
5. Affine
 Transformations

COL781: Computer Graphics

Blender manual

Continuing from last class…

Rotation

Nonuniform scaling

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

[cos θ −sin θ
sin θ cos θ]

[
sx 0
0 sy]

Arbitrary linear transformation

[a11 a12
a21 a22]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Rotations in 3D

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

cos θ −sin θ 0
sin θ cos θ 0

0 0 1
Rotation about x-axis
= Rotation in yz-plane

Rotation about y-axis
= Rotation in zx-plane

Rotation about z-axis
= Rotation in xy-plane

x

y

z

Rotation
about x-axis

Rotations about the coordinate axes:

Are these all the possible rotations?

Rotations in 3D
Are these all possible rotations?

Not at all!

A rotation is any transformation which:

• preserves distances and angles

• preserves orientation

Equivalently, RTR = 𝐈, and det R = 1

Euler angles
Any rotation in 3D can be expressed using 3 rotations about coordinate axes!

e.g. R = Rz(θz) Ry(θy) Rx(θx)

θx, θy, θz are called Euler angles

Also called “roll, pitch, yaw” in aircraft

Note: Order of rotation matters! Need to
know which angle for which axis, and also
which order to multiply them. roll pitch

yaw

Tannous 2018

In some configurations, Euler angles lose
one degree of freedom!

This is called gimbal lock

Tannous 2018

Rodrigues’ rotation formula
Rotation around an axis n by angle θ:

R = 𝐈 cos θ + [n]× sin θ + n nT (1 − cos θ)

where [n]× =

How? Hints:

• [n]× is the “cross-product matrix”: [n]× v = n × v

• Assume an orthogonal basis n, e1, e2 and see what R does to it

0 −nz ny

nz 0 −nx

−ny nx 0

semath.info

Other rotation representations we won’t cover:

• Angle vector / exponential map

θ = θe

• Quaternions

q = s + ix + jy + kz

• Rotors

uv = u · v + u ∧ v

Homework exercise
Given unit vectors u and v, find a way to construct a rotation matrix R which
maps u to v, i.e. Ru = v. Is it unique, or are there many different such rotations?

u

v

R = ?

Translations
Move all points by a constant displacement

T(p) = p + t

So a linear transformation followed by a translation
will be of the form T(p) = Ap + b

A bit tedious to compose:

T2(T1(p)) = A2(A1p + b1) + b2 = (A2A1)p + (A2b1 + b2)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

t

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Suppose I have both points and directions/velocities/etc. to transform.

Original:
p = (0.5, 0.5)

v = (1, 0)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Rotation by 45°:
p = (0, 0.7)

v = (0.7, 0.7)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p v?

Translation by (0, 0.5):
p = (0.5, 1)
v = (1, 0.5)?

It seems translation should only affect some things, not others. But why?

Are points really vectors?

p1 + p2 = ?

5p3 = ?

How about I just choose an origin and
then add the displacement vectors?

p1

p2p3

Points vs. vectors
Points form an affine space A over the vector space V.

• Point-vector addition: A × V → A

• Point subtraction: A × A → V

with the obvious properties e.g. (p + u) + v = p + (u + v), p + (q − p) = q, etc.

Example: midpoint of two points p and q

m = ½(p + q)?

Not allowed! But can rewrite as

m = p + ½(q − p) = q + ½(p − q)

In fact it’s valid to take any affine combination w1p1 + w2p2 + ⋯ + wnpn
as long as w1 + w2 + ⋯ + wn = 1.

(Exercise: Check that this can be done using only the allowed operations)

p

q

m

Coordinate frames
To specify a vector numerically, we need a basis

v = v1e1 + v2e2 + ⋯ ⇔ v = in the basis

To specify a point numerically, we need a coordinate frame: origin and basis

p = p1e1 + p2e2 + ⋯ + o so maybe p = ?

v1
v2
⋮

p1
p2
⋮
1

v

e1

e2

p

e1

e2

o

Write a point as an (n+1)-tuple p = to mean p = p1e1 + p2e2 + ⋯ + o.

Linear transformations are now , mapping ei → Aei and o → o

e.g.

p1
p2
⋮
1

[A 0
0 1]

sx 0 0
0 sy 0
0 0 1

px
py

1
=

sxpx
sypy

1

Translation by a vector t: , mapping ei → ei but o → o + t

e.g.

If we plot the extra coordinate
as well: it’s a shear transformation
in (n+1) dimensions!

[I t
0 1]

1 0 tx
0 1 ty
0 0 1

px
py

1
=

px + tx
py + ty

1

1 1

What about vectors?

v = v1e1 + v2e2 + ⋯ + 0o ⇔ v =

Apply a translation:

v1
v2
⋮
0

1 0 tx
0 1 ty
0 0 1

vx
vy

0
=

vx
vy

0

Homogeneous coordinates
Add an extra coordinate w at the end.

• Points: w = 1

• Vectors: w = 0

Transformations become (n+1)×(n+1) matrices

• Linear transformations:

• Translations:

[A 0
0 1]

[I t
0 1]

General affine transformation:

• Corresponds to linearly transforming basis vectors ei → Aei
and translating origin o → o + t

• Composition: just matrix multiplication again.

[A t
0 1]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

Example: Rotate by given angle θ about given point p (instead of about origin)

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Translate by −p

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Rotate by θ
about origin

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Translate by p

M = T(p) R(θ) T(−p)

Given coordinates of p in frame 1, what are its coordinates in frame 2?

p = p1e1 + p2e2 + ⋯ + o

Write coords of e1, e2, … and o in frame 2:

Then p =

ei =

∙
∙
⋮
0

, o =

∙
∙
⋮
1

∙ ∙ ⋯ ∙
∙ ∙ ⋯ ∙
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

p1
p2
⋮
1

p

e1 e2 o

Change of coordinates looks
exactly like a transformation matrix!

Active transformation: Moves points
to new locations in the same frame

Change of coordinates (passive
transformation): Gives coordinates
of the same point in a different frame

Matrices are the same but the meaning
is different! You have to keep track.

e.g. world_driver = world_from_car * car_driver
Vec3 Mat3x3 Vec3

Puzzle:

To draw a transformed polygon, I can just transform the vertices.

If something is instead specified by a function f(x,y) (e.g. a circle or an image),
can I still draw its transformed version?

x2 + y2 ≤ r2

M

