COL781: Computer Graphics 23.

Ray tracing

For each sample:
Shoot a ray into the scene
Find the closest intersection
Get shaded colour at intersection point
Set sample colour to it

Ray tracing

Global illumination

Global illumination

Ray tracing revisited

For each sample:
Shoot a ray into the scene
Find the closest intersection
Get exitant radiance at intersection point
Set sample colour to it

$$
L_{o}\left(\mathbf{p}, \boldsymbol{\omega}_{0}\right)=L_{e}\left(\mathbf{p}, \boldsymbol{\omega}_{0}\right)+\int_{H^{2}} f_{r}\left(\mathbf{p}, \boldsymbol{\omega}_{i} \rightarrow \boldsymbol{\omega}_{0}\right) L_{i}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right) \cos \left(\theta_{i}\right) d \boldsymbol{\omega}_{i}
$$

$$
L_{o}\left(\mathbf{p}, \boldsymbol{\omega}_{0}\right)=L_{e}\left(\mathbf{p}, \boldsymbol{\omega}_{0}\right)+\int_{H^{2}} f_{r}\left(\mathbf{p}, \boldsymbol{\omega}_{i} \rightarrow \boldsymbol{\omega}_{0}\right) L_{i}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right) \cos \left(\theta_{i}\right) d \boldsymbol{\omega}_{i}
$$

- How to evaluate incident radiance from any direction (not just light sources)?
- How to compute the integral over a hemisphere?

What is $L_{i}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right)$? Simply exitant radiance from somewhere else!

Define $\operatorname{tr}(\mathbf{p}, \boldsymbol{\omega})$ as the first surface point hit by the ray $\mathbf{p}+t \boldsymbol{\omega}$.

$$
L_{i}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right)=L_{o}\left(\operatorname{tr}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right),-\boldsymbol{\omega}_{i}\right)
$$

$$
L_{o}\left(\mathbf{p}, \boldsymbol{\omega}_{0}\right)=L_{e}\left(\mathbf{p}, \boldsymbol{\omega}_{0}\right)+\int_{H^{2}} f_{r}\left(\mathbf{p}, \boldsymbol{\omega}_{i} \rightarrow \boldsymbol{\omega}_{0}\right) L_{o}\left(\operatorname{tr}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right),-\boldsymbol{\omega}_{i}\right) \cos \left(\theta_{i}\right) d \boldsymbol{\omega}_{i}
$$

This is an integral equation!
Unknown quantity L_{0} on both sides
Like ray tracing, we'll evaluate it recursively

Numerical integration

$$
\int_{a}^{b} f(x) d x
$$

If I know how to compute $f(x)$, how can I compute its integral?

- Analytical / symbolic
- Numerical quadrature
- Monte Carlo methods

Analytical integration

$$
\begin{array}{cc}
\int x^{3} \mathrm{~d} x=\frac{1}{4} x^{4} & \int x \cos x \mathrm{~d} x=x \sin x+\cos x \\
\int e^{-x^{2}} \mathrm{~d} x=? & \int\left\lceil\sin x^{2}\right\rceil \mathrm{d} x=?
\end{array}
$$

Closed-form formulas only possible in very special cases.
In rendering, integrand is very complicated! Depends on visibility, texture, BRDF, ...
No chance of analytical solution

Numerical quadrature

Sample function at various points, estimate integral as weighted sum e.g. trapezoidal rule:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{i=1}^{n}\left(\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}\right) \Delta x_{i}
$$

If integrand is smooth, error decreases as $O\left(n^{-2}\right)$
Many higher-order accurate methods e.g. Gaussian quadrature, Simpson's rule, etc.

Why not use quadrature?

- Integrand is not smooth! e.g. incident radiance from area light

Error might decrease at only $O\left(n^{-1}\right)$

- Integral is high-dimensional! e.g. k-bounce illumination requires integral over k hemispheres

Computational cost increases as $O\left(n^{k}\right)$, error still decreasing at same rate w.r.t. n

Example: area of a disk

Suppose you don't know what π is, but you want the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

$$
\begin{gathered}
f(x, y)= \begin{cases}1 & \text { if } x^{2}+y^{2} \leq 1, \\
0 & \text { otherwise } .\end{cases} \\
A=\int_{-1}^{1} \int_{-1}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y
\end{gathered}
$$

With trapezoidal rule:

- $O(n)$ samples in x and y each $\rightarrow N=O\left(n^{2}\right)$ total samples
- Discontinuous integrand \rightarrow error decreases slowly

What about finding the volume of a k-dimensional ball?

A randomized algorithm

Pick N random points uniformly distributed in $[-1,1]^{2}$, count how many land in the disk.
Let $M=$ number of points with $x^{2}+y^{2} \leq 1$.

- Probability of a point landing in the disk $=A / 4$
- Expected number of points: $E[M]=N A / 4$

So, estimated area $=4 \mathrm{M} / \mathrm{N}$.
What is the likely error in the estimate?

Quick probability recap

If X is a random variable with probability distribution $p(x)$, its expected value or expectation is

$$
\begin{gathered}
E[X]=\sum x_{i} p_{i} \\
E[X]=\int x p(x) d x
\end{gathered}
$$

Expectation is linear:

- $E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]$
- $E[a X]=a E[X]$

Variance $=$ average squared deviation from expected value

$$
V X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}
$$

Variance is not linear, but it is additive for independent random variables:

- If X_{1} and X_{2} are independent, then $\left.\left.\left.V X_{1}+X_{2}\right]=V X_{1}\right]+V X_{2}\right]$
- VaX$]=a^{2} \mathrm{VX}$

So if I take the mean of N i.i.d. random variables,

$$
V\left[\frac{1}{N} \sum X_{i}\right]=\frac{1}{N^{2}} V\left[\sum X_{i}\right]=\frac{1}{N^{2}} N V[X]=\frac{1}{N} V[X]
$$

Randomized area estimation

Pick N random points X_{i} independently and uniformly distributed in $[-1,1]^{2}$.
Let $Y_{i}=f\left(X_{i}\right)$, so number of points in disk is $M=\sum Y_{i}$.

- What are $E\left[Y_{i}\right]$ and $E[M]$?
- What are $V Y_{j}$] and $\left.V M\right]$?

Variance of estimated area $=O\left(N^{-1}\right)$

What about in k dimensions? Estimated volume $=2^{k} M / N$, variance still $O\left(N^{-1}\right)$!

The basic Monte Carlo method

If X is uniformly distributed in $[a, b]$, then

$$
E[f(X)]=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

So, if I take N independent samples of X,

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \approx E[f(X)]=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \quad \begin{gathered}
\text { Interpretation: } \\
\text { in }
\end{gathered}
$$

$$
\text { Integral }=\text { average }
$$

Basic Monte Carlo estimation of an integral $\int_{a}^{b} f(x) \mathrm{d} x$:

$$
F_{N}=\frac{b-a}{N} \sum_{i=1}^{N} f\left(X_{i}\right)
$$

where $X_{i} \sim p(x)=1 /(b-a)$.

- F_{N} is an unbiased estimator: $E\left[F_{N}\right]=\int_{a}^{b} f(x) \mathrm{d} x$ for any N.
- Variance decreases linearly: $\left.\left.\backslash F_{N}\right]=\frac{(b-a)^{2}}{N} \bigvee f(X)\right]$
- Standard deviation $=\sqrt{V\left[F_{N}\right]}=O\left(n^{-1 / 2}\right)$

Back to rendering

Monte Carlo rendering

We need to estimate the reflectance integral $\int_{H^{2}} f_{r}\left(\mathbf{p}, \boldsymbol{\omega}_{i} \rightarrow \boldsymbol{\omega}_{0}\right) L_{i}\left(\mathbf{p}, \boldsymbol{\omega}_{i}\right) \cos \left(\theta_{i}\right) d \boldsymbol{\omega}_{i}$
With Monte Carlo, it's easy:

- Uniformly sample hemisphere of incident directions: $\mathbf{X}_{i} \sim p(\boldsymbol{\omega})=1 /(2 \pi)$
- Evaluate integrand

$$
Y_{i}=f_{r}\left(\mathbf{p}, \mathbf{X}_{i} \rightarrow \boldsymbol{\omega}_{0}\right) L_{i}\left(\mathbf{p}, \mathbf{X}_{i}\right) \cos \left(\theta_{i}\right)
$$

- MC estimator is simply $F_{N}=2 \pi / N \sum Y_{i}$

incidentRadiance (x, ω) :

```
\(p=\) intersectScene(x, \(\omega\) )
\(\mathrm{L}=\) p.emittedLight(- \(\omega\) )
for \(i=1, \ldots, N\) :
    \(\omega \mathrm{i}=\) sampleDirection(p.normal)
    \(\mathrm{L}+=\) incidentRadiance(p, \(\omega \mathrm{i})\) * p.BRDF \((\omega \mathrm{i},-\omega)\) * cos_theta_i * two_pi / N
```

return L

Two problems:

- Exponential increase in \#samples: after k bounces, we're tracing N^{k} rays
- Don't know when/how to stop recursion

Three problems:

- Exponential increase in \#samples: after k bounces, we're tracing N^{k} rays
- Don't know when/how to stop recursion
- Results are noisy!

