
35. Stiff Systems 
 & Constraints

COL781: Computer Graphics

M
ül

le
r e

t a
l.

20
20

Assignment 4 partially posted

Due date?

Forward Euler & instability
For the ODE ẋ(t) = φ(t, x(t)), forward Euler:

xn+1 = xn + φ(tn, xn) Δt

First-order accurate but not always stable.

For ẋ = a x,

• Exact solution is bounded if Re(a) ≤ 0

• FE solution is bounded if a Δt + 1 ≤ 1

If a is (very) large, Δt needs to be (very) small!

| |

| |
Re x

Im x

t

x

W
itkin &

 B
araff 2001

Example: spring pendulum with rest length ℓ0, spring constant ks

• Period of horizontal swing: Tslow ≈

• Period of vertical vibration: Tfast ≈

Take ks → ∞. Then Tfast → 0, stable Δt → 0! 

We only care about dynamics on the scale of Tslow, 
but we’re forced to take time steps on the scale of Tfast ≪ Tslow.

In such cases, we say the problem is stiff. This happens a lot in graphics…

O(l0/g)
O(m/ks)

https://www.youtube.com/watch?v=2R9u-tjhRYA

https://www.youtube.com/watch?v=2R9u-tjhRYA

Backward Euler
In forward Euler, we evaluate the derivative φ(t, x) at tn. Let’s try tn+1:

xn+1 = xn + φ(tn+1, xn+1) Δt

This is an implicit method: unknown xn+1 appears on both sides!

• “Look before you leap”: Go to the point xn+1 where the derivative φ(t, x) matches the
step you just took, (xn+1 − xn)/Δt

• Can’t just plug in values. Solve with e.g. Newton’s method ⇒ more expensive!

Still only first-order accurate. So what’s the benefit?

Consider ẋ = a x again.

• Exact solution: x(t) = exp(a t) x(0)

• BE solution: xn+1 = xn + a xn+1 Δt 
⇒ xn+1 = (1 − a Δt)−1 xn

If a < 0, BE solution correctly decays for any Δt.

If a is imaginary, BE solution spirals inward: remains stable!

In fact BE is unconditionally stable (i.e. stable for any Δt) for 
all linear ODEs ẋ = A x.

W
itkin &

 B
araff 2001

W
itkin &

 B
araff 2001

How do we apply all this to our 2nd-order ODE, q̈ = M−1 f(q, q̇)?

Reduce to 1st-order:

q̇ = v 
v̇ = M−1 f(q, v)

Forward Euler:

qn+1 = qn + vn Δt 
vn+1 = vn + M−1 f(qn, vn) Δt

Backward Euler:

qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt

Example: Damped harmonic oscillator
ẍ = −kx − cẋ

Both are inaccurate, but backward Euler has a better failure mode: artificial dissipation

Forward Euler solution Backward Euler solution

OK, backward Euler gives us a system of equations in the unknown next state (qn+1, vn+1)

qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt

How do we actually solve this? 
 

Newton’s method

Newton’s method
An instance of a very general problem-solving strategy.

Say you have a problem you don’t know how to solve exactly:

1. Approximate the problem.

2. Solve the approximation exactly.

3. Optional: Use the solution to improve the approximation, and repeat… 

In Newton’s method, approximation = 1st-order Taylor series 
f (x+Δx) ≈ f (x) + f ’(x) Δx

Say you have a nonlinear system of equations you don’t know how to solve exactly: 
Find x such that f (x) = 0.

Start with a guess: x̃.

1. Approximate the problem near the guess:

0 = f (x̃ + Δx) ≈ f (x̃) + f ’(x̃) Δx

2. Solve the approximation exactly:

Δx = −(f ’(x̃))−1 f (x̃)

3. Improve the guess and repeat: x̃ ← x̃ + Δx

qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt

Pick a guess (q̃, ṽ). A natural choice is to start with q̃ = qn, ṽ = vn.

1. Approximate the problem:

(q̃+Δq) = qn + (ṽ+Δv) Δt

(ṽ+Δv) = vn + M−1 f(q̃+Δq, ṽ+Δv) Δt

where f(q̃+Δq, ṽ+Δv) ≈ f(q̃, ṽ) + (q̃, ṽ) Δq + (q̃, ṽ) Δv

2. Now the system is linear in (Δq, Δv). Plug into any linear solver. (Can simplify a bit first…) 

Note: To carry this out, we must able to evaluate the force Jacobians and .

∂f
∂q

∂f
∂v

∂f
∂q

∂f
∂v

What about the thing we did before?

qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn, vn) Δt

This is very close to something called symplectic Euler:

qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn, vn+1) Δt

• Equivalent to previous scheme if f is independent of v (no damping forces)

• Approximately conserves energy (no artificial dissipation)! But only if it’s stable

• Still only conditionally stable

Time integration summary
A big topic! Lots of other schemes: trapezoid, Newmark, RK4, BDF2, …

General advice for graphics:

1. Start with symplectic Euler or its variant (easy to implement)

2. If simulation is unstable:

• Reduce Δt

• Or: Switch to an implicit method e.g. backward Euler

• Or… Reformulate the problem!

Constraints
Another general problem-solving strategy: 
If a parameter being very large is causing problems, make it infinity instead.

What happens to the spring when ks → ∞?

fij = −ks ε x̂ij

No external force is enough to stretch the spring! ε = xij /ℓ0 − 1 = 0. The spring just
becomes a distance constraint.

xij = ℓ0

fij = λ x̂ij

∥ ∥

∥ ∥

Original equations of motion:

ẍ = g − m−1 ks ε(x) x̂

Constrained equations of motion:

ẍ = g + m−1 λ x̂ 
xij = ℓ0

• One new unknown: constraint force magnitude λ.

• One new equation: constraint xij = ℓ0.

λ is such that constraint remains satisfied over time…

∥ ∥

∥ ∥

Si
fa

ki
s

et
 a

l.
20

07

W
an

g
 e

t a
l.

20
19

G
o

ld
en

th
al

 e
t a

l.
20

07

Sliding on a fixed 
line / curve / surface

Joints between 
rigid parts Inextensible cloth

In general, we may have lots of constraints on the system, each of the form

cj (q) = 0

Constraint force:

fj = λj ∇cj (q)

Force is orthogonal to constraint surface 
⇒ only resists moving away from constraint, not along constraint 

Exercise: verify that the inextensible spring constraint from before is of this form.

c(q) = 0

∇c(q)

cj (q) = 0 
fj = λj ∇cj (q)

q̈ = M−1 (f(q, q̇) + ∑ fj)

How to actually do time stepping of such a system?

• Try to estimate instantaneous λj at each tn ⇒ drift

• Replace with penalty force: λj = −k cj (q) ⇒ soft constraints

• Choose parameterization that automatically satisfies constraints 
⇒ reduced coordinates

• Treat constraint forces implicitly: solve for all λj’s so that all cj (qn+1) = 0

C
line &

 Pai 2003
K

eenan C
rane

q̈ = M−1 (f(q, q̇) + ∑ λj ∇cj (q))

cj (q) = 0

Suppose we treat the external forces explicitly and the constraint forces implicitly.

We can also eliminate vn+1:

qn+1 = qpred + ∑ M−1 λj ∇cj (qn+1) Δt2 
cj (qn+1) = 0

where qpred = qn + vn Δt + M−1 f(qn, vn) Δt2.

Solve for qn+1 and λ1, λ2, … simultaneously using Newton’s method

