COL865: Special Topics in Computer Applications Physics-Based Animation

20 - Model reduction

Announcements

- Project proposal due this Friday, 12 October
- Talk to me during office hours
- Increased office hours: Mon-Wed, noon-1pm
- Pick topics for 2nd paper presentation by Sunday, 21 October

Reading

- Sifakis \& Barbič, FEM Simulation of 3D Deformable Solids, Part 2: "Model reduction"

Model reduction

$$
\mathbf{M} \ddot{\mathbf{u}}=\mathbf{f}(\mathbf{u}, \dot{\mathbf{u}})+\mathbf{f}_{\mathrm{ext}}
$$

Choose a low-dimensional basis $\mathbf{u}=\mathbf{U} \mathbf{q}=q_{1} \mathbf{u}_{1}+\cdots+q_{r} \mathbf{u}_{r}$
Equations of motion via Galerkin projection:

$$
\mathbf{U}^{\top} \mathbf{M} \mathbf{U} \ddot{\mathbf{q}}=\mathbf{U}^{\top} \mathbf{f}(\mathbf{U} \mathbf{q}, \mathbf{U} \dot{\mathbf{q}})+\mathbf{U}^{\top} \mathbf{f}_{\mathrm{ext}}
$$

1. How to choose a good basis?
2. How to efficiently compute $\mathbf{U}^{\top} \mathbf{f}$?

Linear modal analysis

$$
M \ddot{\mathbf{u}}=-\mathbf{K} \mathbf{u}
$$

Generalized eigenvectors:

$$
\mathbf{K} \Psi_{i}=\lambda_{i} \mathbf{M} \Psi_{i}
$$

\mathbf{M}, \mathbf{K} symmetric, \mathbf{M} nonsingular
\Rightarrow mass-orthogonality $\boldsymbol{\Psi}_{i}{ }^{\top} \mathbf{M} \boldsymbol{\Psi}_{j}=0$
Normalize $\boldsymbol{\Psi}_{i}$ so that $\boldsymbol{\Psi}_{i}{ }^{\top} \mathbf{M} \boldsymbol{\Psi}_{i}=1$
Then let $\mathbf{u}=q_{1} \boldsymbol{\psi}_{1}+\cdots+q_{r} \boldsymbol{\Psi}_{r}$

$$
\ddot{q}_{i}=-\lambda_{i} q_{i}
$$

Linear modes

[Sifakis \& Barbic]

Linear modal analysis

With damping and external forces:

$$
\ddot{\mathbf{q}}+\boldsymbol{\Lambda} \mathbf{q}+\mathbf{U}^{\top} \mathbf{D} \mathbf{U} \dot{\mathbf{q}}=\mathbf{U}^{\top} \mathbf{f}_{\mathrm{ext}}
$$

Rayleigh damping: $\mathbf{D}=\alpha \mathbf{M}+\beta \mathbf{K}$

$$
\ddot{q}_{i}+\lambda_{i} q_{i}+\left(\alpha+\beta \lambda_{i}\right) \dot{q}_{i}=\boldsymbol{\Psi}_{i}^{\top} \mathbf{f}_{\mathrm{ext}}
$$

Dealing with nonlinearity

[Choi \& Ko 2005]

Choice of basis

- Linear modes using $\mathbf{K}=\mathrm{df} / \mathrm{d} \mathbf{u}$ at undeformed pose
- PCA basis
- Modal derivatives [Barbič \& James 2005]

$$
\begin{gathered}
\boldsymbol{\Psi}_{i}(\mathbf{u})=\text { eigenvector }(\mathbf{M}, \mathbf{K}(\mathbf{u})) \\
\boldsymbol{\Psi}_{i}\left(\mathbf{u}+h \boldsymbol{\Psi}_{j}\right)=\boldsymbol{\Psi}_{i}(\mathbf{u})+h \boldsymbol{\varphi}_{i j}(\mathbf{u})+O\left(h^{2}\right)
\end{gathered}
$$

Modal derivatives

Φ^{11}		Φ^{12}		Φ^{13}
				Φ^{14}

Linear mode 1

Modal derivative of linear mode 1 versus
 linear mode 1

[Barbič \& James 2005]

[Barbič \& James 2005]

Modal warping

Keep original basis, change reconstruction: $\mathbf{u} \neq \mathbf{U} \mathbf{q}$ [Choi \& Ko 2005, Huang et al. 2011]

1. For each element, $\mathbf{I}+\mathbf{G}=\mathrm{d}(\mathbf{U} \mathbf{q}) / \mathrm{d} \mathbf{X}$
2. $\mathbf{G}=\boldsymbol{\varepsilon}+\boldsymbol{\omega}$
3. $\mathbf{S}=\mathbf{I}+\boldsymbol{\varepsilon}, \quad \mathbf{R}=\exp (\boldsymbol{\omega}), \quad \mathbf{F}=\mathbf{R} \mathbf{S}$
4. Reconstruct \mathbf{u} from \mathbf{F} via least-squares

Modal Analysis Extension

Linear Mode

Our Non-linear Geometric Extension

[Huang et al. 2011]

Evaluation of reduced forces

$$
\begin{gathered}
\overline{\mathbf{f}}(\mathbf{q})=\mathbf{U}^{\top} \mathbf{f}(\mathbf{U} \mathbf{q}) \\
\overline{\mathbf{K}}(\mathbf{q})=\mathbf{U}^{\top} \mathbf{K}(\mathbf{U} \mathbf{q}) \mathbf{U}
\end{gathered}
$$

Naive approach: O(nr) cost

- If \mathbf{f} is polynomial in $\mathbf{x} \Rightarrow \overline{\mathbf{f}}$ is polynomial in \mathbf{q}

Precompute all r^{p+1} coefficients

- Optimized cubature [An et al. 2008]

$$
\begin{aligned}
\bar{f}_{i}(\mathbf{q}) & =\iiint \boldsymbol{\Psi}_{i}(\mathbf{X})^{\top} \mathbf{f}(\mathbf{X} ; \mathbf{U} \mathbf{q}) \mathrm{d} V \\
& \approx \sum w_{j} \boldsymbol{\Psi}_{i}\left(\mathbf{X}_{j}\right)^{\top} \mathbf{f}\left(\mathbf{X}_{j} ; \mathbf{U} \mathbf{q}\right)
\end{aligned}
$$

[An et al. 2008]

Model reduction for fluids

$$
\mathbf{u}=w_{1} \boldsymbol{\Psi}_{1}+\cdots+w_{r} \boldsymbol{\Psi}_{r}
$$

Choice of basis:

- PCA basis [Treuille et al. 2006]
- Laplacian eigenfunctions [de Witt et al. 2011]

[Treuille et al. 2006]

[de Witt et al. 2011]

Model reduction for fluids

$$
\mathbf{u}=w_{1} \boldsymbol{\Psi}_{1}+\cdots+w_{r} \boldsymbol{\Psi}_{r}
$$

Reduced forces:

- No pressure step needed
- Advection term $(\mathbf{u} \cdot \nabla) \mathbf{u}$ is quadratic in u: store r^{3} coefficients $C_{k, i, j}$

$$
\begin{aligned}
\left(\boldsymbol{\Psi}_{i} . \nabla\right) \boldsymbol{\Psi}_{j} & \approx C_{1, i, j} \boldsymbol{\Psi}_{1}+\cdots+C_{r, i, j} \boldsymbol{\Psi}_{r} \\
\dot{W}_{k} & =\sum_{i, j} C_{k, i, j} w_{i} w_{j} \\
& =\mathbf{w}^{\top} \mathbf{C}_{k} \mathbf{w}
\end{aligned}
$$

[Treuille et al. 2006]

