
35. Stiff Systems 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Assignment 4 partially posted


Due date?



Forward Euler & instability
For the ODE ẋ(t) = φ(t, x(t)), forward Euler:


xn+1 = xn + φ(tn, xn) Δt


First-order accurate but not always stable.


For ẋ = a x,


• Exact solution is bounded if Re(a) ≤ 0


• FE solution is bounded if a Δt + 1  ≤ 1


If a  is (very) large, Δt needs to be (very) small!
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Example: spring pendulum with rest length ℓ0, spring constant ks


• Period of horizontal swing: Tslow ≈ 


• Period of vertical vibration: Tfast ≈ 


Take ks → ∞. Then Tfast → 0, stable Δt → 0! 

We only care about dynamics on the scale of Tslow, 
but we’re forced to take time steps on the scale of Tfast ≪ Tslow.


In such cases, we say the problem is stiff. This happens a lot in graphics…

O( l0/g)
O( m/ks)



https://www.youtube.com/watch?v=2R9u-tjhRYA

https://www.youtube.com/watch?v=2R9u-tjhRYA


Backward Euler
In forward Euler, we evaluate the derivative φ(t, x) at tn. Let’s try tn+1:


xn+1 = xn + φ(tn+1, xn+1) Δt


This is an implicit method: unknown xn+1 appears on both sides!


• “Look before you leap”: Go to the point xn+1 where the derivative φ(t, x) matches the 
step you just took, (xn+1 − xn)/Δt


• Can’t just plug in values. Solve with e.g. Newton’s method ⇒ more expensive!


Still only first-order accurate. So what’s the benefit?



Consider ẋ = a x again.


• Exact solution: x(t) = exp(a t) x(0)


• BE solution: xn+1 = xn + a xn+1 Δt 
⇒ xn+1 = (1 − a Δt)−1 xn


If a < 0, BE solution correctly decays for any Δt.


If a is imaginary, BE solution spirals inward: remains stable!


In fact BE is unconditionally stable (i.e. stable for any Δt) for 
all linear ODEs ẋ = A x.
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How do we apply all this to our 2nd-order ODE, q̈ = M−1 f(q, q̇)?


Reduce to 1st-order:


q̇ = v 
v̇ = M−1 f(q, v)


Forward Euler:


qn+1 = qn + vn Δt 
vn+1 = vn + M−1 f(qn, vn) Δt


Backward Euler:


qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt



Example: Damped harmonic oscillator
ẍ = −kx − cẋ


Both are inaccurate, but backward Euler has a better failure mode: artificial dissipation

Forward Euler solution Backward Euler solution



OK, backward Euler gives us a system of equations in the unknown next state (qn+1, vn+1)


qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt


How do we actually solve this? 
 

Newton’s method



Newton’s method
An instance of a very general problem-solving strategy.


Say you have a problem you don’t know how to solve exactly:


1. Approximate the problem.


2. Solve the approximation exactly.


3. Optional: Use the solution to improve the approximation, and repeat… 

In Newton’s method, approximation = 1st-order Taylor series 
f (x+Δx) ≈ f (x) + f ’(x) Δx



Say you have a nonlinear system of equations you don’t know how to solve exactly: 
Find x such that f (x) = 0.


Start with a guess:  x̃.


1. Approximate the problem near the guess:


0 = f (x̃ + Δx) ≈ f (x̃) + f ’(x̃) Δx


2. Solve the approximation exactly:


Δx = −(f ’(x̃))−1 f (x̃)


3. Improve the guess and repeat:  x̃ ← x̃ + Δx



qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn+1, vn+1) Δt


Pick a guess (q̃, ṽ). A natural choice is to start with q̃ = qn, ṽ = vn.


1. Approximate the problem:


(q̃+Δq) = qn + (ṽ+Δv) Δt


(ṽ+Δv) = vn + M−1 f(q̃+Δq, ṽ+Δv) Δt


where f(q̃+Δq, ṽ+Δv) ≈ f(q̃, ṽ) + (q̃, ṽ) Δq + (q̃, ṽ) Δv


2. Now the system is linear in (Δq, Δv). Plug into any linear solver. (Can simplify a bit first…) 

Note: To carry this out, we must able to evaluate the force Jacobians  and .
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What about the thing we did before?


qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn, vn) Δt


This is very close to something called symplectic Euler:


qn+1 = qn + vn+1 Δt 
vn+1 = vn + M−1 f(qn, vn+1) Δt


• Equivalent to previous scheme if f is independent of v (no damping forces)


• Approximately conserves energy (no artificial dissipation)! But only if it’s stable


• Still only conditionally stable



Time integration summary
A big topic! Lots of other schemes: trapezoid, Newmark, RK4, BDF2, …


General advice for graphics:


1. Start with symplectic Euler or its variant (easy to implement)


2. If simulation is unstable:


• Reduce Δt


• Or: Switch to an implicit method e.g. backward Euler


• Or… Reformulate the problem!



Constraints
Another general problem-solving strategy: 
If a parameter being very large is causing problems, make it infinity instead.


What happens to the spring when ks → ∞?


fij = −ks ε x̂ij


No external force is enough to stretch the spring! ε = xij /ℓ0 − 1 = 0. The spring just 
becomes a distance constraint.


xij  = ℓ0


fij = λ x̂ij

∥ ∥

∥ ∥



Original equations of motion:


ẍ = g − m−1 ks ε(x) x̂


Constrained equations of motion:


ẍ = g + m−1 λ x̂ 
xij  = ℓ0


• One new unknown: constraint force magnitude λ.


• One new equation: constraint xij  = ℓ0.


λ is such that constraint remains satisfied over time…

∥ ∥

∥ ∥
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Sliding on a fixed 
line / curve / surface

Joints between 
rigid parts Inextensible cloth



In general, we may have lots of constraints on the system, each of the form


cj (q) = 0


Constraint force:


fj = λj ∇cj (q)


Force is orthogonal to constraint surface 
⇒ only resists moving away from constraint, not along constraint 

Exercise: verify that the inextensible spring constraint from before is of this form.

c(q) = 0

∇c(q)



cj (q) = 0 
fj = λj ∇cj (q)


q̈ = M−1 ( f(q, q̇) + ∑ fj )


How to actually do time stepping of such a system?


• Try to estimate instantaneous λj at each tn  ⇒  drift


• Replace with penalty force: λj = −k cj (q)  ⇒  soft constraints


• Choose parameterization that automatically satisfies constraints 
⇒  reduced coordinates


• Treat constraint forces implicitly: solve for all λj’s so that all cj (qn+1) = 0
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q̈ = M−1 ( f(q, q̇) + ∑ λj ∇cj (q) )


cj (q) = 0


Suppose we treat the external forces explicitly and the constraint forces implicitly.


We can also eliminate vn+1:


qn+1 = qpred + ∑ M−1 λj ∇cj (qn+1) Δt2 
cj (qn+1) = 0


where qpred = qn + vn Δt + M−1 f(qn, vn) Δt2.


Solve for qn+1 and λ1, λ2, … simultaneously using Newton’s method


