
34. Mass-Spring 
      Systems
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Interacting particles give us much more interesting dynamics…

We can easily implement this with time stepping: 

• For each particle i, compute total force fi (t) 

• For each particle i, compute new state 

vi (t + Δt) = vi (t) + mi−1 fi (t) Δt 
xi (t + Δt) = xi (t) + vi (t + Δt) Δt 

But this may be a bit inconvenient to analyze 
mathematically: 

Each fi (t) could depend on x1(t), v1(t), x2(t), v2(t), …



Simpler with generalized coordinates: 

q = ,    v =  

Then 

 

Now we’re solving for the evolution of a single (though 3n-dimensional!) vector
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Example: A small mass-spring system

 =  

Force due to spring between particles 2 and 3:  

(of course, f32 = −f23) 

Total force on system =  force due to each spring

f1(t, q, v)
f2(t, q, v)

⋮
f6(t, q, v)
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f21 + f23 + f25
⋮

f64

0
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⋮
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Per-particle formulation: 

 = mi−1 fi (t, …)    ∀i = 1, 2, … 

⇓ 

vi (t + Δt) = vi (t) + mi−1 fi (t, …) Δt    ∀i = 1, 2, … 
xi (t + Δt) = xi (t) + vi (t + Δt) Δt    ∀i = 1, 2, … 

Careful not to update x1, v1 before computing 
f2, in case it depends on them 

d2xi(t)
dt2

Generalized coordinates: 

 = M−1 f(t, q, v) 

⇓ 

v(t + Δt) = v(t) + M−1 f(t, q, v) Δt 
q(t + Δt) = q(t) + v(t + Δt) Δt 

Simple! And generalizes to other things 
(e.g. rigid bodies) with few changes

d2q(t)
dt2



Mass-spring systems
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Recall springs in 1 dimension from physics classes. 

Hooke’s law: force is proportional to displacement 

F = −k x = −k (ℓ − ℓ0) 

Potential energy: 

U = ½ k (ℓ − ℓ0)2 

In fact F = −dU/dℓ

ℓ0



In 3D, suppose a spring connects particles i and j. What should be the force fij on i due to j? 

Let’s first define the potential: 

U = ½ k ( xi − xj  − ℓ0)2 

Then fij = −∂U/∂xi ⇒ 

fij = −k ( xi − xj  − ℓ0)  

= −k ( xij  − ℓ0) x̂ij 

Similarly fji = −∂U/∂xj (but it’s also just −fij) 

Exercise: 1. Derive this expression from −∂U/∂xi. 
2. (Optional) Look for high-level steps so you don’t have to differentiate componentwise.

∥ ∥

∥ ∥
xi − xj

∥xi − xj∥

∥ ∥



Puzzle: 

Suppose I model a stretchy rope (e.g. a rubber band) as a spring of stiffness k. 

Now I want to allow it bend, so I replace it with two springs of half the length. 
What should be the stiffness of these springs to get the same stretchiness?



Different “resolutions” have different 
absolute change in length… 

but same relative length change! 
This is called strain 

ε =  =  

For more consistent behaviour, define spring force in terms of strain: 

U = ½ k ℓ0 ε2 

fij = −k ε x̂ij

Δl
l0

∥xi − xj∥
l0

− 1
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Problem: Real springs dissipate energy and don’t keep 
oscillating forever! 

Bad idea: Just add a force that opposes all velocities 

fi = −kd vi 

Sometimes called “ether drag” 

• Particles look like they’re suspended in a viscous medium 

• Should a rusty spring fall slower than a clean spring? 

Good idea: Only oppose relative velocities along the spring 

fij = −kd  x̂ij(
vi − vj

l0
⋅ x̂ij)



Force due to a spring, finally: 

fij = −ks ε x̂ij − kd ε̇ x̂ij 

where 

• Strain ε =  

• Strain rate ε̇ =  =  

• Spring constant ks ≥ 0 

• Damping constant kd ≥ 0

∥xi − xj∥
l0

− 1

dε
dt

vi − vj

l0
⋅ x̂ij

Actually, this term can also be 
derived as −∂R/∂vi for some 

dissipation potential R = ½ kd ε2̇!
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Here’s a problem you’ll encounter: 

Sometimes your simulation 
blows up for no apparent reason! 

Why?
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Time integration



We have an ordinary differential equation 

q̈ = M−1 f(t, q, q̇) 

and are trying to solve an initial value problem: 

Given q(0), q̇(0), find q(t), q̇(t) for t > 0. 

Let’s start by understanding this for a simple 1st-order ODE: 

ẋ(t) = φ(t, x(t)) 

Like a leaf in a river: if you are at position x at time t, 
your velocity is φ(t, x)
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Taylor series: x(t + Δt) = x(t) + ẋ(t) Δt + O(Δt2) 

ẋ(t) = φ(t, x(t)), so 

xn+1 = xn + φ(tn, xn) Δt 

where tn = n Δt, and xn = computed estimate of x(tn) 

This is called the (forward) Euler method 

Idea: measure your current velocity φ(tn, xn), then just move forward 
with that velocity for time Δt 

Error in each time step: O(Δt2) 
Error in solution at fixed time T = O(Δt): first-order accurate
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Suppose the ODE is ẋ = a x. 

• Exact solution: x(t) = exp(a t) x(0) 

• FE solution: xn+1 = xn + a xn Δt = (1 + a Δt) xn 

For any a < 0, exact solution decays smoothly. 
But if a Δt  > 2, FE solution diverges! 

If a is imaginary, exact solution moves in a circle. 
But for any Δt, FE solution spirals outward!
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What does this mean in practice? 

• The problem is not accuracy (error after n steps) but stability 
(whether xn  stays bounded) 

• When forces vary rapidly with x, Δt needs to be much smaller 

• Rule of thumb: If time scale of decay / oscillations ≪ Δt, 
expect problems! 

Not good: if we have even a single stiff spring in the system 
(ks or kd very large), we will have to take tiny time steps
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