
COL726 Assignment 3
20 March – 3 April, 2021

Note: All answers should be accompanied by a rigorous justi�cation, unless the question
explicitly states that a justi�cation is not necessary.

Updated text is highlighted in blue.

1. De�ne a “PET matrix” to be a square matrix of the form PTQ, where P,Q are permutation
matrices and T is triangular.

(a) Show that there is no need to specify whether T is upper triangular or lower triangular
in the above de�nition. �at is, if A = PUQ where U is upper triangular, there also
exist permutation matrices P′,Q′ such that A = P′LQ′ with lower triangular L.

(b) In the general case, determining if a given matrixA is a PETmatrix is NP-hard. However,
suppose we know A = PLQ where L has no extra zeros, i.e. lij , 0 for all i ≥ j . For this
case, give an O(m2) algorithm for �nding P,Q.

2. (a) �e standard Cholesky factorization A = LL∗ requires the use of square roots, which
can be expensive on some hardware. Give a modi�ed algorithm without square roots,
which computes a factorization A = LDL∗ where L is lower triangular andD is diagonal.

(b) �e modi�ed algorithm no longer requires that the top-le� entry a11 is positive. Does
this mean that the algorithm nowworks for all nonsingular Hermitianmatrices, whether
positive de�nite or not? Prove or give a counterexample.

3. In this question, we investigate why direct methods fail to preserve sparsity. Let a c-sparse
matrix be a matrix with at most c nonzero entries in each row and each column.

(a) Show that the product of two c-sparse matrices is only c2-sparse.

(b) Show that for anym, there exists a 3-sparse H.P.D. matrix A ∈ Cm×m whose Cholesky
factor is not at all sparse; in particular it has a row or column with ≥ m/2 nonzero
entries.

4. Suppose we a�empt to do GMRES without the Arnoldi iteration. At the nth iteration, we
simply add a column to the Krylov matrix Kn =

[
b Ab · · · An−1b

]
and assume x = Kny

in the least-squares solve.

(a) Give the full details of the algorithm and analyze its operation count, assuming that
computingAn−1b takes∼ cm �ops. Bonusmarks if you can compute the QR factorization
for least squares in O(mn) time by reusing the factorization from the previous iteration.
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(b) �e real problemwith this approach is that the conditioning of the least-squares problem
grows exponentially with n. Show that this is true even for Hermitian matrices, A =
VΛV∗. You may consider the special case b = v1 + · · · + vm and ‖A‖2 = max

j=1,...,m
|λj | , 1.

Hint: Note that for any matrixM ∈ Cm×n withm ≥ n, we have κ(M) =
sup‖x‖=1 ‖Mx‖2
inf ‖x‖=1 ‖Mx‖2

.

5. Suppose you apply the conjugate gradient method to a matrix A whose eigenvalues lie in n
disjoint clusters, [a1,b1], [a2,b2], . . . , [an,bn], with λmin = a1 < b1 < a2 < b2 < · · · < an <

bn = λmax. Derive a bound on the A-norm of the error a�er n, 2n, 3n, . . . CG iterations. Your
bound should be tighter than �eorem 38.5; in particular, if all ai = bi , it should predict that
the error becomes 0 a�er n iterations.

6. (a) Implement a Python function (P, L, U) = lup(A) to perform LU factorization with par-
tial pivoting, and a function x = solveLup(P, L, U, b) to solve Ax = b using the re-
sults of lup. Following Trefethen & Bau’s Exercise 22.2, �nd a way to construct a
matrix A for which catastrophic rounding errors occur, and implement a function
A = instabilityMatrix(m) which returns such a matrix of sizem ×m.

You should implement backsubstitution yourself instead of using Scipy’s built-in func-
tion (scipy.linalg.solve_triangular).

(b) Suppose at each step, you have some way of choosing a pivot xij anywhere in the
remaining submatrix, not just in the current column. Give the full algorithm, analogous
to Algorithm 21.1, to compute an LU factorization with pivoting in this case.

(c) A practical strategy for choosing the pivot is “rook pivoting”: Find the largest (in absolute
value) entry in the current column, and go to its row; �nd the largest entry in that row,
and go to its column; repeat until you have found an entry that is the largest in both its
row and its column. Using rook pivoting, implement your algorithm in (b) as a function
(P, Q, L, U) = lupq(A), with a corresponding solve function x = solveLupq(P, Q, L, U, b).

Note: You may use the fact that any permutation matrix is orthogonal.

For eachm = 1, 2, . . . , 60, compute the growth factor ρ (TB 22) of your instabilityMatrix
for both partial pivoting and rook pivoting, and plot them as a function ofm with a logarith-
mic y-axis. Do the same for the relative backward error in solving Ax = b for a randomly
chosen b ∈ Rm.

Collaboration policy: Refer to the policy on the course webpage.

If you collaborated with others to solve any question(s) of this assignment, give their names in
your submission. If you found part of a solution using some online resource, give its URL.
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Submission: Submit a PDF of your answers for all questions to Gradescope. Submit the code
for �estion 6 to Moodle. Both submissions must be uploaded before the assignment deadline.

Code submissions should contain a single .py �le which contains all the functions. Functions
are permi�ed but not required to produce any side-e�ects like printing out values or drawing
plots. Any results you are asked to show should go in the PDF.
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