

Recap: Constraints

$$
\begin{gathered}
c(\mathbf{q})=0 \\
\mathbf{f}_{c}=\lambda \nabla c(\mathbf{q})
\end{gathered}
$$

Projection method:

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{\text {pred }}+\sum \mathbf{M}^{-1} \lambda_{j} \nabla c_{j}\left(\mathbf{q}_{n+1}\right) \Delta t^{2} \\
c_{j}\left(\mathbf{q}_{n+1}\right)=0 \quad \text { for } j=1,2, \ldots \\
\text { where } \mathbf{q}_{\text {pred }}=\mathbf{q}_{n}+\mathbf{v}_{n} \Delta t+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t^{2} .
\end{gathered}
$$

Solve for \mathbf{q}_{n+1} and $\lambda_{1}, \lambda_{2}, \ldots$ simultaneously using Newton's method
\ldots...Then update $\mathbf{v}_{n+1}=\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right) / \Delta t$

Position-based dynamics

Solving a big linear system for all λ 's is too expensive for real-time graphics! But it's easy to solve one constraint at a time:

Example: Inextensible spring between particles i and j

$$
\begin{gathered}
\left\|\mathbf{x}_{i j}\right\|=\ell_{0} \\
\mathbf{f}_{i j}=\lambda \hat{\mathbf{x}}_{i j}
\end{gathered}
$$

Recall $\mathbf{q}_{n+1}=\mathbf{q}_{\text {pred }}+\sum \mathbf{M}^{-1} \lambda_{j} \hat{\mathbf{x}}_{i j} \Delta t^{2}$

$$
\Delta \mathbf{q}_{n+1}=\mathbf{M}^{-1} \Delta \lambda \hat{\mathbf{x}}_{i j} \Delta t^{2}
$$

Find $\Delta \lambda$ which makes updated positions satisfy $\left\|\tilde{\mathbf{x}}_{i j}+\Delta \mathbf{x}_{i j}\right\|=\ell_{0}$

In general, we have a guess of the next positions: $\tilde{\mathbf{q}}$

1. Applying a constraint force $\Delta \lambda_{j}$ changes the positions by $\Delta \mathbf{q}=\mathbf{M}^{-1} \Delta \lambda_{j} \nabla c_{j}(\tilde{\mathbf{q}}) \Delta t^{2}$
2. Solve for $\Delta \lambda_{j}$ so that $c_{j}(\tilde{\mathbf{q}}+\Delta \boldsymbol{q})=0$
3. Update the positions (constraint projection): $\tilde{\mathbf{q}} \leftarrow \tilde{\mathbf{q}}+\Delta \mathbf{q}$
4. Repeat for other constraints

Projecting one constraint makes other constraints violated!

- Loop over all constraints $=1$ iteration. Have to repeat many iterations
- If not enough iterations, constraints appear soft!

Rigid bodies and collisions

Rigid bodies

Degrees of freedom: Center of mass position \mathbf{x}, rotation (matrix \mathbf{R} or quaternion \mathbf{q}) ...Basically just the body's coordinate system

Kinematics:

- (Linear) velocity: $\dot{\mathbf{x}}=\mathbf{v}$
- Angular velocity: $\boldsymbol{\omega}$

$$
\dot{\mathbf{R}}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right] \mathbf{R} \quad \text { or } \quad \dot{\mathbf{q}}=\frac{1}{2}\left[\begin{array}{ccc}
q_{x} & -q_{y} & -q_{z} \\
q_{w} & q_{z} & -q_{y} \\
-q_{z} & q_{w} & q_{x} \\
q_{y} & -q_{x} & q_{w}
\end{array}\right] \omega
$$

Dynamics:

$$
\begin{gathered}
\dot{\mathbf{v}}=m^{-1} \mathbf{f} \\
\dot{\boldsymbol{\omega}}=\mathbf{I}^{-1}(\mathbf{T}-\boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega})
\end{gathered}
$$

where $\mathbf{I}=$ moment of inertia, $\mathbf{T}=$ net torque $=\sum\left(\mathbf{p}_{i}-\mathbf{x}\right) \times \mathbf{f}_{i}$
$\boldsymbol{\omega} \times \mathbf{I} \boldsymbol{\omega}=$ "gyroscopic term" that makes things tumble
Simulation loop:

- Sum up forces \mathbf{f} and torques \mathbf{T}
- Update velocities $\mathbf{v}, \boldsymbol{\omega}$
- Update DOFs \mathbf{x}, \mathbf{q}. Don't forget to normalize \mathbf{q}

https://commons.wikimedia.org/ wiki/File:Tennis racket theorem.gif

Collisions

Collision detection: find out which particles / bodies / etc. are colliding
Purely a geometric problem

Collision response: figure out how to update their velocities / positions Involves physics of contact forces, friction, etc.

Collision detection: discrete vs. continuous

(a)

Example: Suppose I have an infinite cylinder along the x-axis with radius R.
I also have a particle with radius r moving to positions $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ at times $t_{0}, t_{1}, t_{2}, \ldots$

1. How can I do discrete collision detection between the particle and the cylinder?
2. How can I do continuous collision detection for the same?
3. If I model a sheet of cloth as a mass-spring system, is it enough to check that none of the particles are colliding with the cylinder?

How to efficiently detect collisions between complicated shapes without $O\left(n^{2}\right)$ intersection tests?

1. Broad phase: traverse $B V H$ s of both shapes
2. Narrow phase: if BVH leaves intersect, do pairwise intersection tests between primitives

ข!!nłew чวə!!!oм

Findlntersections(node $_{1}$, node $_{2}$): if $B V$ s of node $_{1}$ and node ${ }_{2}$ overlap: for each child of bigger node:
Findlntersections(child, smaller node)

Findlntersections(node $_{1}$, node $_{2}$):
if BVs of node ${ }_{1}$ and node ${ }_{2}$ overlap:
if neither node nor node $_{2}$ are leaves:
for each child of bigger node:
Findlntersections(child, smaller node) else if one is a leaf:
for each child of non-leaf:
Findlntersections(child, leaf node)
else (both are leaves):

test intersections between all pairs of primitives

Output of collision detection: contact pairs

- Point \mathbf{p}_{a} on one body
- Point \mathbf{p}_{b} on other body
- Contact normal n
- Time of impact t^{\star}

Now, what to do with this information?

Collision resolution

Collision resolution

Two components:

- Normal force (prevents interpenetration)
- Frictional force (opposes tangential sliding)

Actually, collision forces change velocity over an extremely very short time \rightarrow treat as an instantaneous impulse

$$
\mathbf{v}^{+}=\mathbf{v}+m^{-1} \mathbf{j}
$$

The normal component is like a constraint force.
Define a gap function $\varphi(\mathbf{q})$ which measures the distance between the bodies

Constraint: $\varphi(\mathbf{q}) \geq 0$
Normal impulse: $\mathbf{j}=\lambda \nabla \varphi(\mathbf{q}), \lambda \geq 0$ (no sticking)
Complementarity: if $\varphi(\mathbf{q})>0$ then $\lambda=0$, if $\lambda>0$ then $\varphi(\mathbf{q})=0$

$$
0 \leq \varphi(\mathbf{q}) \quad \perp \quad \lambda \geq 0
$$

Coefficient of restitution ε : how elastic the collision is

$$
\mathbf{n} \cdot \mathbf{v}^{+}=-\varepsilon(\mathbf{n} \cdot \mathbf{v})
$$

Friction is described by Coulomb's law

$$
\left\|\mathbf{f}_{t}\right\| \leq \mu \mathbf{f}_{n}
$$

Maximum dissipation principle: Frictional force takes the value which dissipates as much kinetic energy as possible.

1. If $\left\|\mathbf{v}_{t}\right\|>0$ (slipping) then $\mathbf{f}_{t}=-\left(\mu \mathbf{f}_{n}\right) \hat{\mathbf{v}}_{t}$
2. If $\left\|\mathbf{v}_{t}\right\|=0$ (sticking) then \mathbf{f}_{t} is any force in friction cone

Time stepping issues

We usually only detect collisions after they've already happened!

- Option 1: Go back to time of impact, compute response, step forward for fraction of Δt
"Zeno problem":

- Option 2: Just lie about it! Project end-of-step positions to remove interpenetration

A simple strategy for particle/implicit collisions:
Perform \mathbf{v}, \mathbf{x} update as usual
If inside obstacle ($\varphi(\mathbf{x})<0$):
If velocity is also inwards ($\mathbf{n} \cdot \mathbf{v}<0$):
Compute normal impuse: $\mathbf{j}_{n}=-(1+\varepsilon) m \mathbf{v}_{n}$
Compute tangential impulse: $\mathbf{j}_{t}=-\min \left(\mu\left\|\mathbf{j}_{n}\right\|, m\left\|\mathbf{v}_{t}\right\|\right) \hat{\mathbf{v}}_{t}$

$$
\text { Update velocity: } \mathbf{v}+=m^{-1}\left(\mathbf{j}_{n}+\mathbf{j}_{t}\right)
$$

Compute position correction: $\Delta \mathbf{x}_{n}=-\varphi(\mathbf{x}) \mathbf{n}$
Project particle out: $\mathbf{x}+=\Delta \mathbf{x}_{n}$

Can also add a tangential position correction to counteract artificial sliding...

Multi-contact problems (harder!)

