

A System

Assignment 4 partially posted

Due date?

Forward Euler & instability

For the ODE $\dot{x}(t) = \phi(t, x(t))$, forward Euler:

 $x_{n+1} = x_n + \phi(t_n, x_n) \Delta t$

First-order accurate but not always stable.

For $\dot{\mathbf{x}} = a \mathbf{x}$,

- Exact solution is bounded if $Re(a) \leq 0$
- FE solution is bounded if $|a \Delta t + 1| \leq 1$

If |a| is (very) large, Δt needs to be (very) small!

Example: spring pendulum with rest length ℓ_0 , spring constant k_s

- Period of horizontal swing: $T_{slow} \approx O(\sqrt{l_0/g})$
- Period of vertical vibration: $T_{\text{fast}} \approx O(\sqrt{m})$

Take $k_s \rightarrow \infty$. Then $T_{\text{fast}} \rightarrow 0$, stable $\Delta t \rightarrow 0!$

We only care about dynamics on the scale of T_{slow} , but we're forced to take time steps on the scale of $T_{\text{fast}} \ll T_{\text{slow}}$.

In such cases, we say the problem is stiff. This happens a lot in graphics...

$$\overline{/k_s}$$

https://www.youtube.com/watch?v=2R9u-tjhRYA

Backward Euler

In forward Euler, we evaluate the derivative $\phi(t, x)$ at t_n . Let's try t_{n+1} :

This is an implicit method: unknown x_{n+1} appears on both sides!

- "Look before you leap": Go to the point x_{n+1} where the derivative $\phi(t, x)$ matches the step you just took, $(x_{n+1} - x_n)/\Delta t$
- Can't just plug in values. Solve with e.g. Newton's method \Rightarrow more expensive!

Still only first-order accurate. So what's the benefit?

- $x_{n+1} = x_n + \phi(t_{n+1}, x_{n+1}) \Delta t$

Consider $\dot{x} = a x$ again.

- Exact solution: $x(t) = \exp(a t) x(0)$
- BE solution: $x_{n+1} = x_n + a x_{n+1} \Delta t$ $\Rightarrow x_{n+1} = (1 - a \Delta t)^{-1} x_n$

If a < 0, BE solution correctly decays for any Δt .

If a is imaginary, BE solution spirals inward: remains stable!

In fact BE is **unconditionally stable** (i.e. stable for any Δt) for all linear ODEs $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$.

Witkin & Baraff 2001

How do we apply all this to our 2nd-order ODE, $\mathbf{\ddot{q}} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \mathbf{\dot{q}})$? Reduce to 1st-order:

Forward Euler:

Backward Euler:

 $\dot{\mathbf{q}} = \mathbf{v}$ $\dot{\mathbf{v}} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \mathbf{v})$

 $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_n \Delta t$ $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_n, \mathbf{v}_n) \Delta t$

 $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$ $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}) \Delta t$

Both are inaccurate, but backward Euler has a better failure mode: artificial dissipation

Backward Euler solution

How do we actually solve this?

Newton's method

OK, backward Euler gives us a system of equations in the unknown next state (q_{n+1} , v_{n+1})

 $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$ $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}) \Delta t$

Newton's method

- An instance of a very general problem-solving strategy.
- Say you have a problem you don't know how to solve exactly:
- 1. Approximate the problem.
- 2. Solve the approximation exactly.
- 3. **Optional:** Use the solution to improve the approximation, and repeat...

In Newton's method, approximation = 1st-order Taylor series $f(x+\Delta x) \approx f(x) + f'(x) \Delta x$

Say you have a nonlinear system of equations you don't know how to solve exactly: Find x such that f(x) = 0.

Start with a guess: \tilde{x} .

1. Approximate the problem near the guess:

 $0 = f(\tilde{x} + \Delta x) \approx f(\tilde{x}) + f'(\tilde{x}) \Delta x$

2. Solve the approximation exactly:

$$\Delta x = -(f'(\tilde{x}))^{-1} f(\tilde{x})$$

3. Improve the guess and repeat: $\tilde{x} \leftarrow \tilde{x} + \Delta x$

 $q_{n+1} =$ $v_{n+1} = v_n +$

- Pick a guess ($\tilde{\mathbf{q}}, \tilde{\mathbf{v}}$). A natural choice is to start with $\tilde{\mathbf{q}} = \mathbf{q}_n, \tilde{\mathbf{v}} = \mathbf{v}_n$.
- 1. Approximate the problem:

 $(\tilde{\mathbf{q}} + \Delta \mathbf{q}) =$

- $(\tilde{\mathbf{v}} + \Delta \mathbf{v}) = \mathbf{v}_n + \mathbf{N}$
- where $\mathbf{f}(\mathbf{\tilde{q}} + \Delta \mathbf{q}, \mathbf{\tilde{v}} + \Delta \mathbf{v}) \approx \mathbf{f}(\mathbf{v})$

2. Now the system is linear in (Δq , Δv). Plug into any linear solver. (Can simplify a bit first...)

Note: To carry this out, we must able to eva

•
$$q_n + v_{n+1} \Delta t$$

M⁻¹ $f(q_{n+1}, v_{n+1}) \Delta t$

$$\mathbf{q}_n + (\mathbf{\tilde{v}} + \Delta \mathbf{v}) \Delta t$$

$$\mathbf{M}^{-1} \mathbf{f}(\mathbf{\tilde{q}} + \Delta \mathbf{q}, \mathbf{\tilde{v}} + \Delta \mathbf{v}) \Delta t$$
$$(\mathbf{\tilde{q}}, \mathbf{\tilde{v}}) + \frac{\partial \mathbf{f}}{\partial \mathbf{q}}(\mathbf{\tilde{q}}, \mathbf{\tilde{v}}) \Delta \mathbf{q} + \frac{\partial \mathbf{f}}{\partial \mathbf{v}}(\mathbf{\tilde{q}}, \mathbf{\tilde{v}}) \Delta \mathbf{v}$$

aluate the **force Jacobians**
$$\frac{\partial \mathbf{f}}{\partial \mathbf{q}}$$
 and $\frac{\partial \mathbf{f}}{\partial \mathbf{v}}$.

What about the thing we did before?

- $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$ $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_n, \mathbf{v}_n) \Delta t$
- This is very close to something called symplectic Euler: $\mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{v}_{n+1} \Delta t$ $\mathbf{v}_{n+1} = \mathbf{v}_n + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_n, \mathbf{v}_{n+1}) \Delta t$
- Equivalent to previous scheme if \mathbf{f} is independent of \mathbf{v} (no damping forces)
- Approximately conserves energy (no artificial dissipation)! But only if it's stable
- Still only conditionally stable

Time integration summary

A big topic! Lots of other schemes: trapezoid, Newmark, RK4, BDF2, ...

General advice for graphics:

- 1. Start with symplectic Euler or its variant (easy to implement)
- 2. If simulation is unstable:
 - Reduce Δt
 - Or: Switch to an implicit method e.g. backward Euler
 - Or... Reformulate the problem!

Constraints

Another general problem-solving strategy: If a parameter being very large is causing problems, make it infinity instead.

What happens to the spring when $k_s \rightarrow \infty$?

No external force is enough to stretch the spring! $\varepsilon = \|\mathbf{x}_{ij}\|/\ell_0 - 1 = 0$. The spring just becomes a distance constraint.

 $\mathbf{f}_{ii} = -k_s \, \boldsymbol{\varepsilon} \, \hat{\mathbf{x}}_{ii}$

 $\|\mathbf{x}_{ij}\| = \ell_0$

 $\mathbf{f}_{ii} = \lambda \, \mathbf{\hat{x}}_{ii}$

Original equations of motion:

Constrained equations of motion:

- One new unknown: constraint force magnitude λ .
- One new equation: constraint $\|\mathbf{x}_{ij}\| = \ell_0$.

 λ is such that constraint remains satisfied over time...

 $\ddot{\mathbf{x}} = \mathbf{g} - m^{-1} k_s \varepsilon(\mathbf{x}) \, \hat{\mathbf{x}}$

 $\ddot{\mathbf{x}} = \mathbf{g} + m^{-1} \lambda \hat{\mathbf{x}}$ $\|\mathbf{x}_{ij}\| = \ell_0$

Sliding on a fixed line / curve / surface

Joints between rigid parts

Inextensible cloth

In general, we may have lots of constraints on the system, each of the form

Constraint force:

Force is orthogonal to constraint surface \Rightarrow only resists moving away from constraint, not along constraint

Exercise: verify that the inextensible spring constraint from before is of this form.

- $c_i(\mathbf{q}) = 0$

- $\mathbf{f}_{i} = \boldsymbol{\lambda}_{i} \, \nabla c_{i} \left(\mathbf{q} \right)$

How to actually do time stepping of such a system?

- Try to estimate instantaneous λ_i at each $t_n \Rightarrow drift$
- Replace with penalty force: $\lambda_i = -k c_i(\mathbf{q}) \Rightarrow$ soft constraints
- Choose parameterization that automatically satisfies constraints ⇒ reduced coordinates
- Treat constraint forces implicitly: solve for all λ_i 's so that all $c_i(\mathbf{q}_{n+1}) = 0$

- $c_j(\mathbf{q}) = 0$ $\mathbf{f}_j = \lambda_j \nabla c_j(\mathbf{q})$
- $\ddot{\mathbf{q}} = \mathbf{M}^{-1} \left(\mathbf{f}(\mathbf{q}, \, \dot{\mathbf{q}}) + \sum_{i} \mathbf{f}_{i} \right)$

Suppose we treat the external forces explicitly and the constraint forces implicitly. We can also eliminate \mathbf{v}_{n+1} :

> $\mathbf{q}_{n+1} = \mathbf{q}_{\text{pred}} +$ $C_{i}($

where $\mathbf{q}_{\text{pred}} = \mathbf{q}_n + \mathbf{v}_n \Delta t + \mathbf{M}^{-1} \mathbf{f}(\mathbf{q}_n, \mathbf{v}_n) \Delta t^2$. Solve for q_{n+1} and λ_1 , λ_2 , ... simultaneously using Newton's method

- $\ddot{\mathbf{q}} = \mathbf{M}^{-1} \left(\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}) + \sum \lambda_i \nabla C_i(\mathbf{q}) \right)$
 - $c_i(\mathbf{q}) = 0$

$$\sum \mathbf{M}^{-1} \boldsymbol{\lambda}_j \nabla c_j (\mathbf{q}_{n+1}) \Delta t^2$$

$$\mathbf{q}_{n+1}) = 0$$