Constitutive models

Constitutive model: determines **P** in terms of deformation

- *Elastic material*: P depends only on current F
- *Hyperelastic material*: work is independent of path \Rightarrow *strain energy density function* $\Psi(\mathbf{F})$

 $\mathbf{P} = d\Psi/d\mathbf{F}$ $P_{ij} = d\Psi/dF_{ij}$

analogous to $\mathbf{f} = -\nabla U$

Constitutive models

Different choices of $\Psi \Rightarrow$ different models of elastic materials

- No deformation: $\Psi(\mathbf{I}) = 0$
- Rotation independence: $\Psi(\mathbf{R} \mathbf{F}) = \Psi(\mathbf{F})$
- \Rightarrow Decompose **F** = **R S**. Ψ depends only on **S**, min when **S** = **I**

Corotated linear elasticity

Quadratic in **S**:

$$\Psi(\mathbf{F}) = \mu \|\mathbf{S} - \mathbf{I}\|^2 + \lambda/2 \operatorname{tr}^2 (\mathbf{S} - \mathbf{I})$$
$$\Rightarrow \mathbf{P}(\mathbf{F}) = 2 \,\mu \,\mathbf{R} \,(\mathbf{S} - \mathbf{I}) + \lambda \,\mathbf{R} \operatorname{tr} (\mathbf{S} - \mathbf{I})$$

μ, λ : Lamé parameters

- *μ*: resistance to stretching, shearing
- λ : resistance to volume change (because tr (**S I**) \approx det **F** 1)

Related to Young's modulus, Poisson's ratio

Material parameters

Conversion from Young's modulus k, Poisson's ratio V:

$$\mu = \frac{k}{2(1+\nu)}, \quad \lambda = \frac{k\nu}{(1+\nu)(1-2\nu)}$$

St. Venant-Kirchhoff (with $\mathbf{E} = \frac{1}{2} (\mathbf{F}^{T}\mathbf{F} - \mathbf{I})$):

$$\Psi(\mathbf{F}) = \mu \|\mathbf{E}\|^2 + \lambda/2 \operatorname{tr}^2 \mathbf{E}$$

- Easier to compute: no need for polar decomposition
- Ψ , **P** polynomial in **F**
- Poor behaviour in compression

Other constitutive models

Neo-Hookean (with $C = F^TF$, $I_C = tr C$, J = det F):

 $\Psi(\mathbf{F}) = \mu/2 (I_{\mathbf{C}} - 3) - \mu \log J + \lambda/2 (\log J)^2$

- Correctly models volume change using J = det F
- Good for nearly incompressible materials (e.g. rubber, flesh)
- Undefined under collapse,
 inversion (J ≤ 0)
- Stable neo-Hookean [Smith et al. 2018]

Anisotropy

All these materials are *isotropic*: independent of direction of stretching

 $\Psi(\textbf{F})=\Psi(\textbf{F}~\textbf{Q})$

 $\Rightarrow \Psi(\mathbf{F}) = \Psi(\mathbf{U} \Sigma \mathbf{V}^{T}) = \Psi(\Sigma)$: Ψ only depends on principal strains

Equivalently, only depends on invariants of **C** = **F**^T**F**

Examples of *anisotropic* materials: woven fabrics, composites

From theory to simulation

State $\boldsymbol{\phi}(\mathbf{X}), \, \dot{\boldsymbol{\phi}}(\mathbf{X})$

- \rightarrow Deformation gradient **F**(**X**) = d ϕ /d**X**
- \rightarrow Stress **P**(**F**) = d Ψ /d**F**
- → Force density ρ φ̈ = div P + f^{ext} (everything in terms of material space!)

- How to discretize $\boldsymbol{\varphi}(\mathbf{X})$?
- How to compute **F**?
- How to compute div **P**?

Meshes

Divide space into *elements* (usually triangles, tetrahedra), put samples at vertices (a.k.a *nodes*)

Reconstruction: linear / polynomial within each element

• Elements should be "well-shaped": close to regular

Software to generate mesh for given shape: *Triangle*, *TetGen*

Meshes for elasticity

Create triangulated mesh in material space

- Each vertex stores fixed \mathbf{X}_i , varying $\mathbf{x}_i = \boldsymbol{\varphi}(\mathbf{X}_i)$, $\mathbf{v}_i = \dot{\boldsymbol{\varphi}}(\mathbf{X}_i)$
- Each element stores indices of vertices *i*₁, *i*₂, *i*₃ (, *i*₄)

Reconstruct $\boldsymbol{\phi}(\mathbf{X})$ by piecewise linear interpolation. (Other shapes e.g. quads, higher-order interpolation also possible)

Shape functions

Interpolation can be expressed as linear combination of *shape functions*:

$$f(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_n N_n(x)$$

where $N_i(x_i) = 1$, $N_i(x_j) = 0$ for $j \neq i$

In particular,

$$\boldsymbol{\varphi}(\mathbf{X}) = \mathbf{x}_1 N_1(\mathbf{X}) + \mathbf{x}_2 N_2(\mathbf{X}) + \cdots$$

$$\mathbf{F}(\mathbf{X}) = \mathbf{x}_1 \, \mathrm{d}N_1 / \mathrm{d}\mathbf{X} + \mathbf{x}_2 \, \mathrm{d}N_2 / \mathrm{d}\mathbf{X} + \cdots$$

Piecewise linear interpolation \Rightarrow **F**, **P** constant on each element

But what is div **P**? Zero in element interior, undefined on element boundaries

The finite element method

FEM in graphics: Sifakis and Barbič, Part 1, Ch 4: "Discretization"

FEM theory: Bathe, *Finite Element Procedures* (especially Ch 3.3, 4.2)