
32. Skinning
COL781: Computer Graphics
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Recap: Skeletal animation
We have a set of animation controls that determine 
the character’s pose: 

• Forward kinematics: joint angles 

• Inverse kinematics: end effector 
transformations 

Based on these we can compute the 
transformations of all the body parts.



Keyframe animation

Animator specifies character pose (i.e. values of animation controls) at specific keyframes. 

How to interpolate to arbitrary times?
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Recall splines: piecewise polynomial functions with some continuity/differentiability 

• Piecewise linear interpolation 

q(t) =  qi +  qi+1 

• Cubic Hermite spline: 
assume q(t) = at3 + bt2 + ct + d, solve for coefficients so that 

q(ti) = qi, q(ti+1) = qi+1, 
q′(ti) = mi, q′(ti+1) = mi+1 

Closed-form solution: 

q(t) = (2t3−3t2+1)qi +(t3−2t2+t)mi + (−2t3+3t2)qi+1 + (t3−t2)mi+1

ti+1 − t
ti+1 − ti

t − ti
ti+1 − ti



What if derivatives are not given, but still want a C1 curve? 
Catmull-Rom splines 

Estimate derivatives from neighbouring points, e.g.: 

mi =  

In fact, any estimate that only uses data at 
points i−1, i, i+1 will give C1 continuity. (Why?)

qi+1 − qi−1

ti+1 − ti−1



Rigid bone transformations may be sufficient for robots and toys with rigid parts. 

What about organic characters?
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Skinning

Skeleton Skinning weights Deformed shape
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Each vertex vi may be affected by transformations from multiple bones. 

Linear blend skinning: Final position is weighted average 

 

Of course, for a weighted average, we 
should have  = 1 for each vertex 

v′ i = ∑
bone j

wijTj [vi

1]
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Wait, to apply bone transformation Tj, we need 
to have vertex vi in the bone’s coordinate frame… 

 

• Bj : bone transformation in bind pose 

• Tj : bone transformation in deformed pose 

From now on, let’s just call the product Tj

v′ i = ∑
bone j

wijTjB−1
j [vi

1]

Bind pose Deformed pose
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Example: Skinning weights
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How to get the weights?
One common way: User paints them manually on the mesh! 

Various automatic methods: 

• Envelopes: manually specified region of influence 

• Bone heat (Baran & Popovic 2007): assign vertices to closest 
visible bone, then apply smoothing (heat diffusion) 

• Weights optimized for smoothness, locality, 
monotonicity, etc., e.g. bounded biharmonic weights 
(Jacobson et al. 2011)
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Problems with linear blending 
 
 
 
 
 
 
 

Root cause: linearly averaging two rigid 
transformations does not give a rigid 
transformation!

Joint collapse

Candy wrapper effect
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How to interpolate rigid transformations (translation + rotation)?
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Recap: Quaternions
Quaternions are quantities of the form q = a + bi + cj + dk where 

i2 = j2 = k2 = ijk = −1 

Useful to separate into scalar part and vector part: q = (a, u) 

Any unit quaternion represents a 3D rotation. 
Rotation by angle θ about axis u: q = (cos(θ/2), u sin(θ/2)) 

How to rotate a vector v = (x, y, z) ∈ ℝ3? 

• Interpret as a purely imaginary quaternion v = 0 + xi + yj + zk. 

• Then the rotated vector is qvq*

u
qvq*
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Dual quaternions
A dual quaternion is a quantity of the form 

q̂ = q0 + εqε 

where q0 and qε are quaternions, and ε2 = 0. 

• Multiplication: just drop all ε2 terms 

(p0 + εpε)(q0 + εqε) = p0q0 + ε(p0qε + pεq0) 

• Dual conjugate:  = q0 − εqε, quaternion conjugate: q̂* = q0* + εqε* 

• Norm: 

q̂

∥q̂∥ = q̂*q̂ = ∥q0∥ + ϵ
⟨q0, qϵ⟩

∥q0∥



Any unit dual quaternion represents a rigid transformation. 

• Rotation by quaternion q: q̂ = q + ε0 

• Translation by vector t: t̂ = 1 + t 

• Rotation then translation: t̂q̂ = q + tq 

How to transform a point p = (x, y, z) ∈ ℝ3? 

• Interpret as a dual quaternion p̂ = 1 + ε(xi + yj + zk) 

• Then the transformed point is 
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Dual quaternion skinning
Linear blend skinning: 

 

Dual quaternion skinning: 

 

 

Normalization ensures that final transformation is still rigid!

v′ = ∑
bone j

wjTj [v
1] = ( ∑

bone j

wjTj)[v
1]

q̂ =
∑j wjq̂j

∥ ∑j wjq̂j∥

v′ = q̂v̂q̂*
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Dual quaternion skinning is not the end of the story! 

• Pose space deformation 

• Elasticity-inspired deformers 

• Implicit skinning 

• Optimized centers of rotation 

• Direct delta mush 

• …
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Beyond geometric skinning
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