COL781: Computer Graphics 32. Skinning

Recap: Skeletal animation

We have a set of animation controls that determine the character's pose:

- Forward kinematics: joint angles
- Inverse kinematics: end effector transformations

Based on these we can compute the transformations of all the body parts.

Keyframe animation

Animator specifies character pose (i.e. values of animation controls) at specific keyframes.
How to interpolate to arbitrary times?

Recall splines: piecewise polynomial functions with some continuity/differentiability

- Piecewise linear interpolation

$$
q(t)=\frac{t_{i+1}-t}{t_{i+1}-t_{i}} q_{i}+\frac{t-t_{i}}{t_{i+1}-t_{i}} q_{i+1}
$$

- Cubic Hermite spline:
assume $q(t)=a t^{3}+b t^{2}+c t+d$, solve for coefficients so that

$$
\begin{aligned}
q\left(t_{i}\right) & =q_{i}, q\left(t_{i+1}\right)=q_{i+1}, \\
q^{\prime}\left(t_{i}\right) & =m_{i}, q^{\prime}\left(t_{i+1}\right)=m_{i+1}
\end{aligned}
$$

Closed-form solution:

$$
q(t)=\left(2 t^{3}-3 t^{2}+1\right) q_{i}+\left(t^{3}-2 t^{2}+t\right) m_{i}+\left(-2 t^{3}+3 t^{2}\right) q_{i+1}+\left(t^{3}-t^{2}\right) m_{i+1}
$$

What if derivatives are not given, but still want a C^{1} curve?

Catmull-Rom splines

Estimate derivatives from neighbouring points, e.g.:

$$
m_{i}=\frac{q_{i+1}-q_{i-1}}{t_{i+1}-t_{i-1}}
$$

In fact, any estimate that only uses data at points $i-1, i, i+1$ will give C^{1} continuity. (Why?)

Rigid bone transformations may be sufficient for robots and toys with rigid parts.
What about organic characters?

Skinning

uоsqoəer गə|甘

Each vertex \mathbf{v}_{i} may be affected by transformations from multiple bones.
Linear blend skinning: Final position is weighted average

$$
\mathbf{v}_{i}^{\prime}=\sum_{\text {bone } j} w_{i j} \mathbf{T}_{j}\left[\begin{array}{c}
\mathbf{v}_{i} \\
1
\end{array}\right]
$$

Of course, for a weighted average, we should have $\sum_{j} w_{i j}=1$ for each vertex

Wait, to apply bone transformation \mathbf{T}_{j}, we need to have vertex \mathbf{v}_{i} in the bone's coordinate frame...

$$
\mathbf{v}_{i}^{\prime}=\sum_{\text {bone } j} w_{i j} \mathbf{T}_{j} \mathbf{B}_{j}^{-1}\left[\begin{array}{c}
\mathbf{v}_{i} \\
1
\end{array}\right]
$$

- \mathbf{B}_{j} : bone transformation in bind pose
- \mathbf{T}_{j} : bone transformation in deformed pose

From now on, let's just call the product \mathbf{T}_{j}

Example: Skinning weights

How to get the weights?

One common way: User paints them manually on the mesh!
Various automatic methods:

- Envelopes: manually specified region of influence

- Bone heat (Baran \& Popovic 2007): assign vertices to closest visible bone, then apply smoothing (heat diffusion)
- Weights optimized for smoothness, locality, monotonicity, etc., e.g. bounded biharmonic weights (Jacobson et al. 2011)

Candy wrapper effect

Problems with linear blending

Root cause: linearly averaging two rigid transformations does not give a rigid transformation!

How to interpolate rigid transformations (translation + rotation)?

Recap: Quaternions

Quaternions are quantities of the form $\mathbf{q}=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ where

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathbf{k}^{2}=\mathrm{ijk}=-1
$$

Useful to separate into scalar part and vector part: $\mathbf{q}=(a, \mathbf{u})$
Any unit quaternion represents a 3D rotation.
Rotation by angle θ about axis $\mathbf{u}: \mathbf{q}=(\cos (\theta / 2), \mathbf{u} \sin (\theta / 2))$
How to rotate a vector $\mathbf{v}=(x, y, z) \in \mathbb{R}^{3}$?

- Interpret as a purely imaginary quaternion $\mathbf{v}=0+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
- Then the rotated vector is $\mathbf{q v q}{ }^{*}$

Dual quaternions

A dual quaternion is a quantity of the form

$$
\hat{\mathbf{q}}=\mathbf{q}_{0}+\varepsilon \mathbf{q}_{\varepsilon}
$$

where \mathbf{q}_{0} and \mathbf{q}_{ε} are quaternions, and $\varepsilon^{2}=0$.

- Multiplication: just drop all ε^{2} terms

$$
\left(\mathbf{p}_{0}+\varepsilon \mathbf{p}_{\varepsilon}\right)\left(\mathbf{q}_{0}+\varepsilon \mathbf{q}_{\varepsilon}\right)=\mathbf{p}_{0} \mathbf{q}_{0}+\varepsilon\left(\mathbf{p}_{0} \mathbf{q}_{\varepsilon}+\mathbf{p}_{\varepsilon} \mathbf{q}_{0}\right)
$$

- Dual conjugate: $\overline{\hat{\mathbf{q}}}=\mathbf{q}_{0}-\varepsilon \mathbf{q}_{\varepsilon}$, quaternion conjugate: $\hat{\mathbf{q}}^{\star}=\mathbf{q}_{0}{ }^{\star}+\varepsilon \mathbf{q}_{\varepsilon^{*}}$
- Norm: $\|\hat{\mathbf{q}}\|=\sqrt{\hat{\mathbf{q}}^{*} \hat{\mathbf{q}}}=\left\|\mathbf{q}_{0}\right\|+\epsilon \frac{\left\langle\mathbf{q}_{0}, \mathbf{q}_{\epsilon}\right\rangle}{\left\|\mathbf{q}_{0}\right\|}$

Any unit dual quaternion represents a rigid transformation.

- Rotation by quaternion $\mathbf{q}: \hat{\mathbf{q}}=\mathbf{q}+\varepsilon \mathbf{0}$
- Translation by vector $\mathbf{t}: \hat{\mathbf{t}}=1+\frac{\epsilon}{2} \mathbf{t}$
- Rotation then translation: $\hat{\mathbf{t}} \mathbf{q}=\mathbf{q}+\frac{\epsilon}{2} \mathbf{t q}$

How to transform a point $\mathbf{p}=(x, y, z) \in \mathbb{R}^{3}$?

- Interpret as a dual quaternion $\hat{\mathbf{p}}=1+\boldsymbol{\varepsilon}(x i+y j+z k)$
- Then the transformed point is $\hat{\mathbf{q}} \hat{\mathbf{p}} \overline{\hat{\boldsymbol{q}}}^{*}$

Dual quaternion skinning

Linear blend skinning:

$$
\mathbf{v}^{\prime}=\sum_{\text {bone } j} w_{j} \mathbf{T}_{j}\left[\begin{array}{l}
\mathbf{v} \\
1
\end{array}\right]=\left(\sum_{\text {bone } j} w_{j} \mathbf{T}_{j}\right)\left[\begin{array}{l}
\mathbf{v} \\
1
\end{array}\right]
$$

Dual quaternion skinning:

$$
\begin{gathered}
\hat{\mathbf{q}}=\frac{\sum_{j} w_{j} \hat{\mathbf{q}}_{j}}{\left\|\sum_{j} w_{\hat{q}_{j}}\right\|} \\
\mathbf{v}^{\prime}=\hat{\mathbf{q}} \hat{\mathbf{q}^{*}} \overline{\mathbf{q}}^{*}
\end{gathered}
$$

Normalization ensures that final transformation is still rigid!

Dual quaternion skinning is not the end of the story!

- Pose space deformation
- Elasticity-inspired deformers
- Implicit skinning
- Optimized centers of rotation
- Direct delta mush
- ...

Beyond geometric skinning

