COL865: Special Topics in Computer Applications Physics-Based Animation

14 — Fluid simulation on grids II

Review

Navier-Stokes equations for fluid velocity **u**(**x**, *t*):

$$\partial \mathbf{u}/\partial t + (\mathbf{u} \cdot \nabla) \mathbf{u} = \rho^{-1} (-\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}_{ext})$$

 $\nabla \cdot \mathbf{u} = 0$

Solve on grid via *splitting*:

- **Advection**: $\mathbf{u}^{(1)} = \operatorname{advect}(\mathbf{u}^n, \mathbf{u}^n, \Delta t)$
- **Body forces:** $u^{(3)} = u^{(2)} + f_{ext} \Delta t$
- *Viscosity*: $\mathbf{u}^{(2)} = \mathbf{u}^{(1)} + v \nabla^2 \mathbf{u} \Delta t$
- **Pressure**: $\mathbf{u}^{n+1} = \mathbf{u}^{(3)} \nabla p \Delta t$ so that $\nabla \cdot \mathbf{u}^{n+1} = 0$

Advection

$$D\mathbf{u}/Dt = \partial \mathbf{u}/\partial t + (\mathbf{u} \cdot \nabla) \mathbf{u} = 0$$

Finite differences (time step limited by CFL condition)

- Semi-Lagrangian
- *Particle-based*: PIC, FLIP, APIC

Pressure

$$\mathbf{u}^{n+1} = \mathbf{\tilde{u}} - \nabla p \,\Delta t,$$
$$\nabla \cdot \mathbf{u}^{n+1} = 0$$

$$\Rightarrow \nabla \cdot \tilde{\mathbf{u}} - \nabla^2 p \Delta t = 0$$

[Tong et al. 2003]

$$(\nabla \cdot \mathbf{u})_{i,j} \approx (u_{i+\frac{1}{2},j} - u_{i-\frac{1}{2},j})/\Delta x + (v_{i,j+\frac{1}{2}} - v_{i,j-\frac{1}{2}})/\Delta x$$
$$(\nabla^2 p)_{i,j} \approx (p_{i-1,j} + p_{i+1,j} + p_{i,j-1} + p_{i,j+1} - 4p_{i,j})/\Delta x^2$$

The pressure system

 $\nabla^2 p \Delta t = \nabla \cdot \tilde{\mathbf{u}}$

- 1. Compute $(\nabla \cdot \tilde{\mathbf{u}})_{i,j} = d_{i,j}$ on cell centers
- 2. Put pressure values in a vector **p**: $(\nabla^2 p \,\Delta t)_{i,i}$ becomes a linear operator **A p**

 $(taking \Delta t = \Delta x = 1)$

3. Solve $\mathbf{A}\mathbf{p} = \mathbf{d}$ for \mathbf{p}

The pressure system

 $\nabla^2 p \Delta t = \nabla \cdot \tilde{\mathbf{u}}$

- 1. Compute $(\nabla \cdot \tilde{\mathbf{u}})_{i,j} = d_{i,j}$ on cell centers
- 2. Put pressure values in a vector **p**: $(\nabla^2 p \Delta t)_{i,j}$ becomes a linear operator **A p**

$$-1$$
 -1 4 -1 -1

Negate for positive definiteness

3. Solve $\mathbf{A} \mathbf{p} = \mathbf{d}$ for \mathbf{p}

$$\begin{bmatrix} \vdots \\ p_{i-1,j} \\ \vdots \\ p_{i,j-1} \\ p_{i,j} \\ p_{i,j+1} \\ \vdots \\ p_{i+1,j} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ -(\nabla \cdot \mathbf{u})_{i,j} \\ \vdots \end{bmatrix}$$

Solving the pressure system

Easy way: Gauss-Seidel iterations

$$p_{i-1,j} + p_{i+1,j} + p_{i,j-1} + p_{i,j+1} - 4 p_{i,j} = (\nabla \cdot \tilde{\mathbf{u}})_{i,j}$$

$$\Rightarrow p_{i,j} = \frac{1}{4} (p_{i-1,j} + p_{i+1,j} + p_{i,j-1} + p_{i,j+1} + (\nabla \cdot \tilde{\mathbf{u}})_{i,j})$$

Parallelization via *red-black ordering*

 Better way: Preconditioned conjugate gradient method

See Bridson & Müller-Fischer, Ch 4.3

Boundaries

Static obstacles:

- Solid faces have **u** · **n** = 0,
 do not contribute to ∇ · **u**
- Pressure shouldn't change $\mathbf{u} \cdot \mathbf{n}$, so $\nabla p \cdot \mathbf{n} = 0$
- *Limitation*: Sloped boundaries are jagged

[Foster & Metaxas 1996]

[Batty et al. 2007]

Putting it all together

A basic fluid simulator

Create staggered grid for domain, flag cells as solid/fluid

For each time step:

- 1. Compute $\tilde{\mathbf{u}} = \operatorname{advect}(\mathbf{u}^n, \mathbf{u}^n, \Delta t)$
- 2. Add body forces: $\mathbf{\tilde{u}} += \rho^{-1} \mathbf{f}_{ext} \Delta t$
- 3. Do viscosity step if desired
- 4. Set $\mathbf{u}^{n+1} = \text{project}(\mathbf{\tilde{u}})$

Suppose $\mathbf{u}^0 = \mathbf{0}$, $\mathbf{f}_{ext} = \rho \mathbf{g}$... What happens?

Smoke simulation

Scalar fields c : smoke density, T : (relative) temperature

- 1. Update $c^{n+1} = advect(c^n, \mathbf{u}^n, \Delta t)$, $T^{n+1} = advect(T^n, \mathbf{u}^n, \Delta t)$
- 2. Add buoyancy force: $\mathbf{f}_{ext} += (-\alpha c^{n+1} + \beta T^{n+1}) \hat{\mathbf{z}}$

Issues

Numerical dissipation

- Diffusion in advection (almost eliminated by FLIP, APIC)
- Energy loss in projection [see Zhang et al. 2015, Zehnder et al. 2018]
- Boundary handling
 - Sloped solid boundaries [Batty et al. 2007]
 - Liquid surfaces (next up)
 - Small features (thin boundaries, fluid sheets, splashes) require hybrid methods

Liquids

Liquids

What's the difference between liquids and gases (in our model)?

Liquid region does not fill entire domain. Liquid/air boundary is a *free surface* that moves with fluid velocity **u**

- How to represent liquid region?
- How to modify eqs. of motion?

[Foster & Metaxas 1996]

Surface tracking

What we need:

- Determine whether cell is *inside / outside* liquid
- Advect through velocity field
- *Reconstruct* surface for rendering

Level sets

[Foster & Fedkiw 2001, Bridson & Müller-Fischer Ch 6.2]

Represent region as sublevel set of scalar field φ , usually **signed distance function**

- $\varphi < 0$ inside, $\varphi > 0$ outside, $|\varphi| = distance$ to surface
- Inside/outside: Just check sign of φ

- **Advection**: Advect φ as scalar field, then

do "redistancing"

Fast marching, fast sweeping methods

Level sets

• *Reconstruction*: Marching cubes

Advantages:

Automatically handles topology changes

Disadvantages:

- Diffusion causes loss of volume & surface detail
- Requires periodic redistancing

Particles

Place particles around the surface [Enright et al. 2002] or everywhere in liquid [Foster & Metaxas 1996, Zhu & Bridson 2005]

Advection is trivial: just move particles

[[]Zhu & Bridson 2005]

- Inside/outside: Mark cell as fluid if it contains any particles
- **Reconstruction**: Construct an SDF φ , then marching cubes (or directly render with ray tracing)
 - Most common approach: distance from "average neighbour" $\varphi(\mathbf{x}) = \|\mathbf{x} - \bar{\mathbf{x}}\| - \bar{r}$ [Zhu & Bridson 2005, Adams et al. 2007]

Particles

Advantages:

- Handles topology changes
- Better preserves volume
- Automatically produces droplets at splashes

Disadvantages:

- Bumpy surfaces
- Sheets tend to break up into droplets

[Yu & Turk 2010]

Meshes

Store surface explicitly as triangle mesh [Wojtan et al. 2011]: no reconstruction necessary

- Inside/outside: Ray casting
- Advection: Move vertices (easy), then improve mesh (hard!)
 - Modify stretched/squashed triangles, deal with merging and splitting

[Brochu & Bridson 2009]

[Wojtan et al. 2009]

Meshes

Advantages:

- Highly accurate surfaces, great for surface tension effects
- Liquid sheets well preserved

Disadvantages:

- Much more complicated to implement
- Grid dynamics may not "see" all the surface details

[Goldade et al. 2016]

Surface dynamics

Velocity extrapolation

Advection may query velocities **outside** current liquid region

Set **u**(air) = **u**(nearest fluid cell), similar to fast marching

Free surface boundary conditions

Assume air is at **constant** atmospheric pressure $p = p_{atm}$ (Dirichlet boundary condition)

Can assume p_{atm} = 0 (Why?)

Air cells drop out of Laplacian formula, e.g. = 0 $(\nabla^2 p)_{i,j} \approx (p_{i-1,j} + p_{i+1,j} + p_{i,j-1} + p_{i,j+1} - 4 p_{i,j})/\Delta x^2$

Free surface boundary conditions

With both solid and air neighbours:

Sloped surfaces: [Gibou et al. 2002] See Bridson & Müller-Fischer Ch 4.5.1

Surface tension

surface tension coefficient _

Theory: force per unit area = $2\gamma H \hat{\mathbf{n}}$ where $H = (\kappa_1 + \kappa_2)/2$: mean curvature

One approach [Hong & Kim 2005]:

- Compute к from SDF
- Apply pressure boundary condition $p = p_{atm} + 2\gamma H$

Problem: surface tension forces computed explicitly ⇒ time step restriction

[Hong & Kim 2005]

Next class

Fluid simulation with particles alone: *Smoothed particle hydrodynamics*

Readings:

- Müller et al., "Particle-Based Fluid Simulation for Interactive Applications", 2003
- Becker & Teschner, "Weakly Compressible SPH for Free Surface Flows", 2007

