-

e

\ _omom HE 1o A9]IDIN

-

—

et

el
(

/-‘
V-4 S

ol ©

.

Syst

- ?}"

u outer

: C

COL781




Assignment 4 partially posted

Due date?




Forward Euler & instability

For the ODE x(t) = ¢(t, x(t)), forward Euler:

Xne1 = Xp + @(tn, xp) At
First-order accurate but not always stable.
For X = a x,

® Exact solution is bounded if Re(a) < 0

® FE solution is bounded it [aAt+ 1] < 1

it |al] is (very) large, At needs to be (very) small!
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Example: spring pendulum with rest length #o, spring constant ks

® Period of horizontal swing: Tgow = O(\/lo/g)

® Period of vertical vibration: Tt = 0(\/m/ks)

Take ks = oo. Then T = 0O, stable At — 0!

We only care about dynamics on the scale of Tgjow,
but we're forced to take time steps on the scale of Tt < Tsjow-

In such cases, we say the problem is stiff. This happens a lot in graphics...



https://www.youtube.com/watch?v=2R9u-tjhRYA



https://www.youtube.com/watch?v=2R9u-tjhRYA

Backward Euler

In forward Euler, we evaluate the derivative @(t, x) at t,. Let's try tp+1:
Xn+1 = Xn T ¢(tn+1, Xn+1) At
This is an method: unknown x,+1 appears on both sides!

® "Look before you leap”: Go to the point x,+1 where the derivative ¢(t, x) matches the
step you just took, (X,+1 — Xxp)/At

® Can't just plug in values. Solve with e.g. Newton’s method = more expensivel

Still only first-order accurate. So what's the benefit?



Consider x = ax again.
@ E . . — Correct Solution: x(h)=e™
xact solution: x(t) = exp(a t) x(0) ]
Implicit Euler Step: x(h)= ——
1 +hk
" xplicit Euler Step: x(h) =1—hk
® BE solution: x,+1 = Xp + a Xp+1 At Explicit Euler Step:  x(/)
\

= X,+1 = (1 — aAt)~1 x,

It a < O, BE solution correctly decays for any At.
It a is imaginary, BE solution spirals inward: remains stablel!

In fact BE is unconditionally stable (i.e. stable for any At) for
all linear ODEs x = A x.
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How do we apply all this to our 2nd-order ODE, q = M-1(q, q)7

Reduce to 1st-order:

Forward Euler:

Backward Euler:



Example: Damped harmonic oscillator

X = —kx — cx
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Forward Euler solution Backward Euler solution

Both are inaccurate, but backward Euler has a better failure mode: artiticial dissipation



OK, backward Euler gives us a system of equations in the unknown next state (qn+1, Vn+1)

Qn+1 = Qn + Vpe1 At
Vh+1 = Vp T M-1 f(qn+1, Vn+1) At

How do we actually solve this?

Newton’s method



Newton’s method

An instance of a very general problem-solving strategy.
Say you have a problem you don’t know how to solve exactly:
1. the problem.

2. Solve the approximation

3. Optional: Use the solution to the approximation, and repeat...

In Newton’s method, approximation = 1st-order Taylor series (x.. flx)
Fix+AX) ~ F) + F/(x) Ax o




Say you have a nonlinear system of equations you don’t know how to solve exactly:

Find x such that 7(x) = O.

~Y

Start with a guess: .

1. Approximate the problem near the guess:
0 =1k +Ax) = f(x) + f'(x) Ax

2. Solve the approximation exactly:

3. Improve the guess and repeat: X « X + Ax

A

(Xn'f(xn))




dn+1 = n + Vn+1 At
v”+1 — Vn + IVI_,I f(qn-|—'], v”+']) At

Pick a guess (q, V). A natural choice is to start with q = qn, V = v,.
1. Approximate the problem:
(q+/Aq) = qn + (V+AvV) At

(V+AV) = v, + M1 f(q+/\q, V+/\v) At

of ,~ ~
av(q, V) Av

where f(§+/q, ¥+Av) ~ (g, V) 32(5" ¥) Aq -

2. Now the system is linear in (Aq, Av). Plug into any linear solver. (Can simplity a bit first...)

Note: To carry this out, we must able to evaluate the force Jacobians g—(fl and g—i.



What about the thing we did before?

Qn+1 = Qn + Vpe1 At
Vph+1 = Vp T M- f(qm Vn) At

This is very close to something calleo

Adn+1 = 9n + V1 At
Vh+t1 = Vp T+ M- f(qm Vn+1) At

® Equivalent to previous scheme it f is independent of v (ho damping forces)
® Approximately conserves energy (no artiticial dissipation)! only if it's stable

e Still only conditionally stable



Time integration summary

A big topic! Lots of other schemes: trapezoid, Newmark, RK4, BDF2, ... I.

General advice for graphics:

1. Start with symplectic Euler or its variant (easy to implement)
2. It simulation is unstable:

® Reduce At

® Or: Switch to an implicit method e.g. backward Euler

® Or... Reformulate the problem!
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Constraints

Another general problem-solving strategy:
f a parameter being very large is causing problems, make it infinity instead.

What happens to the spring when ks = o7

f,‘j = —I<38)lz,'j

No external force is enough to stretch the spring! € = ||x;||/€0 — 1 = 0. The spring just
becomes a distance constraint.

[|xl| = Zo



Original equations of motion:
X =g — mksex) X

Constrained equations of motion:

X=g+m1AX

1] = €o
® One new unknown: constraint force magnitude A.
® One new equation: constraint ||x;|| = Zo.

A is such that constraint remains satisfied over time...



Sliding on a fixed
line / curve / surface
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In general, we may have lots of constraints on the system, each of the form

ci(q) =0 — //
Constraint force: w
fj = Aj VCj (q) \-Q——CKC\\ _ 0~

Force is orthogonal to constraint surface

= only resists moving away from constraint, not along constraint x

verity that the inextensible spring constraint from betfore is of this form.




ci(q) =0
= Aj VCj (q)

§=M"(f(q, q) + f)

f;

How to actually do time stepping of such a system?

® Try to estimate instantaneous A; at each t, = drift
® Replace with penalty force: Aj= —kcj(q) = soft constraints

® Choose parameterization that automatically satisties constraints
= reduced coordinates

® Treat constraint forces implicitly: solve for all A's so that all ¢j(gn+1) = O
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q=M-"(f(q, q) + 2 A Vg(q))
ci(q) =0
Suppose we treat the external forces explicitly and the constraint forces implicitly.

We can also eliminate v,.1:

AQn+1 = qpred + Z M- Aj vcj (qn+1) At
C (qn+1) =0

where qped = qn + v, At + M-11(q,, v,) At2.

Solve for g,+1 and Ay, A, ... simultaneously using Newton’s method



