
36. Collision
 Processing

COL781: Computer Graphics

Er
le

be
n

20
07

Recap: Constraints
c(q) = 0

fc = λ ∇c(q)

Projection method:

qn+1 = qpred + ∑ M−1 λj ∇cj (qn+1) Δt2
cj (qn+1) = 0 for j = 1, 2, …

where qpred = qn + vn Δt + M−1 f(qn, vn) Δt2.

Solve for qn+1 and λ1, λ2, … simultaneously using Newton’s method

…Then update vn+1 = (qn+1 − qn)/Δt

qn

qpred

qn+1

Position-based dynamics
Solving a big linear system for all λ’s is too expensive for real-time graphics!
But it’s easy to solve one constraint at a time:

Example: Inextensible spring between particles i and j

xij = ℓ0

fij = λ x̂ij

Recall qn+1 = qpred + ∑ M−1 λj x̂ij Δt2

Δqn+1 = M−1 Δλ x̂ij Δt2

Find Δλ which makes updated positions satisfy x̃ij + Δxij = ℓ0

∥ ∥

∥ ∥

In general, we have a guess of the next positions: q̃

1. Applying a constraint force Δλj changes the positions by Δq = M−1 Δλj ∇cj (q̃) Δt2

2. Solve for Δλj so that cj (q̃ + Δq) = 0

3. Update the positions (constraint projection): q̃ ← q̃ + Δq

4. Repeat for other constraints

Projecting one constraint makes other constraints violated!

• Loop over all constraints = 1 iteration. Have to repeat many iterations

• If not enough iterations, constraints appear soft!

M
üller et al. 2006https://www.youtube.com/watch?v=j5igW5-h4ZM

https://www.youtube.com/watch?v=j5igW5-h4ZM

M
üller et al. 2006https://www.youtube.com/watch?v=j5igW5-h4ZM

https://www.youtube.com/watch?v=j5igW5-h4ZM

Rigid bodies and collisions

Rigid bodies
Degrees of freedom: Center of mass position x, rotation (matrix R or quaternion q)
…Basically just the body’s coordinate system

Kinematics:

• (Linear) velocity: ẋ = v

• Angular velocity: ω

 or ·R =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0
R ·q = 1

2

qx −qy −qz
qw qz −qy

−qz qw qx
qy −qx qw

ω

Dynamics:

v̇ = m−1 f

ω̇ = 𝐈−1 (τ − ω × 𝐈 ω)

where 𝐈 = moment of inertia, τ = net torque = (pi − x) × fi

ω × 𝐈 ω = “gyroscopic term” that makes things tumble

Simulation loop:

• Sum up forces f and torques τ

• Update velocities v, ω

• Update DOFs x, q. Don’t forget to normalize q

∑

https://commons.wikimedia.org/
wiki/File:Tennis_racket_theorem.gif

https://commons.wikimedia.org/wiki/File:Tennis_racket_theorem.gif
https://commons.wikimedia.org/wiki/File:Tennis_racket_theorem.gif

Collisions
Bridson et al. 2002https://www.cs.ubc.ca/~rbridson/

https://www.cs.ubc.ca/~rbridson/

Collision detection: find out which particles / bodies / etc. are colliding

Purely a geometric problem

Collision response: figure out how to update their velocities / positions

Involves physics of contact forces, friction, etc.

Peter Kipfer

Collision detection: discrete vs. continuous

Peter Kipfer

Example: Suppose I have an infinite cylinder along the x-axis with radius R.

I also have a particle with radius r moving to positions x0, x1, x2, … at times t0, t1, t2, …

1. How can I do discrete collision detection between the particle and the cylinder?

2. How can I do continuous collision detection for the same?

3. If I model a sheet of cloth as a mass-spring system, is it enough to check that none of
the particles are colliding with the cylinder?

How to efficiently detect collisions between complicated shapes
without O(n2) intersection tests?

1. Broad phase: traverse BVHs of both shapes

2. Narrow phase: if BVH leaves intersect, do pairwise
intersection tests between primitives

W
ojciech M

atusik

W
ojciech M

atusik

W
ojciech M

atusik

W
ojciech M

atusik

W
ojciech M

atusik

W
ojciech M

atusik

FindIntersections(node1, node2):
if BVs of node1 and node2 overlap:

for each child of bigger node:
FindIntersections(child, smaller node)

FindIntersections(node1, node2):
if BVs of node1 and node2 overlap:

if neither node1 nor node2 are leaves:
for each child of bigger node:

FindIntersections(child, smaller node)
else if one is a leaf:

for each child of non-leaf:
FindIntersections(child, leaf node)

else (both are leaves):
test intersections between all pairs of primitives

Output of collision detection: contact pairs

• Point pa on one body

• Point pb on other body

• Contact normal n

• Time of impact t*

Now, what to do with this information?
Collision resolution

W
itkin & Baraff 2001

Collision resolution

Two components:

• Normal force (prevents interpenetration)

• Frictional force (opposes tangential sliding)

Actually, collision forces change velocity over
an extremely very short time → treat as an instantaneous impulse

v+ = v + m−1 j

W
itkin & Baraff 2001

The normal component is like a constraint force.

Define a gap function φ(q) which measures the distance between the bodies

Constraint: φ(q) ≥ 0

Normal impulse: j = λ ∇φ(q), λ ≥ 0 (no sticking)

Complementarity: if φ(q) > 0 then λ = 0, if λ > 0 then φ(q) = 0

0 ≤ φ(q) ⟂ λ ≥ 0

Andrew
s

et al. 2002

Coefficient of restitution ε: how elastic the collision is

n · v+ = −ε (n · v)

W
itkin & Baraff 2001

Friction is described by Coulomb’s law

ft ≤ μ fn

Maximum dissipation principle: Frictional force takes the
value which dissipates as much kinetic energy as possible.

1. If vt > 0 (slipping) then ft = −(μ fn) v̂t

2. If vt = 0 (sticking) then ft is any force in friction cone

∥ ∥

∥ ∥

∥ ∥

Bender et al. 2012

ft

Time stepping issues
We usually only detect collisions after they’ve already happened!

• Option 1: Go back to time of impact,
compute response, step forward for fraction of Δt

“Zeno problem”:

• Option 2: Just lie about it! Project end-of-step positions to remove interpenetration

W
ojciech M

atusik

M
irtich &

Canny 1994

A simple strategy for particle/implicit collisions:

Perform v, x update as usual
If inside obstacle (φ(x) < 0):

If velocity is also inwards (n · v < 0):
Compute normal impuse: jn = −(1 + ε) m vn
Compute tangential impulse: jt = −min(μ jn , m vt) v̂t
Update velocity: v += m−1 (jn + jt)

Compute position correction: Δxn = −φ(x) n
Project particle out: x += Δxn

Can also add a tangential position correction to counteract artificial sliding…

∥ ∥ ∥ ∥

Multi-contact problems (harder!)

Erleben 2007

Sm
ith et al. 2012

H
arm

on et
al. 2008

