
7. Perspective
 and Visibility

COL781: Computer Graphics

Rene Magritte, The Blank Signature

Revisiting last week’s puzzle
Why does this look strange?

Revisiting last week’s puzzle
Why does this look strange?

Revisiting last week’s puzzle
If camera AOV = viewer AOV, image on screen matches what you’d see if you
were actually there

Revisiting last week’s puzzle

The human visual system is actually quite good at compensating
for differences in angle of view… but only up to a point.

Movie shot with
small angle of view

Front row
seats :(

• Object space → world space

• World space → camera space

• Camera space → projection plane
(division by z)

• Projection plane → NDC

• NDC → screen coordinates

Two problems:

• Every step is a matrix, except
perspective division.

• Final result has lost depth information
(the z coordinate): don’t know which
points are in front of which

Homogeneous coordinates revisited

Recall points vs. vectors: p = , v =

Let’s generalize: points can have any w ≠ 0

[
x
y
1] [

x
y
0]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Any point in homogeneous coordinates p̂ = with w ≠ 0

corresponds to the 2D point p = (x/w, y/w)
[

x
y
w]

The main idea: Points in 2D correspond to lines through
the origin in 3D!

All points p̂ = on a line represent the same point

p = (x, y) where the line meets the plane w = 1

Linear and affine transformations still work as before!

[
cx
cy
c]

Perspective projection: (x,y,z) → (xd/z, yd/z)

With homogeneous coordinates:

 → ~

Corresponding matrix:

Hang on, we’ve still lost depth information.

x
y
z
1

x
y
z

z/d

xd/z
yd/z

d
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

−z

x,y

d

q = (u,v,d)

Scene point
p = (x,y,z)

Image plane

Visibility a.k.a. hidden surface removal
Which surfaces are visible? Those that are not hidden by nearer surfaces.

Triangles drawn without
considering depth / visibility

Correct result

To retain depth information, let’s copy w into the z-coordinate:

 → ~ → ~

Matrix:

x
y
z
1

x
y
z

z/d

xd/z
yd/z

d
1

x
y
z
1

x
y

1/d
z/d

xd/z
yd/z
1/z
1

1 0 0 0
0 1 0 0
0 0 0 1/d
0 0 1/d 0

Scene in camera space
(x, y, z, 1)

−z

x

After perspective transformation
(xd/z, yd/z, 1/z, 1)

−z′

x′

The view frustum
In theory, horizontal and vertical angles
of view define an infinite view cone

In practice, cut off at near and far
“clipping planes”: view frustum

Why?

• Exclude objects behind the camera

• Finite precision of depth coordinate
(we’ll see why shortly)

Angel & Shreiner, Interactive Computer Graphics

Marschner & Shirley, Fundamentals of Computer Graphics

M =

2 |n |
r − l 0 r + l

r − l 0

0 2 |n |
t − b

t + b
t − b 0

0 0 |n | + | f |
|n | − | f |

2 |n | | f |
|n | − | f |

0 0 −1 0

perspective
transformation

affine
transformation

M

(ℓ,b,−n)

(r,t,−n)

(−1,−1,−1)

(1,1,1)

z = −f

z = −n

Normalized
device coordinates

(for real this time)

Clipping

• Discard triangles outside view frustum

• Clip triangles partially intersecting view frustum

Usually implemented in homogeneous coordinates (before division)

Keenan Crane

OK, so how do we actually use z (or 1/z) to handle visibility?

Painter’s algorithm
Draw objects in “depth order” from farthest to nearest.
Nearer objects overwrite pixels painted by farther ones.

Can such a depth ordering always be found?

No:

OK, what if we do the ordering per triangle instead of per object?

The Lord of the Rings: The Fellowship of the Ring Stockbusters

The painter’s algorithm cannot handle occlusion cycles without splitting at least
one of the triangles.

Marschner & Shirley, Fundamentals of Computer Graphics

Practical visibility testing
Evidently we need to make visibility decisions per sample, not per triangle!

One way:

for each sample:
 for each triangle that covers it:
 if triangle is closest surface seen so far:
 set sample.colour to triangle.colour

This is the basic idea behind ray tracing
(covered later in the course)

Another way, more compatible with the rasterization pipeline:

for each triangle:
 for each sample that it covers:
 if triangle is closest surface seen by sample so far:
 set sample.colour to triangle.colour

This is what’s actually done on the GPU!

Each sample needs to remember the closest depth it has seen, until the entire
scene is rendered.

Z-buffering
Framebuffer now contains a colour buffer and a depth buffer (a.k.a. z-buffer)

Grand Theft Auto V
via Adrian Courrèges

Colour Depth

drawSample(x,y,z, rgb):
 if z < zbuffer[x,y]:
 color[x,y] = rgb
 zbuffer[x,y] = z
 else:
 # do nothing

Z-buffer can only store depth up to finite precision!

Different surfaces can map to same (rounded) depth:“z-fighting”

songho.ca

Homework: Get ready for Assignment 1

• Form groups of 2 and enter your choice on Moodle

• Modify the rasterization starter code to draw a triangle

• Keep an eye on the Announcements forum for Assignment 1

