COL781: Computer Graphics

3.0 Stiff Systems - Constai

Assignment 4 partially posted

Due date?

Forward Euler \& instability

For the ODE $\dot{x}(t)=\phi(t, x(t))$, forward Euler:

$$
x_{n+1}=x_{n}+\phi\left(t_{n}, x_{n}\right) \Delta t
$$

First-order accurate but not always stable.

For $\dot{x}=a x$,

- Exact solution is bounded if $\operatorname{Re}(a) \leq 0$
- FE solution is bounded if $|a \Delta t+1| \leq 1$

If $|a|$ is (very) large, Δt needs to be (very) small!

Example: spring pendulum with rest length ℓ_{0}, spring constant k_{s}

- Period of horizontal swing: $T_{\text {slow }} \approx O\left(\sqrt{l_{0} / g}\right)$
- Period of vertical vibration: $T_{\text {fast }} \approx O\left(\sqrt{m / k_{s}}\right)$

Take $k_{s} \rightarrow \infty$. Then $T_{\text {fast }} \rightarrow 0$, stable $\Delta t \rightarrow 0$!

> We only care about dynamics on the scale of $T_{\text {slow }}$ but we're forced to take time steps on the scale of $T_{\text {fast }} \ll T_{\text {slow }}$.

In such cases, we say the problem is stiff. This happens a lot in graphics...

Backward Euler

In forward Euler, we evaluate the derivative $\boldsymbol{\phi}(t, x)$ at t_{n}. Let's try t_{n+1} :

$$
x_{n+1}=x_{n}+\phi\left(t_{n+1}, x_{n+1}\right) \Delta t
$$

This is an implicit method: unknown x_{n+1} appears on both sides!

- "Look before you leap": Go to the point x_{n+1} where the derivative $\phi(t, x)$ matches the step you just took, $\left(x_{n+1}-x_{n}\right) / \Delta t$
- Can't just plug in values. Solve with e.g. Newton's method \Rightarrow more expensive!

Still only first-order accurate. So what's the benefit?

Consider $\dot{x}=a x$ again.

- Exact solution: $x(t)=\exp (a t) x(0)$
- BE solution: $x_{n+1}=x_{n}+a x_{n+1} \Delta t$ $\Rightarrow x_{n+1}=(1-a \Delta t)^{-1} x_{n}$

If $a<0, B E$ solution correctly decays for any Δt.
If a is imaginary, BE solution spirals inward: remains stable! In fact $B E$ is unconditionally stable (i.e. stable for any Δt) for all linear ODEs $\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}$.

How do we apply all this to our 2nd-order ODE, $\ddot{\mathbf{q}}=\mathbf{M}^{-1} \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})$?
Reduce to 1st-order:

$$
\begin{aligned}
& \dot{\mathbf{q}}=\mathbf{v} \\
& \dot{\mathbf{v}}=\mathbf{M}^{-1} f(\mathbf{q}, \mathbf{v})
\end{aligned}
$$

Forward Euler:

$$
\begin{aligned}
& \mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n} \Delta t \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t
\end{aligned}
$$

Backward Euler:

$$
\begin{aligned}
& \mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right) \Delta t
\end{aligned}
$$

Example: Damped harmonic oscillator

$$
\ddot{x}=-k x-c \dot{x}
$$

Forward Euler solution

Both are inaccurate, but backward Euler has a better failure mode: artificial dissipation

OK, backward Euler gives us a system of equations in the unknown next state ($\mathbf{q}_{n+1}, \mathbf{v}_{n+1}$)

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
\mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right) \Delta t
\end{gathered}
$$

How do we actually solve this?

Newton's method

Newton's method

An instance of a very general problem-solving strategy.
Say you have a problem you don't know how to solve exactly:

1. Approximate the problem.
2. Solve the approximation exactly.
3. Optional: Use the solution to improve the approximation, and repeat...

In Newton's method, approximation $=1$ st-order Taylor series $f(x+\Delta x) \approx f(x)+f^{\prime}(x) \Delta x$

Say you have a nonlinear system of equations you don't know how to solve exactly: Find x such that $f(x)=0$.

Start with a guess: \tilde{x}.

1. Approximate the problem near the guess:

$$
0=f(\tilde{x}+\Delta x) \approx f(\tilde{x})+f^{\prime}(\tilde{x}) \Delta x
$$

2. Solve the approximation exactly:

$$
\Delta x=-\left(f^{\prime}(\tilde{x})\right)^{-1} f(\tilde{x})
$$

3. Improve the guess and repeat: $\tilde{x} \leftarrow \tilde{x}+\Delta x$

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
\mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n+1}, \mathbf{v}_{n+1}\right) \Delta t
\end{gathered}
$$

Pick a guess ($\tilde{\mathbf{q}}, \tilde{\mathbf{v}}$). A natural choice is to start with $\tilde{\mathbf{q}}=\mathbf{q}_{n}, \tilde{\mathbf{v}}=\mathbf{v}_{n}$.

1. Approximate the problem:

$$
\begin{gathered}
(\tilde{\mathbf{q}}+\Delta \mathbf{q})=\mathbf{q}_{n}+(\tilde{\mathbf{v}}+\Delta \mathbf{v}) \Delta t \\
(\tilde{\mathbf{v}}+\Delta \mathbf{v})=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}(\tilde{\mathbf{q}}+\Delta \mathbf{q}, \tilde{\mathbf{v}}+\Delta \mathbf{v}) \Delta t \\
\text { where } f(\tilde{\mathbf{q}}+\Delta \mathbf{q}, \tilde{\mathbf{v}}+\Delta \mathbf{v}) \approx \mathbf{f}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}})+\frac{\partial \mathbf{f}}{\partial \mathbf{q}}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}}) \Delta \mathbf{q}+\frac{\partial \mathbf{f}}{\partial \mathbf{v}}(\tilde{\mathbf{q}}, \tilde{\mathbf{v}}) \Delta \mathbf{v}
\end{gathered}
$$

2. Now the system is linear in $(\Delta \mathbf{q}, \Delta \mathbf{v})$. Plug into any linear solver. (Can simplify a bit first...)

Note: To carry this out, we must able to evaluate the force Jacobians $\frac{\partial \mathrm{f}}{\partial \mathrm{q}}$ and $\frac{\partial \mathrm{f}}{\partial \mathrm{v}}$.

What about the thing we did before?

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
\mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t
\end{gathered}
$$

This is very close to something called symplectic Euler:

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{n}+\mathbf{v}_{n+1} \Delta t \\
\mathbf{v}_{n+1}=\mathbf{v}_{n}+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n+1}\right) \Delta t
\end{gathered}
$$

- Equivalent to previous scheme if \mathbf{f} is independent of \mathbf{v} (no damping forces)
- Approximately conserves energy (no artificial dissipation)! But only if it's stable
- Still only conditionally stable

Time integration summary

A big topic! Lots of other schemes: trapezoid, Newmark, RK4, BDF2, ...
General advice for graphics:

1. Start with symplectic Euler or its variant (easy to implement)
2. If simulation is unstable:

- Reduce Δt
- Or: Switch to an implicit method e.g. backward Euler
- Or... Reformulate the problem!

Constraints

Another general problem-solving strategy: If a parameter being very large is causing problems, make it infinity instead.

What happens to the spring when $k_{s} \rightarrow \infty$?

$$
\mathbf{f}_{i j}=-k_{s} \varepsilon \hat{\mathbf{x}}_{i j}
$$

No external force is enough to stretch the spring! $\varepsilon=\left\|\mathbf{x}_{i j}\right\| / \ell_{0}-1=0$. The spring just becomes a distance constraint.

$$
\begin{gathered}
\left\|\mathbf{x}_{i j}\right\|=\ell_{0} \\
\mathbf{f}_{i j}=\lambda \hat{\mathbf{x}}_{i j}
\end{gathered}
$$

Original equations of motion:

$$
\ddot{\mathbf{x}}=\mathbf{g}-m^{-1} k_{s} \varepsilon(\mathbf{x}) \hat{\mathbf{x}}
$$

Constrained equations of motion:

$$
\begin{gathered}
\ddot{\mathbf{x}}=\underset{\mathrm{g}}{\mathbf{g}+m^{-1} \lambda \hat{\mathbf{x}}} \\
\left\|\mathbf{x}_{i j}\right\|=\ell_{0}
\end{gathered}
$$

- One new unknown: constraint force magnitude λ.
- One new equation: constraint $\left\|\mathrm{x}_{i j}\right\|=\ell_{0}$.
λ is such that constraint remains satisfied over time...

Sliding on a fixed line / curve / surface

Joints between rigid parts

Inextensible cloth

In general, we may have lots of constraints on the system, each of the form

$$
c_{j}(\mathbf{q})=0
$$

Constraint force:

$$
\mathbf{f}_{j}=\lambda_{j} \nabla c_{j}(\mathbf{q})
$$

Force is orthogonal to constraint surface
\Rightarrow only resists moving away from constraint, not along constraint

Exercise: verify that the inextensible spring constraint from before is of this form.

$$
\begin{gathered}
c_{j}(\mathbf{q})=0 \\
\mathbf{f}_{j}=\lambda_{j} \nabla c_{j}(\mathbf{q}) \\
\ddot{\mathbf{q}}=\mathbf{M}^{-1}\left(\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})+\sum \mathbf{f}_{j}\right)
\end{gathered}
$$

How to actually do time stepping of such a system?

- Try to estimate instantaneous λ_{j} at each $t_{n} \Rightarrow$ drift
- Replace with penalty force: $\lambda_{j}=-k c_{j}(\mathbf{q}) \Rightarrow$ soft constraints
- Choose parameterization that automatically satisfies constraints \Rightarrow reduced coordinates
- Treat constraint forces implicitly: solve for all λ_{j}^{\prime} s so that all $c_{j}\left(\mathbf{q}_{n+1}\right)=0$

$$
\begin{gathered}
\ddot{\mathbf{q}}=\mathbf{M}^{-1}\left(\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}})+\sum \lambda_{j} \nabla c_{j}(\mathbf{q})\right) \\
c_{j}(\mathbf{q})=0
\end{gathered}
$$

Suppose we treat the external forces explicitly and the constraint forces implicitly. We can also eliminate \mathbf{v}_{n+1} :

$$
\begin{gathered}
\mathbf{q}_{n+1}=\mathbf{q}_{\text {pred }}+\sum \sum^{-1} \mathbf{M}_{j} \nabla c_{j}\left(\mathbf{q}_{n+1}\right) \Delta t^{2} \\
c_{j}\left(\mathbf{q}_{n+1}\right)=0
\end{gathered}
$$

where $\mathbf{q}_{\text {pred }}=\mathbf{q}_{n}+\mathbf{v}_{n} \Delta t+\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{q}_{n}, \mathbf{v}_{n}\right) \Delta t^{2}$.
Solve for \mathbf{q}_{n+1} and $\lambda_{1}, \lambda_{2}, \ldots$ simultaneously using Newton's method

