations

 = fext − ∇p + μ ∇2 u

Wait, what’s D/Dt?

• Partial derivative = time derivative at a fixed point x

• Material derivative = time derivative seen by point 

moving with the fluid

Actually = + (u · ∇) u

Du
Dt

∂u(t, x)
∂t
Du(t, x)

Dt

Du
Dt

∂u
∂t

S. Blackaller-Johnson∂/∂t

BurazinD/Dt

 + (u · ∇) u = fext − ∇p + μ ∇2 u 

∇ · u = 0

How to solve this complicated thing?

Hard to handle all terms at once! But one at a time is easy: splitting method

1. Advection: + (u · ∇) u = 0

2. External forces: = fext

3. Viscosity: = μ ∇2 u

4. Pressure: = −∇p, ∇ · u = 0

∂u
∂t

∂u
∂t

∂u
∂t

∂u
∂t
∂u
∂t

Advection

 = + (u · ∇) q = 0

Basically says: just move everything using the velocity field u

Would be easy if we had particles:

xin+1 = xin + vin Δt

How to get the same effect on a grid?

• Create a temporary particle at each grid cell of qn, move it 
forward for time Δt, write its data to qn+1 at the new position?

Dq
Dt

∂q
∂t

Semi-Lagrangian advection: figure out what location the particle should have started to
land at xi, and pick up the value from there.

• Create a temporary particle at each grid cell of qn+1

• Trace it backwards using current velocity field u for time −Δt

• Look up interpolated value qn(x) and write into original grid cell

qn u qn+1

Pressure

 = −∇p 

∇ · u = 0

Standard constraint projection strategy:

un+1 = un − ∇p Δt 
∇ · un+1 = 0

Plug it in and solve for p:

∇2p Δt = ∇ · un

This is a Laplace problem with nonzero right-hand side, a.k.a. a Poisson problem

∂u
∂t

 + (u · ∇) u = fext − ∇p + μ ∇2 u 

∇ · u = 0

1. Advection: u(1) = advect(un, un, Δt)

2. External forces: u(2) = u(1) + fext Δt

3. Viscosity: u(3) = u(2) + μ ∇2 u Δt

4. Pressure: un+1 = u(3) − ∇p Δt so that ∇ · un+1 = 0

This is the classic stable fluids algorithm [Stam 1999]

∂u
∂t

Lentine et al. 2010http://physbam.stanford.edu/~mlentine/research.html

http://physbam.stanford.edu/~mlentine/research.html

Liquids
Fluid only occupies a finite region Ω ⊂ ℝ3

Need a surface tracking algorithm to represent Ω 
(usually with an implicit representation)

Foster & M
etaxas 1996

Level sets Particles

Particle fluids
There are also algorithms for simulating fluids with only particles: 
smoothed particle hydrodynamics

Some things become easy:

• Advection = just move the particles

Some things become hard:

• How to compute spatial derivatives (∇ · u, ∇p, etc.)? 
Need to do weighted averaging over all nearby particles

Hybrid particle-in-cell methods (FLIP, APIC, MPM): 
Use particles for advection, use grids for everything else!

Where to learn more
Simulation in general:

• Witkin & Baraff, Physically Based Modeling (2001)

• Bargteil & Shinar, An Introduction to Physics-Based Animation (2019)

Elastic bodies:

• Kim & Eberle, Dynamic Deformables (2022)

Contact handling:

• Andrews et al., Contact and Friction Simulation for Computer Graphics (2022)

Fluids:

• Bridson & Müller-Fischer, Fluid Simulation for Computer Animation (2007)

https://graphics.pixar.com/pbm2001/
https://cal.cs.umbc.edu/Courses/PhysicsBasedAnimation/
http://www.tkim.graphics/DYNAMIC_DEFORMABLES/
https://siggraphcontact.github.io/
https://www.cs.ubc.ca/~rbridson/fluidsimulation/

