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Recap: Constraints
c(q) = 0


fc = λ ∇c(q)


Projection method:


qn+1 = qpred + ∑ M−1 λj ∇cj (qn+1) Δt2 
cj (qn+1) = 0    for j = 1, 2, …


where qpred = qn + vn Δt + M−1 f(qn, vn) Δt2.


Solve for qn+1 and λ1, λ2, … simultaneously using Newton’s method


…Then update vn+1 = (qn+1 − qn)/Δt

qn

qpred

qn+1



Position-based dynamics
Solving a big linear system for all λ’s is too expensive for real-time graphics! 
But it’s easy to solve one constraint at a time:


Example: Inextensible spring between particles i and j


xij  = ℓ0


fij = λ x̂ij


Recall qn+1 = qpred + ∑ M−1 λj x̂ij Δt2


Δqn+1 = M−1 Δλ x̂ij Δt2


Find Δλ which makes updated positions satisfy x̃ij + Δxij  = ℓ0

∥ ∥

∥ ∥



In general, we have a guess of the next positions:  q̃


1. Applying a constraint force Δλj changes the positions by Δq = M−1 Δλj ∇cj (q̃) Δt2


2. Solve for Δλj so that cj (q̃ + Δq) = 0


3. Update the positions (constraint projection):  q̃ ← q̃ + Δq


4. Repeat for other constraints 

Projecting one constraint makes other constraints violated!


• Loop over all constraints = 1 iteration. Have to repeat many iterations


• If not enough iterations, constraints appear soft!
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Rigid bodies and collisions



Rigid bodies
Degrees of freedom: Center of mass position x, rotation (matrix R or quaternion q) 
…Basically just the body’s coordinate system


Kinematics:


• (Linear) velocity: ẋ = v


• Angular velocity: ω


    or    ·R =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0
R ·q = 1
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ω



Dynamics:


v̇ = m−1 f


ω̇ = 𝐈−1 (τ − ω × 𝐈 ω)


where 𝐈 = moment of inertia, τ = net torque =  (pi − x) × fi


ω × 𝐈 ω = “gyroscopic term” that makes things tumble


Simulation loop:


• Sum up forces f and torques τ


• Update velocities v, ω


• Update DOFs x, q. Don’t forget to normalize q

∑

https://commons.wikimedia.org/
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Collisions
Bridson et al. 2002https://www.cs.ubc.ca/~rbridson/

https://www.cs.ubc.ca/~rbridson/


Collision detection: find out which particles / bodies / etc. are colliding


Purely a geometric problem


Collision response: figure out how to update their velocities / positions


Involves physics of contact forces, friction, etc.

Peter Kipfer



Collision detection: discrete vs. continuous

Peter Kipfer



Example: Suppose I have an infinite cylinder along the x-axis with radius R.


I also have a particle with radius r moving to positions x0, x1, x2, … at times t0, t1, t2, …


1. How can I do discrete collision detection between the particle and the cylinder?


2. How can I do continuous collision detection for the same?


3. If I model a sheet of cloth as a mass-spring system, is it enough to check that none of 
the particles are colliding with the cylinder?



How to efficiently detect collisions between complicated shapes 
without O(n2) intersection tests?


1. Broad phase: traverse BVHs of both shapes


2. Narrow phase: if BVH leaves intersect, do pairwise 
intersection tests between primitives
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FindIntersections(node1, node2):

if BVs of node1 and node2 overlap:


for each child of bigger node:

FindIntersections(child, smaller node)



FindIntersections(node1, node2):

if BVs of node1 and node2 overlap:


if neither node1 nor node2 are leaves:

for each child of bigger node:


FindIntersections(child, smaller node)

else if one is a leaf:


for each child of non-leaf:

FindIntersections(child, leaf node)


else (both are leaves):

test intersections between all pairs of primitives



Output of collision detection: contact pairs


• Point pa on one body


• Point pb on other body


• Contact normal n


• Time of impact t* 

Now, what to do with this information? 
Collision resolution

W
itkin & Baraff 2001



Collision resolution

Two components:


• Normal force (prevents interpenetration)


• Frictional force (opposes tangential sliding) 

Actually, collision forces change velocity over 
an extremely very short time → treat as an instantaneous impulse


v+ = v + m−1 j

W
itkin & Baraff 2001



The normal component is like a constraint force.


Define a gap function φ(q) which measures the distance between the bodies 
 
 
 
 
 

Constraint: φ(q) ≥ 0


Normal impulse: j = λ ∇φ(q), λ ≥ 0 (no sticking)


Complementarity: if φ(q) > 0 then λ = 0, if λ > 0 then φ(q) = 0


0 ≤ φ(q)    ⟂    λ ≥ 0

Andrew
s 

et al. 2002



Coefficient of restitution ε: how elastic the collision is


n · v+ = −ε (n · v) 
 
 
 
 
 
 
 
 
 

W
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Friction is described by Coulomb’s law


ft  ≤ μ fn


Maximum dissipation principle: Frictional force takes the 
value which dissipates as much kinetic energy as possible.


1. If vt  > 0 (slipping) then ft = −(μ fn) v̂t


2. If vt  = 0 (sticking) then ft is any force in friction cone

∥ ∥

∥ ∥

∥ ∥

Bender et al. 2012

ft



Time stepping issues
We usually only detect collisions after they’ve already happened!


• Option 1: Go back to time of impact, 
compute response, step forward for fraction of Δt


“Zeno problem”: 
 
 
 
 

• Option 2: Just lie about it! Project end-of-step positions to remove interpenetration

W
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A simple strategy for particle/implicit collisions: 

Perform v, x update as usual

If inside obstacle (φ(x) < 0):


If velocity is also inwards (n · v < 0):

Compute normal impuse: jn = −(1 + ε) m vn

Compute tangential impulse: jt = −min(μ jn , m vt ) v̂t

Update velocity: v += m−1 (jn + jt)


Compute position correction: Δxn = −φ(x) n

Project particle out: x += Δxn


Can also add a tangential position correction to counteract artificial sliding…

∥ ∥ ∥ ∥



Multi-contact problems (harder!)

Erleben 2007
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